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Localic and Algebraic Aspects

In this chapter we consider distributions on locales, and the lower power locale
from a constructive point of view. We also consider factorizations other than
the comprehensive one (or pure, complete spread), and compare them. The
lower bagdomain BL, and the probability distribution classifier T are two
variants of the symmetric KZ-monad M; the equation M = BL · T offers a
new perspective on distributions and complete spread geometric morphisms.
Our notion of discrete complete spread structure provides yet another single
universe for both local homeomorphisms and complete spreads. We illustrate
some of the ideas discussed in this book with an example from algebraic
geometry involving coschemes. We make a special analysis of distributions on
the Jonsson-Tarski topos.

8.1 Distributions on Locales

Power domains (lower, upper, mixed) had been introduced in the 1970’s in
order to analyse the semantics of non-deterministic and parallel computation.
Some computer scientists now believe that this is not an ideal solution to
the problem, since infinite communicating processes are hardly ever deter-
mined by the finite (or partial) observations one can make about them. On
the other hand, the lower bagdomains had emerged from efforts to make more
accurate the model provided by the lower power domain, in which the ‘par-
tial information’ about a database should not only be specified by individual
partial records, but by an indexed family of such partial records (a ‘bag’).
Even if the domain from which one starts has only one point, the points of
the bagdomain should correspond to the ‘space’ of all sets, and the refine-
ment ordering on them, to arbitrary functions. The result is not a topological
space, or even a locale. However, the space of all sets can easily be handled by
passing to toposes by means of the object classifier S [U ]. The lower bagdo-
main has been constructed by S. Vickers, and put on a categorical foundation
by P. T. Johnstone. We will return to bagdomains in § 8.2; however, power
domains have other aspects that we shall address here.
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We shall refer to a complete upper semilattice in an elementary topos S as
a suplattice. Let sl denote the 2-category of of suplattices and sup-preserving
maps, so sl(M,N) denotes the poset of sup-preserving maps from a suplattice
M to another one N . We may consider distributions on a locale (or more
generally, on a suplattice), in the following sense.

Definition 8.1.1 A distribution on a locale X in S is a sup-preserving mor-
phism O(X) �� ΩS , where as always O(X) denotes the frame associated with
the locale X.

We denote by Σ(M) the symmetric frame of M , defined to be the frame
of the classifying locale for the theory of distributions on M , i.e., of sup-
preserving maps M �� ΩS . Equivalently, the following universal property
defines Σ(M) : for any frame O(X) in S , there is an isomorphism

Fr(Σ(M),O(X)) ∼= sl(M,O(X)) ,

of posets natural in O(X), where Fr denotes the 2-category of frames, and
frame homomorphisms. In other words, Σ is left adjoint to the forgetful
functor

U : Fr �� sl ; Σ � U .

We call Σ(M) the symmetric frame of a suplattice M .
Just like our treatment of the symmetric topos, it is appropriate to take a

‘geometric’ point of view: we may regard Σ · U as an endofunctor of locales.
If X is any locale, we define PL(X) as the locale whose frame is

O(PL(X)) = Σ(O(X)) .

Of course we mean Σ(U(O(X)) on the right, but we do not need to write U .
Thus, Σ(O(X)) is none other than the frame of opens of the Hoare locale, or
lower power locale PL(X) of X, as it is called in the literature.

Classically, the frame of the lower power locale PL(X) is freely generated
by symbols ♦U, U ∈ O(X), so that U 	→ ♦U preserves arbitrary joins. If the
topos S is Boolean, it is known that a point of PL(X), i.e., a sup-preserving
map O(X) �� ΩS , is completely determined by a closed sublocale of X.
Before examining the extent of the validity of this assertion for an arbitrary
topos S , we give a construction of PL(X) that parallels the construction of
the symmetric topos.

The finite inf-completion Q• of a poset Q can be given as the collection
of equivalence classes [S], where S is a (Kuratowski) finite subset of Q, and
where [S] = [S′] iff S and S′ generate the same upper set in Q. As a poset,
Q• has the partial order given by [S] ≤ [T ] iff T is contained in the upper set
generated by S.

Any frame O(X) is canonically presented as a coinverter

D(Q) D(O(X))D(Q) D(O(X))��
d1

��

d0 ��
O(X)�� ��
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in sl, where Q is the poset whose elements are pairs (R,U) such that R ⊆↓ U ,
U ∈ O(X), and

∨
R = U . The maps d0 and d1 are induced by the assignments

(R,U) 	→ R and (R,U) 	→↓ U , respectively, where �� is the unique 2-cell
from d0 to d1, i.e., d0 ≤ d1 . It is well-known that the free frame on an inf-
semilattice Z is given by the frame D(Z) of down-closed subsets of Z.

We have left the proof of the following as a exercise, since this proof pro-
ceeds by analogy with the construction of (topos-frame of) the symmetric
topos. Note that the forgetful functor from frames to suplattices creates coin-
verters.

Proposition 8.1.2 The symmetric frame Σ(O(X)) is defined by the
coinverter

D(Q•) D(O(X)•)D(Q•) D(O(X)•)��
d•
1

��

d•
0 ��

Σ(O(X)) .
i∗ �� ��

in Fr (created in sl), where the parallel arrows d•0, d•1 are induced from the
canonical suplattice presentation of O(X) via finite inf-completions at the level
of the posets.

We now turn to an identification of the points of PL(X) where S is now
an arbitrary topos. A locale morphism f : Y �� X in a topos S is said
to be strongly dense if the canonical inequality ω ≤ f∗f

∗ω is an equality,
for every ω ∈ ΩS . (Notice the parallel with what we call a pure geometric
morphism.) In particular, a strongly dense locale morphism is dense in the
sense that 0 = f∗0. It turns out that f is strongly dense iff f is dense under
pullback along every closed sublocale of the terminal locale (whose frame is
ΩS ). Every locale inclusion may be factored uniquely into a strongly dense
inclusion followed by a weakly closed sublocale. Tautologically speaking, we
may say that an inclusion of locales B �� �� X is weakly closed iff any strongly
dense inclusion B �� �� B′ is an isomorphism, where B′ �� �� X is any sublocale.

Let Sub(X) denote the coframe of sublocales of a locale X. We denote
by W(X) the poset of weakly closed sublocales of X. W(X) is a subcoframe
of Sub(X) (Jibladze and Johnstone), and it contains C(X) = O(X)op as a
subcoframe. For an open U ∈ O(X), we use the same symbol U to denote
the sublocale of X corresponding to the nucleus U ⇒ ( ). This association
O(X) �� Sub(X) (of a frame into a coframe) preserves arbitrary suprema
and finite infima.

For any locale morphism X
f �� Y and B ∈ Sub(X) , we shall use ‖B‖f to

denote the image of B in Y under f . When no subscript is supplied, then the
unique map to the terminal locale is intended. Consider the functor

χ : Sub(X) �� sl(O(X),Sub(1))

that carries a sublocale B �� �� X to the suplattice map

χB : U 	→ ‖B ∧ U‖ .
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Observe that χ has as right adjoint the functor that associates to a sup-
preserving map O(X)

f �� Sub(1) the sublocale

Af =
∧{

(X − U) ∨ γ�(fU) | U ∈ O(X)
}

, (8.1)

where γ� denotes locale pullback along the unique locale morphism γ :
X �� 1 . Moreover, observe that the sublocale Af is weakly closed. This fol-
lows from the fact that every sublocale of 1 is weakly closed, so that γ�(fU)
is weakly closed by pullback stability, and from the fact that closed sublocales
are weakly closed, using then the fact that W(X) is a subcoframe of Sub(X) .

