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Closed and Linear KZ-Monads

In this chapter we introduce additional axioms one may impose on a comple-
tion Kock-Zöberlein monad in order to further develop the theory of complete
spreads in a more general context.

If a KZ-monad M is closed as we shall call it, we prove that any 1-cell whose
domain admits an M-adjoint can be factored in an essentially unique way into
a final 1-cell followed by a discrete M-fibration whose domain admits an M-
adjoint. The final 1-cells for the symmetric monad M in TopS are precisely
the pure geometric morphisms (relative to S ), and the discrete fibrations
are precisely complete spread geometric morphisms with locally connected
domain (§ 5.2).

In the context of a closed completion KZ-monad on K we discuss the
existence of a density functor in connection with the validity of a Glea-
son core axiom. We consider a ‘single universe’ containing both the discrete
M-fibrations and the discrete M-opfibrations, for any closed completion KZ-
monad M in a 2-category K . It has the required properties when the Gleason
core axiom holds.

We also investigate what we call additive and K -equivariant KZ-monads,
and the nature of their M-algebras and M-homomorphisms. K -equivariant
KZ-monads may be used to establish Pitts’ theorem on bicomma objects
(§ 6.5).

6.1 Closed KZ-Monads and Comprehension

We shall prove two results about what we shall call a closed KZ-monad. The
first result says that every closed, completion KZ-monad has an associated
comprehensive factorization. The second shows that discrete fibrations com-
pose for such a KZ-monad. Throughout, M is a KZ-monad in a 2-category
with terminal object T .
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Definition 6.1.1 Let G
p �� D be a 1-cell, and assume that both G

g �� T
and D

d �� T admit an M-adjoint. We shall say that p is a final 1-cell for M
if the canonical 2-cell M(p) · rg

�� rd is an isomorphism.

A 1-cell p is final iff M(p) ·rg ·δT
�� rd ·δT is an isomorphism because both

1-cells are homomorphisms.

Lemma 6.1.2 Let M be a locally full and faithful KZ-monad. Let G
p �� D

be a 1-cell, and assume that G
g �� T and D

d �� T admit an M-adjoint.
Then p is final iff for every 1-cell D

b �� X and every ‘constant’ T
a �� X,

composition with p gives a bijection

b �� a · d
b · p �� a · d · p

of 2-cells, where D
d �� T is the unique 1-cell.

Proof . If p is final, then because M is locally full and faithful we have the
following natural bijections.

b �� a · d
Mb �� Ma · Md

Mb · rd
�� Ma

Mb · Mp · rg
�� Ma

Mb · Mp �� Ma · Mg

b · p �� a · g ∼= a · d · p
If the stated condition holds, then there are the following natural bijec-

tions. Here, h and k denote arbitrary M-homomorphisms with the appropriate
domain and codomain.

h · Mp · rg
�� k

h · Mp �� k · Mg ∼= k · Md · Mp

h · Mp · δG
�� k · Md · Mp · δG

h · δD · p �� k · δT · d · p
h · δD

�� k · δT · d
h · δD

�� k · Md · δD

h �� k · Md

This shows that M(d) � M(p)·rg as M-homomorphisms, and hence as ordinary
1-cells. I.e., this shows that M(p) · rg

∼= rd. Note: rg is an M-homomorphism
(4.3.4). �

Proposition 6.1.3 A geometric morphism between locally connected toposes
is final for the symmetric monad iff it is pure.
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Proof . A geometric morphism F
ψ �� E is final for the symmetric monad

iff
M(ψ) · rf · δS

�� re · δS

is an isomorphism. This holds iff f! · ψ∗ ∼= e! iff ψ is pure. �

Proposition 6.1.4 A geometric morphism F
ψ �� E satisfies the condition

in Lemma 6.1.2 iff ψ∗ preserves S -coproducts.

Proof . Take for X in Lemma 6.1.2 the object classifier M(S ). It follows
that for every I in S , the unit e∗I �� ψ∗ψ

∗(e∗I) is an isomorphism. This is
precisely the property that ψ∗ preserves S -coproducts. �

A 1-cell f in a 2-category is said to reflect isomorphisms if for every com-
posable 2-cell t, ft invertible implies t invertible. Consider the following con-
dition on a KZ-monad.

Definition 6.1.5 We shall say that a KZ-monad M is closed if for every
discrete M-fibration ψ the 1-cell M(ψ) reflects isomorphisms.

As always, T denotes the terminal object in the 2-category.

Theorem 6.1.6 (Comprehensive factorization for KZ-monads)
Suppose that M is a closed completion KZ-monad. Then every 1-cell whose
domain admits an M-adjoint has an essentially unique factorization as a final
1-cell followed by a discrete M-fibration whose domain admits an M-adjoint.

Proof . Let A
ϕ �� B be an arbitrary 1-cell such that the essentially unique

1-cell A
a �� T admits an M-adjoint. Consider the universal 1-cell A

p �� D,
where D denotes

δB ⇓ Σa(δB · ϕ)

as in the following diagram.

A D
p ��A

B

ϕ ���
��

��
��

D

B

ψ

��
M(B)

δB

��
��

T
d �� T

M(B)

Σa(δB ·ϕ)

����

The 1-cell ψ is a discrete M-fibration, witnessed by Σa(δB · ϕ). In order to
show that p is final, let i : M(p) ·ra

�� rd denote the canonical 2-cell. We must
show that i is an isomorphism. We know that

Σa(δB · ϕ) ∼= Σd(δB · ψ) ,

and hence that
M(ϕ) · ra · δT

∼= M(ψ) · rd · δT .



