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Topological Aspects

Singular covering maps take historical precedence (in the work of Riemann in
analysis) over the more recent concept of covering map that occurs in alge-
braic topology. This chapter emphasizes the point of view that topos complete
spreads may be regarded as a class of generalized singular coverings. We deal
with aspects of singular covering toposes of interest in topology, and in par-
ticular, we focus on a special class of complete spreads that we call branched
coverings.

We call the geometric morphism & /X —— & associated with any object
X of a topos & a local homeomorphism. We shall see that if X is a locally
constant object (or locally trivial, or locally split) in a locally connected topos
&, then &/X —— & is a complete spread geometric morphism. Let us call
a local homeomorphism that is also a complete spread an unramified cover-
ing, or an unramified covering topos. If X is a locally constant object of a
locally connected topos &, then the geometric morphism & /X —— & is thus
unramified in this sense.

Our definition (or intrinsic characterization) of branched coverings in the
context of toposes employs the notions of complete spread, pure subobject,
locally trivial covering, and a newly isolated concept of purely skeletal geo-
metric morphism. We establish the equivalence of this (axiomatic) definition
with an alternative notion of branched covering that is almost directly moti-
vated by Fox’s topological concept of branched covering, and which was given
independently by M. Bunge and S. Niefield [BN00], and by J. Funk [Fun00].

We show that a van Kampen theorem, obtained in joint work by M. Bunge
and S. Lack [BLO03], holds for what we call fibrations of regular coverings.
These include both the locally constant as well as the larger class of unramified
coverings, which are shown to enjoy similar topological properties yet do not
agree in general.

Finally, we introduce a notion of index of a complete spread, which is
related to branched coverings.



190 9 Topological Aspects
9.1 Locally Constant versus Unramified Coverings

Let & be a topos bounded over .. For the moment, no assumptions on & will
be made. Occasionally, we will need to suppose that & is locally connected.

We say that an object has global support if its unique morphism to the
terminal is an epimorphism.

Definition 9.1.1 An object X of & is said to be U-split by an object U of &
if there is a morphism o : S —1 in &, and a morphism n: U — e*1I, such
that there is a morphism X x U — e*S for which the square

XxU e*S
U e*l

n

1s a pullback. An object X of & is said to be locally constant, or locally trivial,
if X is U-split by an object U of & with global support. We call the geometric
morphism &)X — & associated with a locally constant object X a locally
constant covering.

Remark 9.1.2 A notion of constant object (as U-split where U = 1) is
implicit in the notion of locally constant object. In view of the central role
which definable morphisms play in this book, it is worthwhile to note that an
object X of an -topos & is 1-split iff it is a definable object, in the sense
that X — 1 is a definable morphism. Then implicitly and automatically an
object is locally constant iff it is locally definable.

Lemma 9.1.3 Assume that X and U are objects of a locally connected topos
&. Then the following are equivalent:

1. X is U-split.
2. there exists a morphism o« : S —e/U in ., and a pullback

X xU———¢€*S

U—— e al

where 1 is the unit of the adjunction e; 4 e* .
3. the adjunction square

X x U—e*e)(X x U)

7"2l ie*egﬂ’z

UT>6*6[U

s a pullback, where n is the unit of ey 4 e*.
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It follows from the preservation properties of inverse image functors of
geometric morphisms that they preserve locally constant objects. We now
wonder about the question of inverse image functors reflecting locally constant
objects. We are led to consider restrictions on the geometric morphism.

Lemma 9.1.4 Pullback along a locally connected surjection reflects locally
constant objects.

Proof. Let 9 —= & be a locally connected surjection. Assume that *X
is split by some object U of global support, with the help of morphisms « :
S—Tin . and n: U — p*e*I in ¢, so that there is a pullback diagram

p*X xU s p*e*S

TFQl ltp*e*a

U pre*l

n

in 4. Since ¢ is locally connected, it preserves definable morphisms in the
sense that the diagram

e*l

’

is a pullback in &. By the Frobenius condition for a locally connected geo-
metric morphism over ., which in this case says that the canonical map

PP X xU) —=X x U

is invertible, the above diagram gives a pullback

X x ngge*S

oU

which shows that X is ¢U-split.

It remains to prove that if U has global support, then so does ¢,U. Since
U — 1 is an epimorphism, also ¢;U — ¢11 is an epimorphism as ¢, is a left
adjoint. If ¢ is a surjection (¢* is faithful), then 1 has global support since
every component of the counit of ¢ 4 ¢* is an epimorphism. In particular,
o1l 2 p1p*l — 1 is an epimorphism. This completes the proof. o
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We now turn to a consideration of the ‘analytic’ notion of an unramified
covering, which we take to mean a local homeomorphism that is also a com-
plete spread (Def. 9.1.7). We first analyse some further relevant properties of
complete spreads, beginning with the following analogue of Lemma 9.1.4 for
complete spreads.

Lemmas 9.1.4 and 9.1.5 will prepare us for Theorem 9.1.6, and for the van
Kampen theorem for locally constant coverings and unramified coverings.

Lemma 9.1.5 Pullback along a locally connected surjection reflects complete
spreads.

Proof. Suppose in a pullback

-

¥

that £ is a complete spread, where ¢ is a locally connected surjection. Then ¢ is
a spread, so that by Lemma 3.1.10, v is a spread. Form the spread completion
of 1 and its pullback along .

I

7 is a pure spread, hence an inclusion (Lemma 3.1.12). The pullback of 7 is
an equivalence because £ is a complete spread. Therefore, 1 is a surjection,
hence an equivalence. This proves that 1 is a complete spread. o

Theorem 9.1.6 If X is a locally constant object of a locally connected topos
&, then &/ X ——= & is a complete spread.