Let δ : 1′ �� 1 denote the splitting locale of 1 , i.e., O(1′) is the frame of
nuclei on ΩS , and δ∗ is the frame morphism that associates to ω ∈ ΩS the
nucleus ω ∨ ( ) . Pullback along δ yields an isomorphism Sub(1) �� C(1′) .
Our explanation of Theorem 8.1.4 below relies on the following result, for
which we do not include a proof.

Proposition 8.1.3 Let X be an arbitrary locale, and let

X 1
γ ��

Z

X

p

��

Z 1′
ψ �� 1′

1

δ

��

be a pullback. Then pullback along p gives an isomorphism W(X) ∼= C(Z) .

Theorem 8.1.4 For any locale X, the restriction of χ to W(X) yields an
isomorphism

W(X) ∼= sl(O(X),Sub(1)) .

Proof . We employ the ‘module’ framework for frames and suplattices from
the work of Joyal and Tierney. If M and N are O(Y )-modules (suplattices
that carry an O(Y )-action in a suitable sense), then slO(Y )(M,N) shall de-
note the poset of suplattice maps that preserve the O(Y )-action. We start with
the fact that for any locale morphism X

f �� Y , there are canonical isomor-
phisms

C(X) ∼= slO(Y )(O(Y ),C(X)) ∼= slO(Y )(O(X),C(Y )) . (8.2)

This composite isomorphism sends a closed sublocale B = X − W to the
suplattice map

U 	→
∨

{V ∈ O(Y ) | U ≤ f∗V ⇒ W}

=
∨

{V ∈ O(Y ) | f∗V ≤ U ⇒ W} .

When written in terms of closed parts, this suplattice map is

U 	→ ‖B ∧ U‖f ,
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on account of the identities
∧

{D ∈ C(Y ) | B ∧ U ≤ f∗D } =
∧

{D ∈ C(Y ) | ‖B ∧ U‖f ≤ D }

and ∧
{D ∈ C(Y ) | ‖B ∧ U‖f ≤ D } = ‖B ∧ U‖f .

On combining Proposition 8.1.3 with (8.2) applied to the morphism Z
ψ �� 1′

of Proposition 8.1.3, we obtain

W(X) ∼= C(Z) ∼= slO(1′)(O(Z), C(1′)) . (8.3)

Since O(Z) = O(1)′ ⊗ O(X) , by adjointness this is isomorphic to

sl(O(X),C(1′)) ∼= sl(O(X),Sub(1)) . (8.4)

The isomorphism in (8.4) is composition with the isomorphism

C(1′) �� Sub(1) ,

which carries a closed sublocale E �� �� 1′ to ‖E‖ , and furthermore, satisfies
‖I‖ = ‖I‖ , for any sublocale I �� �� 1′ , where I denotes the closure of I in 1′ .
It remains to verify that the composite of (8.3) and (8.4) is indeed equal to
χ restricted to W(X). By Proposition 8.1.3, and since B is weakly closed, we
have

‖p∗(B ∧ U)‖p = B ∧ U .

Then the composite of (8.3) and (8.4) sends B ∈ W(X) to the suplattice map

U 	→ ‖ ‖p∗B ∧ p∗U‖ψ ‖ = ‖ ‖p∗(B ∧ U)‖ψ ‖ ,

which is equal to

U 	→ ‖ ‖p∗(B ∧ U)‖p ‖ = ‖B ∧ U‖ = χB(U) .

�

Remark 8.1.5 In effect, χ is weak closure. Let χ−1 denote the right adjoint
of χ (8.1). The notation is justified since by Theorem 8.1.4, this right adjoint
is full and faithful. Thus, for any sublocale S �� �� X , χ−1(χS) is its weak
closure, and S is weakly closed iff

S =
∧{

(X − U) ∨ γ�‖S ∧ U‖ | U ∈ O(X)
}

.

Let Subo(X) , respectively Wo(X) , denote the poset of sublocales, respec-
tively weakly closed sublocales, of X with open domain, i.e., those B �� �� X
for which the unique locale morphism B �� 1 to the terminal locale is open.
By definition, B �� 1 is open if the unique frame morphism ΩS

�� O(B)
has a left adjoint ∃ . This is equivalent to the condition that for all U ∈ O(X) ,
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‖B ∧ U‖ is an open sublocale of 1 . It follows that the restriction of χ to
sublocales with open domain yields the following commutative diagram.

Sub(X) sl(O(X),Sub(1))
χ ��

Subo(X)

Sub(X)

��

��

Subo(X) sl(O(X), ΩS )
χo �� sl(O(X), ΩS )

sl(O(X),Sub(1))

��

��

By definition, if a sublocale B �� �� X has open domain, then χo(B) is the
suplattice map

O(X) b∗ �� O(B) ∃ �� ΩS .

The vertical arrow on the right is composition with the canonical lattice in-
clusion ΩS

�� Sub(1) . It is full and faithful. We now have the main result
of this section.

Theorem 8.1.6 For any locale X, the restriction of χo to Wo(X) yields an
isomorphism

Wo(X) ∼= sl(O(X), ΩS ) .

Proof . We have a commutative diagram

W(X) sl(O(X),Sub(1))
χ ��

Wo(X)

W(X)

��

��

Wo(X) sl(O(X), ΩS )
χo �� sl(O(X), ΩS )

sl(O(X),Sub(1))

��

��

where the vertical arrow on the right is full and faithful. But then we see
that χo is an isomorphism. Indeed, χo is clearly full and faithful, and if
g ∈ sl(O(X), ΩS ) , then by Theorem 8.1.4, there is a weakly closed B �� �� X
such that

∀U ∈ O(X), g(U) = ‖B ∧ U‖ .

This says that B �� 1 is open, i.e., that B ∈ Wo(X) . �

Exercises 8.1.7

1. Prove Proposition 8.1.2 by analogy with the proof of the corresponding
theorem for the (frame of the) symmetric topos.

2. Prove that the following are equivalent, for any elementary topos S .
(a) S is Boolean.
(b) C(X) = W(X) for every locale X in S .
(c) C(I) = W(I) for every object I of S .
(d) Wo(X) = W(X) for every locale X in S .
(e) Wo(1) = W(1).
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Hint: The equivalence of the first three conditions, and that they imply
the last two is reasonably easy to establish. In order to prove that the
last implies the first, observe that we always have Sub(1) = W(1) and
ΩS = Subo(1) = Wo(1) . Thus, if Wo(1) = W(1) , then ΩS = Sub(1),
i.e., then every sublocale of 1 is open. It is well-known that this implies
ΩS is Boolean.

3. Show that for any locale X in S , the topos Sh(PL(X)) of sheaves on
the lower power locale of X is equivalent to the localic reflection of the
symmetric topos M(Sh(X)).

4. The hyperconnected geometric morphism

h : M(Sh(X)) �� Sh(PL(X))

mediates support in a sense that can be described in terms of its action on
geometric points. For any topos F , composite with h may be equivalently
described as a functor

DistS (F ,Sh(X)) �� sl(O(X), f∗(ΩF ))

given by composition with the ‘support’ functor σ : F �� ΩF , which
assigns to an I-indexed family F �� f∗I the characteristic map of its
image, and with Yoneda O(X) �� Sh(X).

5. Show that the lower power monad PL falls within the theory of completion
KZ-monads.

6. Directly establish the correspondence of Theorem 8.1.6 in terms of bi-
comma objects: if 1

p �� PL(X) is a localic point corresponding to a weakly
closed sublocale B �� �� X with open domain, then there is a bicomma object

X PL(X)
δ

��

B

X

��

��

B 1�� 1

PL(X)

p

��≤

of locales.

8.2 Symmetric versus Lower Bagdomain

Given a topos E over S , BL(E ) is a topos whose points are bags of points of E .
We remarked in the previous section that the lower bagdomain generalizes the
lower power locale. The symmetric topos M(E ) is also a sort of generalization
of PL(X) (Exercises 8.1.7). Also, we have

M(S ) = BL(S ) = S [U ] .

We begin by examining BL(E ) from a symmetric viewpoint.
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The essential inclusion δ : E �� �� M(E ) factors through the lower bagdo-
main topos BL(E ) by essential inclusions as in the following diagram.

E M(E )��
δ

��

BL(E )

E

��
�����

�
BL(E )

M(E )

��
���

���

These morphisms are induced by corresponding site inclusions

〈C, J〉 �� 〈Cfp, Jfp〉 �� 〈C�, J�〉 ,

where 〈C, J〉 is a site definition of E , Cfp is the finite products completion of
C is a site for BL(E ), and C

� is the lex completion of C, which we have seen
is a site for M(E ) in § 4.2. (We use the notation J� for the topology in C

�,
but it is not the lex completion of the total poset of J .)

In terms of the models of the theories that these toposes classify, the
geometric morphism E �� BL(E ) corresponds to forgetting that a lex dis-
tribution E �� X preserves the terminal object, whereas BL(E ) �� M(E )
corresponds to forgetting that a pullback preserving distribution preserves
pullbacks. M(E ) classifies distributions, whereas BL(E ) classifies bags of points
of E , meaning a geometric morphism S /I �� E . Equivalently, a bag of
points is a pullback preserving distribution on E .

Proposition 8.2.1 The following conditions on a locally connected topos E
are equivalent:

1. the connected components functor e! preserves pullbacks,
2. E has a pure ‘bag’ of points, in the sense that there is a diagram

S /I

S
���

��
��

��
S /I E

p �� E

S

e

����
��

��
�

in which p is pure.

The topos is also connected iff it has a pure point (I = 1 in this case).

Proof . 1 implies 2 because we may take I = e!(1). It follows that there is
a geometric morphism p as above such that e!

∼= ΣI · p∗, which says that p
is pure. 2 implies 1 because if p is pure, then e!

∼= ΣI · p∗. Thus, e! preserves
pullbacks. �

The comparison between M and BL can also be phrased in terms of com-
plete spreads: M classifies complete spreads with locally connected domain,
and BL classifies complete spreads whose domain has totally connected com-
ponents, in the following sense.
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Definition 8.2.2 We shall say that a locally connected topos has totally con-
nected components if either of the conditions in 8.2.1 holds. If a topos is
connected, locally connected, and has totally connected components, then we
say it is totally connected.

Proposition 8.2.3 TopS (X ,BL(E )) is equivalent to the category of X -
complete spreads Y �� X ×S E , whose X -domain has totally connected
components. Moreover, a geometric morphism

X
ρ �� M(E )

factors through BL(E ) iff in the bicomma object

E M(E )��
δ

��

Y

E

ψ

��

Y X
γ �� X

M(E )

ρ

��
��

the locally connected γ has totally connected components, in which case the
resulting inside square with BL(E ) is a bicomma object.

Proof . The topos BL(E ) is the partial product of S [U ]/U �� S [U ] with
E , where U denotes the generic object of the object classifier S [U ]. It follows
immediately that a geometric morphism X �� BL(E ) amounts to a pair
consisting of an object F of X and a geometric morphism X /F �� E over
S , equivalently, to a pair consisting of an object F of X and a geometric
morphism

X /F �� X ×S E

over X . Now form the X -comprehensive factorization of this geometric mor-
phism.

We leave the second assertion of the proposition as an exercise. �

Remark 8.2.4 Proposition 8.2.3 gives a characterization of those toposes E
for which all distributions on it are Riemman sums by which we mean, in this
context, bags of points. They are precisely those toposes E such that M(E )
and BL(E ) coincide. Equivalently, they are the toposes E for which the do-
main topos of every complete spread over E is locally connected and has totally
connected components (equivalently, locally connected and the connected com-
ponents functor preserves pullbacks).

We now turn to a third KZ-monad in TopS : the classifier of probability
distributions.

Definition 8.2.5 A probability distribution on a topos is a distribution that
preserves the terminal object. We denote the topos classifier of probability
distributions on a topos E by T(E ); the category of geometric morphisms
X �� T(E ) is naturally equivalent to the category of probability distributions
E �� X .
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Proposition 8.2.6 For any topos E over S , there is a subtopos T(E ) of
M(E ) that classifies probability distributions. Furthermore, there is a factor-
ization

E

T(E )

��

δ ���
��

�
E M(E )�� δ �� M(E )

T(E )

��

i
�����

�

where δ is essential and satisfies δ!(1) ∼= 1 . A geometric morphism X
ρ ��

M(E ) factors through T(E ) iff in the bicomma object

E M(E )��
δ

��

Y

E

ψ

��

Y X
γ �� X

M(E )

ρ

��
��

the locally connected γ is connected, in which case the resulting inside square
with T(E ) is a bicomma object.

Proof . Let T(E ) denote the subtopos of M(E ) given by the least topol-
ogy forcing the morphism δ!1 �� 1 to be an isomorphism. Then a geometric
morphism X

ρ �� M(E ) factors (uniquely) through T(E ) iff ρ∗δ!1 ∼= 1 iff
γ!1 ∼= γ!ψ

∗1 ∼= 1 iff the locally connected γ is connected. Note that δ factors
through T(E ) since δ∗δ!1 ∼= 1 . We have δ

∗
= δ∗i∗ , and since i∗δ! � δ∗i∗ , δ is

essential with δ!1 = i∗δ!1 ∼= 1 . �

In terms of models of the theories classified by these toposes, δ corre-
sponds to forgetting that a lex distribution E �� X , i.e., a geometric mor-
phism X �� E , preserves pullbacks, and the second factor corresponds to
forgetting that a probability distribution E �� X , which corresponds to a
geometric morphism X �� T(E ), preserves 1 .

Theorem 8.2.7 Let E denote an arbitrary topos over S . Then M(E ) �
BL(T(E )) , naturally in E .