Proof. Let X be locally constant. By Exercise 2.4.12; 3, for any morphism
S of .7, S)S —=.7/I is a complete spread. Complete spreads are
pullback stable along locally connected (or even essential) geometric mor-
phisms, so

Ele*S —=&/e"T

and hence &/X x U ——= & /U, is a complete spread. By Lemma 9.1.5 we are
done. o

Definition 9.1.7 Assume that & is locally connected over .. We shall refer
to an object X of a topos & over Z for which & /X — & is a complete spread
as a complete spread object. In this case, we call the geometric morphism
&/X — & an unramified covering.
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Theorem 9.1.6 says, in our terminology, that a locally constant covering is
an unramified covering. Example 9.1.8 describes an unramified cover that is
not locally constant; the class of unramified coverings is strictly larger than
the class of locally constant coverings, even over a locally connected space.
The domain space in this example is connected, so this map cannot even be
a coproduct of locally constant coverings.

Example 9.1.8 This example describes a local homeomorphismY A X (for
which Y is connected) into a locally path-connected and connected space X that
is a complete spread (an unramified covering), but is not locally constant. The
space X is the ‘Hawaiian earring:’ X is the pencil of tangent circles C,, of
radius %, n=1,2,3..., topologized as a subspace of the Fuclidean plane. We

have -
x=[Jcn
n=1

with a single tangent point a such thatV'm # n, C,,NC,, = {a}. The Hawaiian
earring is not semi-locally simply connected (defined below). The domain space
Y consists of countably many copies of the real line R and of X, topologized
as a subset of Fuclidean 3-space. To be precise, let

where n is a natural number and z is an integer. Let' Y 2 X be the map such
that:

1. each R,, is a homeomorphic copy of the real line, and v restricted to R,
s a universal covering map R, —= C,,

2. v Ya)={...,-2,-1,1,2,...} ordered consecutively on Ry, and 1)~ (a)N
R,={..,—n—1,—-nnn+1,...},

3. Y carries X, homeomorphically onto U;’i‘z‘ﬂ Gy, 12|=1,2,...,

4. each yeY —~1(a) has an open neighbourhood that is homeomorphic to
the real line,

5. XN (Urt Ry) = {2}, 2] =1,2,....

The space Y is connected and locally path-connected. We readily see that the
map 1 is a local homeomorphism, even at the points of the fiber 1 ~'(a).
Furthermore, ¥ is a spread, and it also holds that the fiber of any point of
X is in bijection with its cogerms, so that 1 is a complete spread. On the
other hand, v is not locally constant because the point a € X does not have
an evenly covered neighbourhood. Indeed, any neighbourhood B of a contains
a circle Cy,, for some n. For this n, the point n of ¥~ (a) (according to our
naming convention) is a member of R,,. The connected component of )~ (B)
that contains this point must contain all of R,,, so that b cannot restrict to a
homeomorphism of this component onto B.
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Remark 9.1.9 The following result provides further evidence beyond Exer-
cise 6 that unramified coverings are locally constant under hypotheses of the
locally simply connected kind. A space is said to be semi-locally simply con-
nected if it has a cover {U,} of open neighbourhoods such that each U, has
the property that any two paths in U, with common endpoints are homotopic
in the whole space by a homotopy that fixes the endpoints.

Theorem [FT01]: A non-0 local homeomorphism over a connected,
locally path-connected, semi-locally simply connected space that is
also a complete spread is a surjective covering space.

This theorem may be proved using a path-lifting argument, but we omit this
proof as we shall not use the result and the proof would take us beyond the
scope of this book.

Remark 9.1.10 In some ways, unramified coverings are better behaved than
locally constant coverings. Locally constant coverings do mot generally com-
pose: it can happen that & /X — &Y and &)Y —— & are locally constant,
but &/ X — & is not (even in a locally connected topos & ). However, unram-
ified coverings do compose. We shall see also that unramified coverings, just
like locally constant coverings, satisfy a (coverings) van Kampen theorem with
respect to the same class of geometric morphisms of effective descent, namely
locally connected surjections. For this purpose, we shall define a motion of
reqular covering morphism. The locally constant coverings and the unramified
coverings are two examples of such reqular classes. Of course, we also think
of complete spreads as coverings, but of a singular (or ramified), not regular
kind. We shall develop this point of view in § 9.3.

Let us denote by
L: Top,°® —= CAT

the pseudofunctor that assigns to a topos & the slice category Top /& and
to a geometric morphism # —%~ & the functor given by pulling back along .

A geometric morphism .% —— & is said to be of effective descent if any
object X of % equipped with descent data already comes from & under 9*.
We are concerned with classes @ of geometric morphisms of effective descent
that are closed under composition and pullbacks. For instance, the class of
locally connected surjections is such a class @, which we shall meet again
below.

Definition 9.1.11 Let @ be a class of geometric morphisms of effective de-
scent in Top .y that is closed under composition and pullbacks. We shall say
that a subpseudofunctor I' of L is a @-stack, if for any pullback diagram

P g

w*(a)l la

F &
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of geometric morphisms for which ¢ is a member of @, we have
©*(a) € I'(F) implies a € T'(&) .
Let us return to a pseudofunctor we have already encountered in § 1.3:
A : Top P —= CAT,

such that A (&) is the topos-frame & itself. A is a subpseudofunctor of L. This
is a basic example of an intensive quantity that Lawvere has emphasized.
By the very definition of effective descent, A is trivially a ®-stack for any
class @ of effective descent geometric morphisms, and we have already seen in
Proposition 1.3.2 that A preserves binary products. We make the following
definition.

Definition 9.1.12 Let % be an extensive sub-2-category of Top, and ® a
class of geometric morphisms of effective descent, closed under composition
and pullbacks. A subpseudofunctor #°P —= CAT of L is said to be a fibra-
tion of regular covering morphisms with respect to @ if it is a @-stack, and if
it preserves binary products.