Proof . This follows easily from universal properties. The category

TopS (X ,BL(T(E )))

is equivalent to the category of pairs F ∈ X and X /F �� T(E ) over S , as
we had mentioned in Proposition 8.2.3. This data is equivalently given by an
object F ∈ X and a probability distribution E �� X /F . The category of
such pairs is clearly equivalent to DistS (E ,X ) � TopS (X ,M(E )). �

The following results gives an alternative construction of T(E ) in terms
of sites. A finite connected limit is one whose diagram is finite, non-empty,
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and connected. Finite connected limits can be freely adjoined to an arbitrary
small category. Let

κ : C �� C⊕

denote the finite connected limit completion of a small category C.

Lemma 8.2.8 κ is a final functor.

Proof . Let D⊕ denote the finite connected colimit completion of a small
category D. D⊕ can be constructed as the full subcategory of P(D) determined
by those presheaves that are finite connected colimits of representables. Then
the canonical functor D �� D⊕ is an initial functor, so that, since C

⊕ =
(Cop

⊕)op, the functor κ is final. �

Proposition 8.2.9 Let E = Sh(C, J), so that M(E ) � Sh(C�, J�), where C
�

is the free lex completion of C. Then T(E ) can be constructed as the pullback

P(C⊕) P(C�)�� ��

T(E )

P(C⊕)

��

��

T(E ) M(E )�� �� M(E )

P(C�)

��

��

in TopS , where the bottom geometric morphism is induced by the unique
factorization of δ through κ.

C C
⊕κ ��C

C
�

δ
���

��
��

��
� C

⊕

C
�
��

Proof . We must show that for an arbitrary topos X , the category of X -
valued probability distributions on E is equivalent to the category of cones

P(C⊕) P(C�)�� ��

X

P(C⊕)

k

��

X M(E )
h �� M(E )

P(C�)

��

��

by an equivalence that is natural in X . Intuitively, this is clear because such
a cone is simply an h for which X

h �� M(E ) �� �� P(C�) factors through
P(C⊕). In any case, some explanation is necessary. Suppose we are given a
X -valued probability distribution with corresponding cosheaf G : C �� X ,
and geometric morphism X

h �� M(E ). G satisfies lim �� (G) ∼= 1. Then G lifts
to a functor G⊕ : C

⊕ �� X that preserves finite connected limits, and which
furthermore, since κ is final (Lemma 8.2.8), satisfies lim �� (G⊕) ∼= 1. It follows
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that the left extension k∗ : P(C⊕) �� X of G⊕ preserves finite connected
limits and also 1. Therefore, k∗ is left exact, so that we have a geometric
morphism k and a cone as above.

Conversely, a cone such as above gives a cosheaf G : C �� X corre-
sponding to h, and at the same time a flat functor K : C

⊕ �� X cor-
responding to k. K satisfies lim �� K ∼= 1, so that, again since κ is final, we
have lim �� (K · κ) ∼= 1 also. But since the cone commutes, we have G ∼= K · κ,
so that the corresponding distribution is a probability distribution. �

The following diagram depicts the two canonical factorizations of the unit
δ : E �� �� M(E ), one through the bag-domain BL(E ), and the other through
the probability distribution classifier T(E ).

T(E ) M(E )�� ��

E

T(E )

��

��

E BL(E )�� �� BL(E )

M(E )

��

��

In terms of freely adjoining finite limits to a site for the topos, the above
corresponds to the diagram below.

C
⊕

C
�

fp
��

C

C
⊕

fc

��

C Cfp

fp �� Cfp

C
�

eq

��

For example, the functor labeled ‘eq’ is the unit for freely adjoining equalizers.

8.3 Discrete Complete Spread Structure

Our discussion in this section focuses on a certain notion of discreteness that
implies that the lower bagdomain and symmetric topos agree (Remark 8.2.4).
It turns out that this notion also provides a suitable ‘single universe’ for local
homeomorphisms and complete spreads.

Definition 8.3.1 We shall say that a topos X over a topos S has discrete
S -complete spread structure if in any commutative diagram

F

S

f
���

��
��

��
F X

η �� X

S
����

��
��

�

(8.5)
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with f locally connected, η is an S -complete spread iff f is discrete. We say
a locale has discrete complete spread structure just when its topos of sheaves
has. Sometimes we omit the prefix S when it is clear what is the base topos.

Proposition 8.3.2 If a topos has discrete complete spread structure, then its
bagdomain and symmetric toposes are equivalent.

Proof . A distribution on a topos with discrete complete spread structure
must preserves pullbacks, because the domain of the corresponding complete
spread has the form S /I �� S . �

For locales, discrete complete structure may be described with other equiv-
alent conditions.

Proposition 8.3.3 The following are equivalent for any locale X in a topos
S :

1. X has discrete complete spread structure;
2. any locale morphism Y �� X with locally connected domain is a complete

spread iff Y is discrete;
3. The counit |X| �� X is the Gleason core (locally connected coreflection)

of X, where |X| denotes the object of points of X;
4. the canonical functor

S /|X| �� E(X) = DistS (S ,Sh(X))

is an equivalence.

Proof . The first two conditions are equivalent because the localic reflection
of a locally connected topos is locally connected. The second and third con-
ditions are obviously equivalent. The third and fourth are equivalent because
the complete spread corresponding to the terminal distribution is precisely
the Gleason core of the locale. �

A proof of the following may be found in the literature.

Lemma 8.3.4 The quasi-components of an open set of a topological space are
open in its Gleason core.

By definition, a zero-dimensional space is one in which the clopen sets
generate the topology.

Proposition 8.3.5 A zero-dimensional T0 topological space has discrete Set-
complete spread structure.

Proof . The Gleason core of a space has the same underlying set as the given
space. The Gleason core of a zero-dimensional T0 space is discrete. Indeed,
the quasi-components of a zero-dimensional T0 space are its singletons. By
Lemma 8.3.4, singletons are open in the Gleason core. �
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Proposition 8.3.6 The product of two locales with discrete complete spread
structure has complete spread structure.

Proof . This follows because |X × Y | ∼= |X| × |Y |. �

Proposition 8.3.7 Let E denote a locally connected topos over S . Then an
S -complete spread has discrete E -complete spread structure.

Proof . This is Proposition 9.4.1, which we prove in that section. �

Remark 8.3.8 A local homeomorphism E /X �� E also has discrete
E -complete spread structure (Exercise 5). Thus, the locales in E with dis-
crete E -complete spread structure contain as full subcategories both the local
homeomorphisms and the S -complete spreads. This notion of single universe
is largely unexplored. For example, consider Exercise 9.

Exercises 8.3.9

1. Show that M(E ) � BL(E ) iff every complete spread over E has totally
connected components.

2. Show that a zero-dimensional sober topological space has discrete complete
spread structure.

3. Construct the probability distribution classifier T(E ) by a coinverter ar-
gument using C

⊕ instead of C
�.

4. It is well known that for any small category C, the (finite) product com-
pletion Cfp is finitely complete iff C has all (finite) small connected limits
(Diers). Moreover, the universal functor C �� Cfp preserves any con-
nected limits that might exist in C. Deduce from this that

C
� � (C⊕)fp.