Denote by
% : Top ,°* —= CAT

the subpseudofunctor of L such that €(&) is the full subcategory of L(&)
consisting of the local homeomorphisms determined by its locally constant
objects. The objects of €(&) are called locally constant coverings of &. We
have already observed that this assignment is pseudofunctorial, as inverse
images of geometric morphisms preserve locally constant objects in general.
In particular, we may consider € as a contravariant pseudofunctor defined on
LTop ., the full sub 2-category of Top ., whose objects are locally connected
toposes.

For a locally connected topos &, let 7 (&) denote the full subcategory of
L(&) determined by the complete spread objects of &, or unramified coverings
of & (Definition 9.1.7). This assignment extends to a pseudofunctor

% : LTop ,,°Y — CAT

since unramified geometric morphisms are stable under pullback along geo-
metric morphisms with locally connected domain (Exercise 9.1, 7).

Lemma 9.1.13 The subpseudofunctors € and % of L are both fibrations of
reqular coverings with respect to the class @ of locally connected surjections.

Proof. It is not difficult to show that ¥ and % preserve binary products
(Exercise 9.1, 8). The fact that ¥ is a $-stack depends on Lemma 9.1.4. The
same fact for % depends on Lemma 9.1.5. o



196 9 Topological Aspects

Definition 9.1.14 Let JZ be an extensive sub-2-category of Top s, and ¢ a
class of geometric morphisms of effective descent, closed under composition
and pullbacks. Let I' be a pseudofunctor on S . We shall say that the van
Kampen theorem holds for I with respect to @ if whenever

B1

by —————>= 61

ng)@@

is a bipushout (in Top.) of objects in A in which the induced map & +
& —= & is a member of @, the diagram

r&) <2 re&)

R ¥

I'(&)<=——1()

Qo
1s a bipullback in CAT.

The conditions of Definition 9.1.12 imply the condition of Definition 9.1.14,
which we state as the next theorem.

Theorem 9.1.15 Let % be an extensive sub-2-category of Top, and let &
be a class of effective descent morphisms in &, closed under pullback and
composition. Let I' be a fibration of reqular covering morphisms in & with
respect to @. Then I satisfies the van Kampen theorem with respect to ®.

Proof. The proof reduces, using the given pushout (testing it with geomet-
ric morphisms whose codomain is the object classifier), and since I is a sub-
pseudofunctor of L, to showing that an object X of & is in I'(&) if X; = o (X)
and X5 = a3 (X) are in I'(&1) and I'(&3) respectively. Since I” preserves binary
products, o*(X) = (af(X),a3(X)) isin I'(&) x I'(&) ~ I'(& + &). Since
« is of effective descent for I', and by our assumption that I is a @-stack, X
is indeed in I'(&). o

Corollary 9.1.16 The van Kampen theorem holds for both € and % regarded
as pseudofunctors LTop?, — CAT, with respect to the class ¢ of locally
connected surjections.

Proof. This follows directly from Theorem 9.1.15 and Lemma 9.1.13. o

Remark 9.1.17 Assume that the toposes in Theorem 9.1.15 are all locally
connected and locally simply connected, in the sense that there is a single
U —= 1g that splits all locally constant objects. If & is locally connected and
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locally simply connected, then € (&) is a (Galois) topos of the form PB(m(£)),
the classifying topos of the fundamental group of &. In this case, the van Kam-
pen theorem takes the form of “a pushout-to-pushout” result, as follows. Let

B1

504>6521

Cg)z T) &
be a pushout diagram in LTop in which all four toposes are locally simply
connected, and where the induced map & + & — & is a locally connected
surjection. Then the diagram

€(6) —>C(&)

(62) —5, > €(&)

s a pushout diagram in Top . The conclusion uses the fact that a bipushout
in Top s is calculated as a bipullback in Cat via the inverse images of the
geometric morphisms. We warn the reader that trying to deduce this result
from the possible existence of a reflection of the inclusion of Galois toposes
into locally simply connected toposes meets with some difficulties.

Remark 9.1.18 A pseudofunctor
I: #°°® — CAT

provides a notion of homotopy. Le., by definition, a I'-homotopy ¥ = ¢ be-
tween two geometric morphisms with the same domain and codomain toposes
is a pseudonatural transformation (or isomorphism)

I'(y)=1I(p).

For example, A, €, and % are all fibrations of reqular coverings with re-
spect to locally connected surjections, but € and % are distinguished from A
by their homotopies. Indeed, ordinary homotopies (for locally path-connected
topological spaces) induce € and % -homotopies, but they do not induce
A-homotopies.

Exercises 9.1.19

1. Show that any constant object e*A (including 0) is a locally constant
object.
2. Prove Lemma 9.1.3.
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If & is connected and locally connected, and the base topos is Set, show
that an object X of & is locally constant (as in Definition 9.1.1) iff there
is a U —=1g and an object S of & such that X x U = e*S x U over
U. (This condition was taken by Barr and Diaconescu as the definition of
locally constant; however, it is only suitable in the connected case.)

An open set V C X is evenly covered by a map F —> X if 7= (V) has an
open partition such that the restriction of m to each member of the partition
is a homeomorphism with V. Then 7 is a (necessarily surjective) covering
space if X has a cover of open sets each of which is evenly covered by 7.
Let X be locally connected. Show that a local homeomorphism F —= X is
a covering space in this sense iff it is a non-0 locally constant object in
Sh(X).

Show that presheaf on a connected small category is locally constant iff its
transition maps are isomorphisms.

A presheaf (= discrete fibration) is a complete spread object iff it is also
a discrete opfibration. Show that a presheaf on a connected category is
locally constant iff it is a complete spread object.

Prove that the unramified geometric morphisms with locally connected
codomain (hence also locally connected domain) are stable under pullback
along geometric morphisms with locally connected domain.

Prove that the pseudofunctors € and % preserve binary products.

Let 7 —2~ & be a pure geometric morphism between locally connected
toposes. Show that the induced functor

P E(8) —=C(F)

18 full and faithful.

9.2 Purely Skeletal Geometric Morphisms

In order to prepare for branched coverings in §9.3, we first investigate the class
of geometric morphisms that respect pure (mono)morphisms. Throughout this
section, & denotes a locally connected topos.

Definition 9.2.1 A pure morphism of & is a morphism X —=Y for which
&)X —= &Y is a pure geometric morphism. We say an object X is pure if
X — 1 is a pure morphism.

Lemma 9.2.2 A morphism X —%=Y of & is pure iff the induced morphism

Y x e (2y) — (Y x e (25))

is an isomorphism. In particular, the lattice of definable subobjects of a pure
object is isomorphic to the lattice of definable subobjects of 1g.
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Proof. This follows directly from the definitions. o

Example 9.2.3 The balloon’s shadow map S? — S? (§ 2.1) has the property
that every pure open subset remains pure under inverse image. On the other
hand, the image part of this map S? —= D, where D is a closed disk, does
not have this pure-respecting property (eg., consider the interior of D). Both
these maps are complete spreads.

A map D — S? that envelopes the sphere by collapsing the boundary of
D to a point of S? also has the pure-respecting property.

Definition 9.2.4 We shall say that a geometric morphism respects (re-
flects) pure morphisms if its inverse image functor preserves (reflects) pure
morphisms. We shall call purely skeletal any geometric morphism that re-
spects pure monomorphisms (meaning simply a monomorphism that is a
pure).

Geometric morphisms that respect pure (mono) morphisms are analogous
to geometric morphisms that respect double-negation dense monomorphisms,
the so-called skeletal geometric morphisms.

Remark 9.2.5 In the following diagram if p reflects pure morphisms and ¢
respects pure morphisms, then v respects pure morphisms.

N

Proposition 9.2.6 A locally connected geometric morphism respects pure
morphisms. A locally connected surjection reflects pure morphisms.

F

Proof. These statements follow from Lemma 2.2.11. o

Proposition 9.2.6 has the following dual statement for pure geometric mor-
phisms.

Proposition 9.2.7 A pure geometric morphism reflects pure morphisms.
A pure inclusion respects pure morphisms.

Proof. Consider the following diagram for pure p, and object X.

FlprX —E&/X

L

9417>é2

The top horizontal is pure. If p*X is pure, then X is pure by Lemma 2.2.8.
We also use Lemma 2.2.8 for the second statement. o
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We may always consider the largest topology in a topos for which a given
object of the topos is a sheaf. If X denotes an object, then a monomorphism
m : A>> B is dense for this largest topology iff B*X — B*X™ (transpose
of the projection) is an isomorphism. We have the following.

Proposition 9.2.8 Let & be a topos bounded over .. Then a monomorphism
is dense for the largest topology for which e*(2) is a sheaf iff it is a pure mor-
phism. Thus, the pure monomorphisms in & are the dense monomorphisms
for a topology in &.

Definition 9.2.9 We refer to the topology of pure monomorphisms as the
pure topology in &, and to its sheaves as pure-sheaves. We refer to monomor-
phisms that are closed for the pure topology as pure-closed. We denote the
subtopos of pure-sheaves by &, > &.

Every topos has a smallest dense subtopos: the subtopos of double-
negation sheaves, which is a Boolean topos. Similarly every locally connected
topos has a smallest pure subtopos.

Proposition 9.2.10 If & is locally connected, then &, is locally connected.
& 1s the smallest pure subtopos of &.

Proof. The unit e*(2y) —i.i*e*(25) for the inclusion i : &, > & is
an isomorphism because e*({25) is a pure-sheaf. But this says that ¢ is pure.
& is locally connected because a pure subtopos of a locally connected topos
is locally connected (2.2.16). Let Sh;(&) > & be a pure inclusion. By the
definition of pure, e*(£25) is a j-sheaf. Hence, every j-dense monomorphism
is pure. Therefore, &, > Sh;(&). o

Example 9.2.11 Let R denote the real numbers. Then Sh(R), = Sh(R) be-
cause a pure inclusion of open intervals must be an equality. However, Sh(R?),,
is a proper subtopos of Sh(R?). For instance, the complement in R? of a curve
is a pure-closed open subset of R2. On the other hand, a punctured plane is a

pure subset of R?. The complement of a surface in R> is a pure-closed open
subset of R3.

Example 9.2.12 The dense topology in a presheaf topos P(C) is given by the
sieves R>—= h. such that for every morphism d —c in C, f*(R)>> hy is
non-empty. The subtopos of sheaves for this topology is precisely the smallest
dense subtopos of P(C). A sieve R>> h. is a member of the pure topology in
P(C) if for every f, f*(R) is connected. Implicitly, a connected sieve is non-
empty, so the pure topology is contained in the dense (or double-negation)
topology. The smallest pure subtopos P(C),, is locally connected.

Definition 9.2.13 A density object of an locally connected topos is an object
of the form d(u), for some distribution u, where d is the density monad,
introduced in § 6.2.
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Proposition 9.2.14 Density objects are pure-sheaves. If & is locally con-
nected, then &), is the smallest subtopos of & containing the density objects.