In turn, conclude that M(E ) � BL(T(E )). This gives an alternative proof,
in terms of sites, of Theorem 8.2.7.

5. Show that a locale is locally connected and has discrete complete spread
structure iff it is discrete.

6. Show that the intersection of a (non-empty) family of locally connected
topologies is locally connected.

7. Show directly that a topological space has a Gleason core: it has the same
underlying set, but retopologized with the smallest locally connected topol-
ogy larger than the given one.

8. Prove Lemma 8.3.4.
9. Prove or refute: a discrete Conduché fibration over a small category C has

discrete P(C)-complete spread structure, regarded as a locale in P(C).
10. Give a direct description of the algebras (‘convex toposes’) for the proba-

bility distributions classifier KZ-monad T in TopS .
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8.4 Algebraic Geometry: Coschemes

In this section we discuss an example for the purpose of fixing ideas. We
provide more details than an informed reader may need; however, we feel
this is worthwhile as it illustrates in detail, and in a special case - the one
associated with the Zariski topos (classifier of local rings) - the notions of
distribution, distribution algebra, and complete spread geometric morphism.
In the process we answer two questions. The first is how is the topos classifier
of local rings with a given residue field constructed? Second, what is the nature
of a distribution on the Zariski topos?

Throughout, the term ‘ring’ means a commutative ring with unit. Let
Ring denote the category of such rings. Let FP denote the category of finitely
presented rings A = Z[x1, . . . , xn]/I. The ring Z[x] is a coring object in FP for
the tensor product Z[x]⊗Z[x] = Z[x, y]. The comultiplication and coaddition
Z[x] �� Z[x, y] are given by x 	→ xy and x 	→ x + y.

We denote the topos of set-valued functors on FP by SetFP . As always,
we have the Yoneda functor

h : FP op �� SetFP .

Let U = h(Z[x]) denote the covariant representable

U(A) = Ring(Z[x], A) = A .

U is a universal ring object, or ‘affine line,’ making SetFP a ringed topos.
SetFP classifies rings in the sense that there is a canonical equivalence of
categories

Top(Set,SetFP ) � Lex(FPop,Set) � Ring . (8.6)

The equivalence is given on the one hand by associating with a left exact
functor F the ring F (Z[x]), and on the other hand by associating with a ring
R the contravariant representable functor

R(A) = Ring(A,R) . (8.7)

Notice that F (Z[x]) is a ring because F is left exact and Z[x] is a coring. The
functor R is left exact because it is representable. The above equivalence can
also be regarded in terms of points of SetFP : p 	→ p∗(U).

The so-called (gros) Zariski topos denoted Z , may be defined as the topos
of sheaves on the site FP op for the Grothendieck topology whose cocovers in
FP are finite families of localizations {A �� A[a−1

i ]}, such that a1 + · · · +
an = 1. We call this topology the Zariski topology. The covering sieves are
connected, so that Z is a locally connected topos.

Let LRing denote the category of commutative local rings with unit. (The
trivial ring in which 0 = 1 is not considered to be a local ring.) The equivalence
(8.6) restricts to one

Top(Set,Z ) � LRing ,



176 8 Localic and Algebraic Aspects

so that the Zariski topos classifies local rings. The representables h(A) are
sheaves for the Zariski topology. In particular, the universal ring U = h(Z[x])
is a sheaf. Moreover, U is a local ring object in Z . Local rings are preserved
under inverse image of a geometric morphism. In terms of points of Z , the
above equivalence is given by p 	→ p∗(U). More generally, for any Grothendieck
topos E , there is a natural equivalence of categories

Top(E ,Z ) � LRing(E ) .

If R is a (local) ring in a topos E , let RingE (R∆A) denote the object of ring
homomorphisms from the constant ring ∆A to R in E . If c is an object of a
site C for E , then

RingE (R∆A)(c) = Ring(A,R(c)) .

This describes the geometric morphism p : E �� Z corresponding to a local
ring object R:

p∗(A) = RingE (R∆A) �� �� Rn .

We sometimes refer to p∗(A) as the R-variety defined by A in E . We have
p∗(Z[x]) = p∗(U) = R.

Example 8.4.1 The frame of the Zariski spectrum Spec(R) of a ring R is
the lattice of radical ideals of R, ordered by inclusion:

O(Spec(R)) = {radical ideals of R} .

This frame is generated by the basic radical ideals:

D(r) = {a ∈ R | ∃n, t an = tr} .

We have
O(Spec(R[r−1]) ∼= {radical I | I ⊆ D(r)} .

Thus, it makes sense to denote the locale Spec(R[r−1]) by D(r). This is an
open sublocale of Spec(R).

We define the structure sheaf on Spec(R):

OR(D(r)) = R[r−1] .

For any r, s ∈ R, D(r) ⊆ D(s) iff r ∈ D(s) iff rn = ts, for some natural number
n and some t ∈ R. Therefore, if D(r) ⊆ D(s), then the ring homomorphism
R �� R[r−1] inverts s, so that it factors through R �� R[s−1].

R R[s−1]��R

R[r−1]
		�

��
��

� R[s−1]

R[r−1]
��
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The structure sheaf OR is a local ring object in E = Sh(Spec(R)). As above,
we may explicitly describe the geometric morphism E

p �� Z that corresponds
to OR as a left exact cosheaf FP op p∗

�� E :

p∗(A)(D(r)) = RingE (OR
∆A)(D(r)) = Ring(A,R[r−1]) .

In particular, we have p∗(U) ∼= OR .

Definition 8.4.2 A ring homomorphism with local domain is a ring homo-
morphism L �� R for which L is a local ring.

Example 8.4.3 Let k denote any field, and let R denote the local ring k[x](x)

with maximal ideal (x). The quotient ring R/(x) is isomorphic to k. A ring ho-
momorphism L

ϕ �� R with local domain amounts to a commutative square

L/Q k�� ��

L/P

L/Q

����

L/P R�� �� R

k

π

����

where P = ker(ϕ) and Q = ker(πϕ) = maximal ideal of L.

Our goal is to produce the topos classifier of ring homomorphisms with
local domain to a given ring R:

Top(E ,ZR) � LRing(E )/∆E (R) .

Theorem 8.4.4 Let R be a commutative ring with 1. Then there is a topos
ZR that classifies ring homomorphisms to R with local domain. Furthermore,
there is a geometric morphism

ψR : ZR
�� Z .

If R is a local ring, then the left exact R (8.7) is a cosheaf (for the Zariski
topology), and ψR is a complete spread geometric morphism: ZR occurs as the
middle topos in the comprehensive factorization of the point Set �� Z cor-
responding to R. ZR is totally connected, and has a pure point Set �� ZR.

Proof . We first establish the following equivalences.

Top(Set,SetFP/R) � Lex(FP/R
op

,Set) � Ring/R .

FP/R has finite colimits: they are created in FP. Associated with a ring
homomorphism f : T �� R we have the representable functor

f : FP/R
op �� Set ,

which is left exact.
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Conversely, suppose we have a left exact functor

F : FP/R
op �� Set .

We regard elements r ∈ R as homomorphisms Z[x] r �� R. Let

fF : T =
∐

r ∈ R

F (r) �� R

be the evident projection. We denote elements of T as pairs (t, r), where
t ∈ F (r). We have fF (t, r) = r.

The set T has a commutative ring structure such that:

1. fF is a ring homomorphism,
2. fF = F ,
3. ff = f .

Let (t, r) and (t′, r′) be elements of T . The object Z[x, y]
r,r′

�� R is the coprod-
uct in FP/R of Z[x] r �� R and Z[x] r′

�� R. We use the map

F (x + y) : F (r, r′) = F (r) × F (r′) �� F (r + r′)

to add elements of T :

(t, r) + (t′, r′) = (F (x + y)(t, t′), r + r′) .

To see what is the 0-element of T observe that we have

Z[x]

R
0R ���

��
��

Z[x] Z
0 �� Z

R
!����

��
�

in FP, where Z
! �� R is the initial object of FP/R. Therefore F (!) ∼= 1 and

we have
F (0) : 1 �� F (0R) .

The 0-element of T is then (F (0), 0R). The remaining details are routinely
verified.

We next turn to a construction of ZR. Consider the topos pullback
of the essential geometric morphism associated with the discrete fibration
FP/R �� FP for R (8.7).

Z SetFP�� ��

ZR

Z

ψR

��

ZR SetFP/R�� �� SetFP/R

SetFP
��

Then a point Set �� ZR corresponds to a commutative square of geometric
morphisms (up to isomorphism) as follows.
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Z SetFP�� ��

Set

Z
��

Set SetFP/R�� SetFP/R

SetFP
��

This says that a point of ZR amounts to a local ring L that as a ‘ring’
Set �� SetFP factors through SetFP/R. Thus, a point of ZR is equiva-
lently given by a local ring L that is equipped with a ring homomorphism
L �� R.

Finally, if R is a local ring, then R preserves Zariski-covers. I.e., the left
exact R is a cosheaf, and the above construction of ψR is just the usual con-
struction of the complete spread factor of the comprehensive factorization of
the point Set �� Z corresponding to R. In this case, ZR is locally connected,
in fact totally connected, and the pure factor is a point Set �� ZR. �

Remark 8.4.5 The universal ring homomorphism in SetFP/R is U
π �� V ,

where
U(A

f �� R) = A ,

and V is the constant presheaf ∆(R). The component πf : U(f) �� V (f) of
the natural transformation π is given by πf = f . Also, we have

U =
∐

r ∈ R

hR(r) ,

where
hR : FP/R

op �� SetFP/R

denotes Yoneda. As always, we regard an element r ∈ R as the object Z[x] r �� R
of FP/R. We have hR(r)(A

f �� R) = f−1(r).

Example 8.4.6 Consider the finite field R = Z/pZ = Fp, which is a local
ring. If L is any local ring, then a ring homomorphism L �� Fp amounts to
an isomorphism of the residue field L/M with Fp. Thus, the totally connected
topos ZFp

classifies local rings paired with an isomorphism of its residue field
with Fp. The geometric morphism ψFp

: ZFp
�� Z is a complete spread

geometric morphism.

Example 8.4.6 generalizes as follows.

Corollary 8.4.7 For any field k, there is a topos classifier of local rings with
residue field k. This topos is a subtopos of Zk.

Proof . Let j denote the least topology in Zk that forces the universal mor-
phism U

π �� V in Zk to be an epimorphism. Then Shj(Zk) classifies local
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rings whose residue field is isomorphic to k. Indeed, the kernel of a ring epi-
morphism L �� k with local domain must be equal to the single maximal
ideal of L, so that the residue field of L is k. �

Corollary 8.4.7 answers our first question. For the second question, we
introduce the following terminology.

Definition 8.4.8 A coscheme is a distribution on Z . Equivalently, a coscheme
is a cosheaf on the Zariski site FP op.

Left exact coschemes correspond precisely to local rings: if R is a local
ring, then R = Ring( , R) is a left exact coscheme. More generally, we may
associate with a local ring object R in a locally connected topos E a coscheme
(possibly not left exact):

G(E ,R)(A) = π0(RingE (R∆A)) , (8.8)

where π0 � ∆ is the connected components functor for E .
The canonical equivalence of topos distributions with complete spread geo-

metric morphisms implies the following.

Theorem 8.4.9 The functor defined in (8.8) is a coscheme, and every
coscheme has this form for some ringed topos (E , R), where E is locally con-
nected, and R is local.

Proof . Let R be a local ring object in a locally connected topos E , corre-
sponding to geometric morphism E

p �� Z . Then G(E ,R) is the functor

FP op h �� Z
p∗

�� E
π0 �� Set ,

which is a Zariski cosheaf. Conversely, for any coscheme G there is a complete
spread geometric morphism

ψ : E �� Z

for which E is locally connected, satisfying G ∼= π0 · ψ∗ · h. But R = ψ∗U is a
local ring and ψ∗(h(A)) ∼= RingE (R∆A). �

The function D : R �� O(Spec(R)) provides a bijection between the set
E(R) of idempotents of R and the definable subobjects of 1 in Sh(Spec(R)).

Definition 8.4.10 A ring R is idempotent finite if every localization R[r−1]
has only finitely many idempotents. A minimal idempotent is an idempotent
e for which D(e) is connected. We write Em(R) for the set of minimal idem-
potents of a ring R.

For example, an integral domain is idempotent finite because every local-
ization has no idempotents other than 0, 1.

We have already mentioned the spatial version of the following result
(Exercise 1.1.2).
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Lemma 8.4.11 A ring is idempotent finite iff its Zariski spectrum is a locally
connected locale. In this case the terminal cosheaf on Spec(R) is

π0(D(r)) = {connected components of D(r)} ∼= Em(R[r−1]) .

Proof . Any locale with only finitely many definable subobjects (= clopens)
may be covered with finitely many connected clopens. Thus, if a ring has
only finitely many idempotents, then its spectrum may covered with finitely
many connected clopens. We may repeat this argument for every D(r) =
Spec(R[r−1]. The upshot is that the connected opens generate the topology
of the spectrum.

If Spec(R) is locally connected, then so is every locale Spec(R[r−1]).
The connected components of the latter form an open cover. However,
Spec(R[r−1]) is compact so these components must be finite in number. Hence
the definable subobjects of any D(r) are finite in number, which coincides with
the number of idempotents in R[r−1]. �

Corollary 8.4.12 If a ring R is idempotent finite, then

GR(A) = G(E ,OR)(A) = π0(RingE (OR
∆A))

is a coscheme, where E = Sh(Spec(R)).

Example 8.4.13 (Example 8.4.1 continued.) Consider the sheaf of idempo-
tents of OR:

ER(D(r)) = E(D(r)) = {idempotents of R[r−1]} .

E is a subsheaf of OR. E is also a Boolean algebra in Sh(Spec(R)): e ∨ f =
e + f − ef , e ∧ f = ef . E is isomorphic to the Boolean algebra ∆(2). If R
is idempotent finite, then E ∼= ∆(2) is isomorphic to the distribution algebra
U(π0) for the underlying sheaf functor (Def. 7.1.6)

U : E(E )op �� E ,

for E = Sh(Spec(R)). I.e., E is the initial distribution algebra in E , in the
idempotent finite case.