Proof. Let & —w> & denote the complete spread associated with a distri-
bution p. Let A>= B be a pure monomorphism in a locally connected topos
&. We know that morphisms A — d(u) are in bijection with geometric mor-
phisms between the spread completion of &/A and # over &. However, the
spread completions of &/A and &/B are equivalent because &/A>> & /B
is a pure geometric morphism. This shows that d(u) is a sheaf for the pure
topology. The second statement holds because any constant object is a density
object. In particular, the constant object e*(£25) is a density object. o

Proposition 9.2.15 For any geometric morphism % 2. & over S with
locally connected domain, the following are equivalent:

1. v is purely skeletal;
2. Y restricts to smallest pure subtoposes;

L

<~
<

|

S

3. the distribution algebra H = ¥, (f*2s) in & is a pure-sheaf.

Proof. These conditions are clearly equivalent once we recall the definitions
of pure, and pure-sheaf. o

The spread completion of an object Y of a locally connected topos & is
the complete spread geometric morphism ? in the diagram

p

&)Y

N A
&

in which p is pure. These complete spreads correspond to Lawvere’s absolutely
continuous distributions, meaning a distribution of the kind Y.e,.

&

(9.1)

Proposition 9.2.16 The spread completion of an object of a locally connected
topos is purely skeletal.

Proof. Use Proposition 9.2.6 and Remark 9.2.5 applied to diagram 9.1. o

Exercises 9.2.17

1. How are preservation of pure sets under inverse image and change in
codimension of singular sets related?
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2. Show that the inclusion of a single point into the real line is purely skeletal,
but not skeletal. Find an example showing that skeletal does not imply
purely skeletal.

3. Let Ey(&) be the category of distributions on a locally connected topos &
that carry pure monomorphisms to isomorphisms. Show that an absolutely
continuous distribution Y.er is a member of E,(&). Show that E,(&) ~
E(&),).

4. Provide a detailed proof of Proposition 9.2.15.

9.3 Branched Covering Toposes

Our development of branched coverings stems in part from the ideas of R.
H. Fox. We shall define a branched covering of a topos as a special kind of
complete spread: we shall define a branched covering as a complete spread
that is purely skeletal (Def. 9.2.4), and which is, as we shall say, a purely
locally constant covering.

We shall say that an object has pure support if its support (which is a
subobject of 1¢) is a pure monomorphism.

Definition 9.3.1 A geometric morphism % v, & is a purely locally con-
stant covering if there is U — lg with pure support such that U* () in the
pullback

Y/ U) ——=&

U*(w)i J{iﬁ

&/u &

in Top , is a local homeomorphism determined by a definable object in & /U,
in the sense of Remark 9.1.2.

Note that any locally constant covering of & is a purely locally constant
covering of &.

Definition 9.3.2 A geometric morphism % 2. & is said to be a branched
covering if:

1. it is a complete spread,
2. it 1s a purely locally constant covering, and
3. it is purely skeletal.

We regard branched coverings of & as a full subcategory of the category of com-
plete spreads over &. Denote by B(&) the corresponding category of branched
coverings of &.

Example 9.3.3 The balloon’s shadow map S* —= S? (Ezample 9.2.3) is a
complete spread that satisfies the third requirement of branched covering, but
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not the second. The image part S%2 —= D of this map is a complete spread
that satisfies the second requirement, but not the third. Both of these maps
exhibit folding, but this folding is detected differently in each case. Intuitively,
the last two conditions of a branched covering together rule out folding in a
complete spread.

Any geometric morphism satisfying the last two conditions of Definition
9.3.2, but possibly not the first, can be ‘normalized’ in the following sense.

Proposition 9.3.4 The spread completion of a geometric morphism with lo-
cally connected domain satisfying the last two conditions of a branched cover-
ing is a branched covering.

Proof. We must verify that the spread completion % N & of such a geo-
metric morphism # —75 & satisfies the last two conditions of a branched
covering as in Definition 9.3.2. ¥ has the third property because pure geo-
metric morphisms reflect pure monomorphisms. The second condition holds
because the pure

F U —= & [*U

is a complete spread, hence an equivalence, since both % /p*U — & /U and
% |Yp*U —— & /U are complete spreads. o

Remark 9.3.5 The normalization process may have trivial results. The bag
map D —= S? (collapse the boundary of D to a point forming a sphere) sat-
isfies the last two requirements of a branched geometric morphism, but it is
not a complete spread. In fact, this map is pure, so its spread completion is
the identity on S?. It may be interesting to note that the zipper map D —= S?
(collapse the boundary of D to a closed line segment forming a sphere) is not
branched because it is not purely locally constant (but it is purely skeletal).
However, it is already normalized, as it is a complete spread.

The following is immediately clear.

Proposition 9.3.6 A locally constant covering of a locally connected topos
& is a branched covering. For a locally connected topos &, the category € (&)
of locally constant coverings of & is a full subcategory of the category HB(&)
of branched coverings of & .

Remark 9.3.7 IfV denotes the support of a splitting object U for a branched
covering % — &, then the support of v*(U) is »*(V). We refer to the sup-
port of ¥*(U) associated with 1) as the non-singular part of #'. By definition,
this is a pure subobject of 1g . Caution: the non-singular part of % is not
a well-defined subobject of 1a. In some cases a largest non-singular part is
available, but we have not made this a requirement in Definition 9.3.2. How-
ever, it is reasonable to expect that in applications the notion of a branched
covering be further specified by including its non-singular part, or its pure
splitting object, as part of the data.



204 9 Topological Aspects

Lemma 9.3.8 Consider a commutative triangle
4
NS
&

of localic geometric morphisms. If p and ¢ are local homeomorphisms, and p
s a surjection, then ¥ is a local homeomorphism.

Z

Proof. This fact may be established using the well-known fact that a localic
geometric morphism is a local homeomorphism iff it is open and its diagonal
is open. o

Proposition 9.3.9 A branched covering is a locally constant covering iff it
has a splitting object with global support.