Example 8.4.14 To sum up, we may associate with any idempotent finite
ring R the following:

1. the coscheme GR, such that GR(A) equals the set of connected components
of the OR-variety defined by A in Sh(Spec(R));

2. the complete spread VR
�� Z associated with GR, which is the complete

spread factor of the comprehensive factorization

Sh(Spec(R)) VR

η ��Sh(Spec(R))

Z

p
��










VR

Z

ψ

��
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where p corresponds to the local ring OR (VR is a kind of completion of
Spec(R));

3. the distribution algebra BR = p∗(ER) ∼= p∗(∆2) in Z . BR is a sheaf on
FPop. BR(A) is equal to set of the definable subobjects of the OR-variety
defined by A in E = Sh(Spec(R)). We may equivalently describe BR as
the sheaf

BR(A) = E (p∗(A), ER)

where
p∗(A)(D(r)) = Ring(A,R[r−1]) ,

and
ER(D(r)) = E(R[r−1]) .

Note: BR is covariant in A because Yoneda: FPop �� Z is contravariant.

Exercises 8.4.15

1. Explicitly describe the Grothendieck topology in FP/R
op that defines ZR.

2. Show that an idempotent e is minimal iff R[e−1] has no idempotents other
than 0, 1 iff e is non-0 and for all idempotents f , either ef = e or ef = 0.
Show that the sum of two distinct minimal idempotents is an idempotent.
Show that 1 is minimal iff 0 and 1 are the only idempotents.

3. The Zariski spectrum of a Noetherian ring is a Noetherian space. Show
that a Noetherian ring is idempotent finite by showing that a Noetherian
space is locally connected, and then use Lemma 8.4.11.

4. Let R be idempotent finite with coscheme GR (Cor. 8.4.12). Show that

GR(Z[x]) = π0(OR) ∼=
(
∐

r∈R

R[r−1] × Em(R[r−1])

)

/ ∼ ,

where the equivalence relation ∼ is defined by a colimit:

lim ��
(
El(OR) �� O(Spec(R))

π0 �� Set
)

.

El(OR) denotes the category of elements of the sheaf OR.
5. What sort of idempotent finite ring R is recovered from its coscheme GR?

Technically, the question can be phrased in various and related ways. When
is the corresponding geometric morphism Sh(Spec(R))

p �� Z is a com-
plete spread, i.e., when is the pure factor η in Example 8.4.14 an equiva-
lence? For what R is the unit

ψ∗(U) �� η∗η
∗(ψ∗(U)) ∼= η∗(OR)

a ring isomorphism in VR, where U is the generic ring in Z ? For what
R is the canonical ring homomorphism Γ (ψ∗U) �� R an isomorphism?
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8.5 Distributions on the Jonsson-Tarski Topos

In this section we shall consider a Grothendieck topos C for which E(C ), as
it happens, is a Grothendieck topos (Prop. 1.4.13). C is an étendue, meaning
a topos E that has an object F with full support such that E /F is a localic
topos. C is not locally connected, but we are able to explicitly describe its
Gleason core. The topos C in question is the topos analogue of Cantor space:
it has also been called the Jonsson-Tarski topos.

Definition 8.5.1 A Jonsson-Tarski algebra is a set X equipped with an
isomorphism X

(f,g)�� X × X. We refer to such an object as a JT-algebra.
A morphism of JT-algebras is a morphism X �� Y that commutes with the
structure isomorphisms. Let C denote this category.

We first exhibit a site presentation of C , showing that C is a Grothendieck
topos. Let M2 denote the free monoid on two generators a, b. We refer to the
elements of M2 as words. We have the topos P(M2) of right M2-sets (=
presheaves on M2). We use hom(X,Y ) to denote the set of right M2-set maps
between two right M2-sets X and Y . Usually we write â : X �� X for the
action of a in X: â(x) = xa.

Let � denote the single object of the monoid M2. We denote the single
representative right M2-set by h(�) = M2. It carries an action of M2 by right
multiplication. A word V provides a right M2-set map hV : M2

�� M2 given
by left multiplication: hV (W ) = V W .

The slice category M2/� is the partially ordered set of all words, such that
V ≤ W if W is a prefix of V . We denote the empty word by � since it is the
top word in this ordering. We have

P(M2/�) � P(M2)/M2 .

We may make a JT-algebra X
(f,g)�� X ×X into a right M2-set by defining

â = f and b̂ = g. On the other hand, a right M2-set X is a JT-algebra

if X
(â,b̂)�� X × X is an isomorphism.

Put another way, a JT-algebra is a right M2-set that perceives a cer-
tain right M2-set map as an isomorphism. To be precise, an M2-set X is a
JT-algebra if the following unique extension property holds.

M2 + M2 M2
��(ha,hb) ��M2 + M2

X
∀ ����������� M2

X

∃!��

This condition is of course a sheaf condition. The morphism (ha, hb) is a
monomorphism. Its image is the set of non-empty words.

Thus, C is a subtopos of P(M2). A sieve is a subset of M2 closed under
right multiplication, which we typically denote R. The Grothendieck topology
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J in M2 for JT-algebras is thus a collection of certain covering sieves, which
we wish to identify. If {Wi} is any set of words, let

〈Wi〉 = {W ∈ M2 | ∃ i W ≤ Wi }

denote the sieve generated by the Wi. For instance, the sieve

〈a, b〉 = {W ∈ M2 | W begins with a or b}

consists of all non-empty words. This sieve generates J . The top sieve is
M2 = 〈�〉. A covering sieve is then one of the form 〈a, b〉, 〈aa, ab, ba, bb〉,
〈aa, ab, b〉, and so on.

J is itself a right M2-set: the action of M2 is given by pullback along ha:

R · a = â(R) = {W | aW ∈ R} ,

and similarly for b. We have â(R) �� �� R : W 	→ aW .
We may identify the covering sieves with rooted binary trees of finite depth.

For instance, we identify 〈aa, ab, b〉 with the tree

�
a b

a b

We may describe the action of M2 in J in terms of these trees. For example,
〈aa, ab, b〉 · a = 〈a, b〉, and 〈aa, ab, b〉 · b = �.

If R is a covering sieve, and X is any right M2-set, then we may identify a
member of hom(R,X) with the tree R whose leaves are paired with elements
of X. For instance, if x ∈ X, then the tree

�, x (8.9)

depicts the morphism M2
x �� X. For another example,

�
a b, z

a, x b, y

depicts the right M2-map 〈aa, ab, b〉 �� X that sends aa to x, ab to y, and b
to z.

The (covering) sieves are ordered by containment. As binary trees, this
ordering appears as reverse inclusion. For instance, we have

〈aa, ab, b〉 ≤ 〈a, b〉 ,

which we depict as follows.

�
a b

a b
≤ �

a b
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The induced map hom(〈a, b〉,X) �� hom(〈aa, ab, b〉,X) appears as

�
a, x b, y

	→
�

a b, y
a, xa b, xb

The colimit of this system is a right M2-set that we denote L(X):

L(X) = lim ��
Jop

hom(R,X) .

If we denote members of L(X) by [ξ], where ξ : R �� X, then the action
of M2 in L(X) is given by

[ξ] · a = [R · a �� �� R
ξ �� X] ,

and similarly for b. For example, the action of a on

�
a b, z

a, x b, y

is equal to
�

a, x b, y

and the action of b on this same tree is equal to �, z.
From sheaf theory, if a presheaf has the uniqueness property for every

covering sieve, then it is said to be separated. It turns out that if a right
M2-set X has this property for 〈a, b〉 �� �� M2, then it is separated. Moreover,
if X is separated, then L(X) is a JT-algebra: L(X) is the best approximation
of a separated X by a JT-algebra.

The single representable M2-set M2 is not a JT-algebra, but it is separated.
An element of the JT-algebra L(M2) is an equivalence class of binary trees
whose leaves are paired with elements of M2. The canonical morphism of
JT-algebras

(L(ha), L(hb) ) : L(M2) + L(M2) �� L(M2) (8.10)

is an isomorphism.
Now consider Cantor space C = 2N . This is a product space, where 2

carries the discrete topology. We may regard C as the set of infinite strings
{abb · · · }. A typical basic open set UV of Cantor space is then the collection
of infinite strings that have the finite word V as a prefix. We have V ≤ W iff
UV ≤ UW . Thus, the partial order M2/� is isomorphic to this base of open
sets {UV }. This brings us to the following result due to P. Freyd.

Proposition 8.5.2 C is an étendue: L(M2) has full support in C , and we
have C /L(M2) � Sh(C). The sheaf on C associated with a JT-algebra
morphism X

f �� L(M2) is
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F (UV ) = {x ∈ X | f(x) = [�, V ] } ,

where �, V is defined in (8.9).

Proof . The pullback of the JT-topology J in P(M2) to P(M2/�) coincides
with the canonical topology in M2/�. The category of sheaves for this topology
is precisely the sheaf topos Sh(C). On the other hand, since P(M2/�) �
P(M2)/M2, this pullback coincides with C /L(M2). �

Definition 8.5.3 A Kennison algebra, or K-algebra, in a topos is an object
A of the topos equipped with an isomorphism A+A �� A. Let K denote the
category of K-algebras in Set.

Example 8.5.4 The set of natural numbers N is a K-algebra in Set such that
n 	→ 2n or n 	→ 2n + 1.

Example 8.5.5 By (8.10), L(M2) is a K-algebra in C . In fact, we shall see
in Proposition 8.5.6 that L(M2) is the generic K-algebra.

A few remarks about the structure of K follow. In particular, we show
that K � E(C ).

Proposition 8.5.6 The functor µ 	→ µ(L(M2)) is an equivalence E(C ) �
K . More generally, for any Grothendieck topos F , Dist(F ,C ) is equivalent
to the category of K-algebras in F . The symmetric topos M(C ) classifies
Kennison algebras.

Proof . The category of topos distributions E(P(M2)) is equivalent to the
topos of left (= covariant) M2-sets. If Y is a left M2-set, then we denote
the left action of a by ā : Y �� Y . A left M2-set Y carries the generating
dense monomorphism (ha, hb) : M2 + M2

�� �� M2 (of right M2-sets) to the
function (ā, b̄) : Y + Y �� Y . A K-algebra is thus a left M2-set that carries
the generating dense monomorphism to an isomorphism. This is precisely a
cosheaf on M2 for the JT-topology. �

Definition 8.5.7 Let TC denote the left M2-set 2N , such that the left action
ā prefixes an infinite string with the generator symbol a, and likewise for b̄.

Proposition 8.5.8 TC is the terminal K-algebra in Set. Equivalently, TC is
the terminal distribution on C .

Proof . TC is a cosheaf for the JT-topology because TC carries the generating
dense monomorphism (ha, hb) : M2 + M2

�� �� M2 to 2N + 2N
(ā,b̄)�� 2N , which

is an isomorphism.
Let A be any K-algebra. We define the unique left M2-set map f : A �� 2N

as follows. Let x = x0 ∈ A. Then there is a unique x1 ∈ A such that x0 = c0x1,
where c0 ∈ {a, b}. Similarly, x1 = c1x2 for a unique x2. We define f(x) =
c0c1 . . .. Thus, TC is terminal. �
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Remark 8.5.9 J. Kennison has shown that the category K of K-algebras in
Set is a topos, and M. Barr has remarked that although K is Boolean, it is
not well-pointed. In fact,

K � Sh¬¬(SetM2/TC).

We mention an application of the Monadicity Theorem (Thm. 7.1.15) and
Proposition 8.5.6. Every K-algebra A has an underlying JT-algebra U(A) =
2A, which is the distribution algebra in C associated with the K-algebra A.
The right action of M2 in 2A is as follows: for any subset S ⊆ A,

S · a = {x ∈ A | a · x ∈ S} ,

and similarly for b. The underlying JT-algebra functor U is contravariant.

Corollary 8.5.10 The underlying JT-algebra functor

U : K op �� C

is monadic.

We conclude with an instance of the construction of the Gleason core of a
topos: the Gleason core of C .

γ : Ĉ �� C

Any geometric morphism F �� C for which F is locally connected has an
essentially unique factorization through the above γ.

Let A denote the category whose objects are infinite strings x = aaba . . .
in the two generators a, b. A morphism x �� y is a word V ∈ M2 such that
V x = y. A is not a poset: let x = ab = abab . . ., and let V = ab. Then V x = x,
so V and V 2 are distinct endomorphisms of x. There is a functor A �� M2

that carries a morphism W to itself.
We regard A as a site as follows. We define a single generating covering

sieve of a string y as the set of all non-empty words W ∈ M2 that appear as a
prefix of y: so we have a morphism W : y

W

W �� y, where y
W denotes the string

y after deleting the prefix W . Let Ĉ denote the topos of sheaves for this site.
It happens that Ĉ is part of a topos pullback.

C P(M2)�� ��

Ĉ

C

γ

��

Ĉ P(A)�� �� P(A)

P(M2)
��

The fact that Ĉ is locally connected is a special case of a fact shown already
in a more general context (Proposition 2.4.1). The terminal distribution on C
is π0 · γ∗, and we recover the terminal Kennison algebra as
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TC
∼= (π0 · γ∗)(L(M2)) .

Exercises 8.5.11

1. What is the underlying JT-algebra of the natural numbers as a K-algebra
(Example 8.5.4)?

2. Show that C is not locally connected. Show directly (without appealing to
Proposition 2.4.1) that Ĉ is locally connected, and that γ is the Gleason
core of C .

3. Show that Ĉ is an étendue.
4. A geometric morphism is said to be a surjection if its inverse image func-

tor is faithful. Show that γ : Ĉ �� C is a surjection.

Further reading: Barr & Kennison [BK02], Bunge & Carboni [BC95],
Bunge & Funk [BF98], Jibladze & Johnstone [JJ91], Johnstone [Joh82b,
Joh02, Joh92, Joh89], Joyal & Tierney [JT84], Kock & Reyes [KR99], Vickers
[Vic89, Vic92, Vic95].