Proof. If a branched covering & v & has a splitting object with global
support, then we have a pullback diagram

Y/ U) —=&
U*w)i ¥
&/u &

in which all geometric morphisms are local homeomorphisms except ostensibly
1. But then by Lemma 9.3.8, 1) must be a local homeomorphism, whence
locally constant. o

Lemma 9.3.10 is analogous to the simple fact from topology that in a
square

[

S>>——X

where S is a subspace of X, C' is a closed subset of S, and C is the closure of
C in X, we have C = SN C. In other words, the square is a pullback.

Lemma 9.3.10 Let % > & be a subtopos. Let X Lﬁ be a complete
spread. Then the spread completion of 1 over & forms a topos pullback square.

" Lo

wl lw

Consequently, the pure factor p is an inclusion.
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Proof. We may construct the spread completion ¢’ as follows. Let A (=
x1-9*) denote the distribution on & associated with ¢, so that the distribution
on & associated with 9’ is A-i*. We choose any site for &, say with underlying
category C. Then )’ fits in the following pullback.

¥ > P(Y)

4

&> P(C)

Y denotes the amalgamation site for A -i*. A typical object of Y is a pair
(c,a), where a € \i*(e.), and where C —— & denotes the canonical functor.
But we may also regard C as (the underlying category of) a site for .#, where
now we have C ——=.Z such that ¢ = i* - €. Then Y is isomorphic to the
amalgamation site for ), since A- ¢’ = \-i* - e. Hence, we have a commutative

diagram

z 4 P(Y)
.
F——>& P(C)

in which the outer and right squares are pullbacks. The essentially unique
factoring morphism 2 ——= % must of course be the pure p. But then the
left square must be a pullback. 0

Proposition 9.3.11 The category of purely skeletal complete spreads over a
topos & is equivalent to the category of complete spreads over &,. The equiv-
alence is given on the one hand by pullback along &, > &, and on the other
by spread completion.

Proof. Assume first that 2 Lgp is a complete spread. By Lemma
9.3.10, the spread completion % ——= & of the composite of ¢ with the pure
inclusion &, >= & forms a topos pullback with ¢. In particular, 2" is a pure
subtopos of %. Therefore, %}, factors through %2, so 9 restricts to smallest
pure subtoposes, i.e., 1 respects pure monomorphisms. v

On the other hand, assume that a complete spread % ——= & respects
pure monomorphisms. We must show that the pullback

X
@l lw
E—> &

of 1 is a complete spread, and that the inclusion 2 >= % is pure. By
assumption, ¢ restricts to %, — &p. Since the domain % of the complete



206 9 Topological Aspects

spread ® is locally connected, so is %;,. Form the spread completion of 1, say
X s &p. But then the given ¢ must be the spread completion of 2~ — &,
so again by Lemma 9.3.10, ¢ is the pullback of ). o

Proposition 9.3.11 has the following refinement. The proof technique is
essentially the same.

Theorem 9.3.12 The category B(&) of branched coverings over & is canoni-
cally equivalent to the category € (6),) of locally constant coverings of its small-
est pure subtopos &y.

Proof. We pass from a branched covering @ of & to a locally constant
covering of &, by pullback.

¥ —"su
%}

:

p i

P

& (9.2)

The pullback ¢ is i*U-split if ¢ is U-split, where U has pure support in &.
But then i*U has global support in &,. By Lemma 9.3.8, ¢ must be a local
homeomorphism, hence a locally constant covering. We shall show that p is
pure. We may regard (9.2) as a composite of two pullback squares.

ey e %

(Y T

(gf’p>—>g>/v>—>g

Here V' denotes the (pure) support of U, which must include the smallest pure
subtopos &, by a pure inclusion. It follows again by Lemma 9.3.8 that the
middle vertical is a local homeomorphism, and in fact it is a locally constant
covering. The left top horizontal factor is therefore pure, since it is the pullback
of a pure along a locally connected (in fact, a local homeomorphism). The
right top horizontal factor is pure by the assumption that 1 is purely skeletal,
hence, since V > 1 is pure, so is ¢¥*V > 1. This shows that p in (9.2) is a
composite of pures, hence pure itself. ¢ is therefore the spread completion of
i .

If we begin with a locally constant object X of &,, then we pass to a
branched covering of & by spread completion.

&)X —= U

| b

&8
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By Lemma 9.3.10, this square is a pullback. We must show that 1 is indeed a
branched covering. From Proposition 9.2.16, we get that v is purely skeletal.
We have a pullback

&)X == &[i X
b &

so that the top inclusion is pure. Therefore, 1 is also the spread completion
of &/i. X.

&/i X %

N

By composing with the projection i, (X xU) — i,(X ) we obtain the following
commutative diagram of geometric morphisms.

Elis(X xU)—=

.

Eli,U—>& (9.3)

Since the direct image functor of a pure geometric morphism preserves de-
finable objects (Exercise 1.5.7, 2), the left vertical is a definable object. The
support V > 1, of i, U is pure because it must be dense for the pure topol-
ogy. It remains to show that (9.3) is a pullback and that ¢*(V) is a pure
subobject of 1. Consider the pullbacks

WX xU)—>Y i X

.

U v le

in &. The top monomorphism is pure so that the top horizontal geometric
morphism in the following diagram is pure.

&Y 4
|
&V &

Hence, this is a spread completion diagram. But then &/Y — &/V is lo-
cally constant, whence a complete spread. By Lemma 9.3.10, this square is a
pullback, which shows that (9.3) is a pullback. It also shows that ¢* (V) 2 Y
is a subobject of 14, which we already know is pure. This completes our
argument that 1 is a branched covering, and the proof of the theorem. o
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The following result, which relates the definition of a branched covering
that we have given with one that is closer in spirit to the topological no-
tion given by R. H. Fox, is implicit in the above proof. Fox does mention in
passing that by defining branched cover as a completion of a locally constant
(or unramified) map, folds are excluded, at least intuitively. We have seen
by means of examples that in our definition of branched covering, folds are
also intuitively excluded. A topos-theoretic (or for that matter, a topological)
definition of a folded covering has not been given.

Corollary 9.3.13 A geometric morphism over a topos & is a branched cov-
ering iff it is the spread completion of a locally constant covering of &/V,

for some pure subobject V> 1. Moreover, if a branched covering % — &
is the spread completion of a locally constant covering &)Y ——= &)V, with
pure V > 1g, then the spread completion diagram

E)Y ——=&

Lk

E)V—&

s a topos pullback.

Remark 9.3.14 Sometimes we may wish to focus on a particular pure subob-
ject V> 1g. For instance, in topology V- may be the complement of a knot.
Given such a V', consider two functors given by completion and by pullback.

C(E/V)

completiy pullback

#(8) ' (&p)

The bottom arrow is an equivalence, and the other two functors are full and
faithful. The pullback functor may be equivalently described just as i* for i :
&,>> &/V. By Exercise 9.1.19, 9,

" CEIV) —=C(&)

is full and faithful. Denote by By (&) the full image category of #(&) under
the completion functor: an object of By (&) is thus a branched covering of
& that is the completion of a locally constant covering of &/V . There is an
equivalence By (&) ~ € (&/V). In particular, for a locally connected and
locally simply connected topos &V, By (&) is equivalent to the atomic topos
€ (&/V), also denoted II,°(& V). This is a version of the (coverings) funda-

mental group of a “knot” in & with “complement” V.
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Remark 9.3.15 Continuing with Remark 9.3.14, if V >= 1¢ is pure, then
we may regard € (&/V) as a full subcategory of € (6,) under the full and faith-
ful i*. For instance, every knot group € (Sh(S®)/V) can be regarded as a full
subcategory of ¢ (Sh(S3),). Hence, any two knot groups have an intersection,
by which we mean their overlap in € (Sh(S?),).

Proposition 9.3.16 Branched coverings are stable under pullback along lo-
cally connected geometric morphisms.

Proof. One way to prove this is to work with the formulation of branched
cover that Corollary 9.3.13 provides. We invite the reader to complete the
details. o

Remark 9.3.17 One can argue that historically singular coverings precede
locally constant coverings in the theory of Riemann surfaces, and that only
on account of a desired connection with the fundamental group had additional
assumptions been made on the maps, assumptions that in practice have the
effect of reducing singular coverings to locally constant coverings. In fact, the
familiar concept of locally constant covering is a topological concept formed
from the analytical concept of a Riemann surface, or rather, that part of the
Riemann surface remaining after the branch points have been deleted.

Exercises 9.3.18

1. Establish a version of Theorem 9.8.12 with unramified coverings in place
of locally constant ones. Of course the notion of branched covering must
be appropriately changed.

2. Prove Corollary 9.3.13.

3. Prove the following variation of Corollary 9.3.13: a complete spread over
& is a branched covering iff it is the spread completion of a locally constant
object of & /W, for some pure object W —= 1g.

4. Prove Proposition 9.3.16.

9.4 The Index of a Complete Spread

In this section we study the category Distg (&, %) associated with an

#-complete spread @L@@ Note that the base topos is &, not ..
We sometimes informally refer to this category as the ‘index category’ of
the ’-complete spread v for the following reason. Let W C Y denote the

non-singular part of a branched covering Y i}>X . The familiar index of
branching of v is defined in terms of a functor

¢:0(Y)—= Sh(X)
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that associates with an open set U C Y the locally constant map
Y UNW —op(UNW),

by which we mean the restriction of ¢ to U N W. Indeed, a number b(y)
is then the index of branching of ¢ at a point y €Y if there is a base {U;}
of the neighbourhood system of y such that each locally constant map U; N
W — (U; N W) has fiber b(y). Now suppose that & “ ¥, & is a branched
covering in our sense. In particular, ¢ is the spread completion &/Y Ny
of some &/Y —— &. We may thus interpret the ‘index-functor’ simply as the
functor

§y=2y-77*2@‘>@@.

This functor is an &-distribution that we call the indez-distribution associated
with the branched covering, motivated by the usual notion.
To begin our investigation, we know that for any geometric morphism

8 2, &, an &-distribution on % is isomorphic to ¢ - n*, for some locally

connected ¢.
F—u
N
&

Proposition 9.4.1 In diagram (9.4), assume that i is an #-complete spread.
Then n is an &-complete spread iff ¢ is a local homeomorphism. In particular,
any &-distribution % — & preserves pullbacks.

(9.4)

Proof. Assume that ¢ is a local homeomorphism: &/Z —— &. Consider
the &-pure, complete spread factorization of 7.

&)7 —L—a

V

The geometric morphism + is locally connected, p is &-pure so that Xz - p* =2
v, and we have

(9.5)

Z = Xz(p"(€7(1))) = (€ (1) =n(1).

We shall show that p is an equivalence. Let 2 g /Z denote the connected
part of v. Then the composite 7 - p is uniquely isomorphic to the identity
geometric morphism on &/Z.
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&1z > =6z
|
\ ¥ /
v
&
It remains to show that p-7 is isomorphic to the identity on 2. Let & ——= &

be the spread completion of &/Z —= & over .. The .#-pure, complete
spread factorization of v is as follows.

Py gy Ry

N

&

Since the codomain topos of ¢ is an .#-complete spread, there must be a
factorization £ = £ - 7 - 4, where

@f\é/

commutes. Thus, % is defined over % as in the following diagram.

&)1z =6/z

VY

But we also wish to define an isomorphism é -7 -1z = n such that the isomor-
phism 7 - p = 17 is over #". We simply take the composite isomorphism

r-lzg=lm-y-p=Epy).

The identity geometric morphism on 2" and p-7 are two geometric morphisms
from the &-complete spread £ to itself.

2l
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We have p -7 - p = p over %. Since p is &-pure, p - ¥ must be isomorphic to
the identity on 2~ over . This proves that 7 is an &-complete spread.

Conversely, assume that 7 is an &-complete spread. We have seen in the
previous paragraph that because 9 is an .’-complete spread there is a factor-
ization

&/ei(1)
7N\
" &

F

over &. But the connected @ is &-pure, and a complete spread cannot have a
non-trivial first factor that is pure. Thus @ is an equivalence, so that ¢ is a
local homeomorphism. o

Corollary 9.4.2 Let Y be any object of a locally connected topos &, with

associated complete spread % N &. Then the -pure factor &Y —= %
s an &-complete spread.

Intuitively, Corollary 9.4.2 says that an object of a topos & is &-closed in
its .#-closure.

Corollary 9.4.3 A locally connected . -complete spread is a local homeo-
morphism. Thus, an & -complete spread is an unramified cover iff it is locally
connected.

Proof. If an .-complete spread % s & is locally connected, then the
identity geometric morphism % —— % is an &-complete spread with locally
connected domain. By Proposition 9.4.1, ¢ is a local homeomorphism. o

Let & . & denote an arbitrary ./-complete spread, with interior
&)X =% X =d(¢). (d(v)) coincides with the density of the distribution
associated with v, but in the case of a geometric morphism we sometimes use
the term interior.) There is a functor

¢:8/X —> Distg(&,%)

that associates with Z "> X the distribution Xx (m x 7*( )). Now let A be
an arbitrary &-distribution " —— &. We know there is a diagram

F— o
\%
[}

&

such that ¢ is locally connected and A 2 ¢y - v*. We have (1) = A(1). We
know that the .’-pure, complete spread factorization of ¢ is
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F =&\
Y
&

where A(1) is the .-spread completion of A(1). Since 1 is an .#-complete

spread, v must factor through A(1), hence through A(1) over &:

N
RN

~

)= A1)

F

&

Since @ is &-pure, we have A = X, (1y-5*. Thus, the object A(1) factors through
the interior X, say by A(1) — X. This gives us a functor

¥ : Disty (&, %) —= &/X

that associates with a A the object A(1) % X just constructed. Moreover,
for any A, we have A =2 Xx(m x 7%( )) = &(¥(N)).

Proposition 9.4.4 Let % v & denote an . -complete spread with interior
E/X —=%: X = d(¢). Then the functors ® and ¥ establish an equivalence
of categories:

'4
g/XT)DiStg(cg),g) .

m

Moreover, for any object Z — X of &/X, the &-complete spread associated
with the distribution ®(m) is /7 "= &)X —= X .

Proof. For the first statement, we have only to show that for any Z —> X,
we have ¥(®(m)) = m. But this is clear because

S(m)(1) = Xx(mx7(1)) =Xx(m) =27,
and the morphism @(m)(1) — X is easily seen to be m. o

Corollary 9.4.5 Let Y be any object of a locally connected topos & with
S -spread completion ¥ —— & and interior & /X ——= %, as in the following
diagram.

n

&)Y &

\ 7/

E)X [y

:
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Then the functor Z % X + Sx(m x 7°( )) is an equivalence
&/X ~ Distg(&,%) .

Remark 9.4.6 Let & o & be an -complete spread, with interior
&/X —= % . Then the terminal object of Diste (&, %) is the &-distribution
Yx -7, and T is the terminal &-complete spread.

The previous discussion examines &-distributions on a given arbitrary
-complete spread to &. We now begin with a locally connected geomet-
ric morphism % —¥- & over a topos ., and then consider its .#-spread

completion.
F
&

We may also consider the &-pure, complete spread factorization of ¢, which
is the perimeter of the following diagram.

F—2 s &/n(1

Vo

Remark 9.4.7 By Proposition 9.4.1, the 7 -pure £ in diagram (9.6) is an & -
complete spread, so that @ and & give the &-pure, complete spread factorization

of n.

We conclude with the following result describing the nature of the index-
distribution that we had introduced at the beginning of this section.

Corollary 9.4.8 For any Y in a locally connected topos &, the functor
&)Y —=Dists(&, %) /sy ; E">Y =6y = Dy (mxn*( )

is an equivalence, where

&)Y

\/

is the S -spread completion of Y, and gy denotes the index-distribution Xy -n*.
ForanyY in &, if n is an inclusion (as in the case of a branched cover), then
Sy is a weak terminal object in Distg (&, %).
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Proof. We have
&Y ~ Distg(&,8/Y) ~ Diste(&,%)/sy .

Indeed, the first equivalence is by Exercise 1.3.8, 3. The second equivalence
is by Proposition 2.5.4, since &/Y e Fisan & -complete spread (Remark
9.4.7). The second statement of the proposition holds because for any object
E > Y there is exactly one natural transformation m x Y* = Y*, hence
exactly one Y* = Y™*( )™. If n is an inclusion, then there is exactly one
natural transformation 7. Y™* = 7. (Y*( )™). Now consider left adjoints to see
that there is exactly one natural transformation ¢, = ¢y . This shows that ¢y
is a weak terminal because if there is a morphism p =gy, then p =, for
some m. o

Further reading: Barr & Diaconescu [BD81, BD80], Brown [Bro88], Bunge
[Bun04], Bunge & Funk [BF98], Bunge & Lack [BL03], Bunge & Moerdijk
[BM97], Bunge & Niefield [BN0O], Bunge & Paré [BP79|, Fox [Fox57], Funk
[Fun00], Funk & Tymchatyn [FTO01], Janelidze [Jan90], Johnstone [Joh02],
Joyal & Tierney [JT84], Kock & Reyes [KR99], Mulero [Mul98], Springer
[Spr57].