112 6 Closed and Linear KZ-Monads

Therefore, the 2-cell

M(ψ) i δT : M(ψ) · M(p) · ra · δT
�� M(ψ) · rd · δT

is an isomorphism. Since M(T ) is free, M(ψ)i is an isomorphism. Since M is
closed, i is an isomorphism. This establishes the existence of the factorization.

Now suppose we have two final, discrete fibration factorizations of ϕ.

A D
p ��A

B

ϕ ���
��

��
��

D

B

ψ

��

A D′p′
��A

B

ϕ ���
��

��
��

D′

B

ψ′

��

Let q and q′ denote the 1-cells T �� M(B) corresponding to ψ and ψ′,
respectively. Since p and p′ are final, by reversing the steps of the previous
paragraph we have

q ∼= Σa(δB · ϕ) ∼= q′ .

Therefore, there is an equivalence of discrete fibrations over B as follows.

D′

B
ψ ���

��
��

D′ D
κ �� D

B
ψ′����

��
�

We obtain p′ ∼= κ · p from the uniqueness of the universal property of the
bicomma object defining ψ′. �

Remark 6.1.7 The comprehensive factorization associated with a closed com-
pletion KZ-monad is 2-dimensional. Indeed, the construction in 6.1.6 shows
that a 2-cell between 1-cells whose domains admit an M-adjoint has a unique
decomposition of the following kind.

· ·��

·

·

final

����
��

��
��
·

·

final

���
��

��
��

�

��

·
dis. fib. ���

��
��

��
�

·
dis. fib.����

��
��

��

Theorem 6.1.8 Let M be a locally full and faithful, closed, completion KZ-
monad. Then the composite of two discrete M-fibrations is a discrete fibration.
If a composite and its second factor are discrete M-fibrations, then its first
factor is also.

Proof . Throughout, we drop the prefix M from M-fibration. Let G
ψ �� D

and D
ϕ �� E be two discrete fibrations. First, we write the bicomma object

for ϕ as the following composite diagram.
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E M(E)
δE

��

D

E

ϕ

��

D M(D)
δD �� M(D)

M(E)

M(ϕ)

��

T
z �� T

p
����

��
��

����

This can be done because there is a unique 2-cell M(ϕ) �� p · z corresponding
to the 2-cell

M(ϕ) · δD
∼= δE · ϕ �� p · d ∼= p · z · δD .

This correspondence is by 4.3.7 applied to the M-homomorphism M(ϕ). As
in Exercise 2.5.9, 1, if the composite ϕ · ψ is a discrete fibration, then its
corresponding point T �� M(E) must be M(ϕ) · q, where T

q �� M(D) is
the point of ψ. Thus we should consider the bicomma object

K = δE ⇓ M(ϕ) · q ,

and the intervening final 1-cell G
h �� K.

E M(E)
δE

��

K

E

κ

��

K T
k �� T

M(E)

M(ϕ)·q
����

This is the comprehensive factorization of ϕ · ψ. Our assumption that M is
closed allows us to conclude that h is final. Now regard the bicomma object
for ϕ. Since there is a 2-cell

δE · κ �� Mϕ · q · k �� p · z · q · k ∼= p · k ,

we can factor κ through ϕ by a 1-cell K
γ �� D. By the universal property

of this bicomma object we also have γ · h ∼= ψ. Using this isomorphism we
obtain a 2-cell

δD · γ · h ∼= δD · ψ �� q · g ∼= q · k · h ,

which by Lemma 6.1.2 corresponds to a 2-cell

δD · γ �� q · k .

The bicomma object for ψ now gives a 1-cell K
j �� G such that ψ · j ∼= γ,

and it is a routine matter to show that h is an equivalence with pseudo-inverse
j. This shows that ϕ · ψ is a discrete fibration, witnessed by M(ϕ) · q.

The second assertion of the theorem is a formal consequence of the first
and the comprehensive factorization. �
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Proposition 6.1.9 The symmetric monad in TopS is closed.

Proof . Let F
ψ �� E be a spread with locally connected domain. We shall

show that M(ψ) reflects isomorphisms. Let

t : p �� q : X �� M(F )

be a 2-cell such that M(ψ) · t is an isomorphism. Equivalently, t is a natural
transformation between (X -valued) distributions

t : p∗ · δ!
�� q∗ · δ! ,

such that t ·ψ∗ is a natural isomorphism. Let {Xi} be a generating family for
E over S . Then every component morphism tψ∗Xi

is an isomorphism. Since
distributions preserve coproducts, it follows that for any component α of any
ψ∗Xi, tα is an isomorphism. We know from § 3.3 that the α generate F over
S , so that t must be an isomorphism. �

Remark 6.1.10 Thus, the symmetric monad is closed (Proposition 6.1.9).
An example of a different nature of a closed completion KZ-monad is the
identity monad Id in a 2-category with bicomma objects. Consider the lift
monad L associated with a domain structure (C, D) in the sense of M. Fiore.
(The functor L is the right adjoint of the inclusion of the category C of “to-
tal maps” into the category p(C, D) of “partial maps.”) Algebras for L are
“pointed objects,” and their homomorphisms are “strict maps.” Fiore’s axiom
states that in C every morphism with pointed domain factors as a strict map
followed by an upper-closed monomorphism with pointed domain. We claim
that this axiom can in fact be derived in the context of KZ-monads in view of
the following remarks. An object of C has an Id-adjoint in C

op iff its unique
map to the terminal has a left adjoint iff it has a bottom, thus, it is pointed
iff it is an algebra for the associated lift monad. The discrete Id-fibrations in
C

op are the principal upper-closed monomorphisms. A map between pointed
objects is final for Id iff it preserves the bottom, in other words, iff it is strict.
We can now apply the comprehension factorization in the context of closed
KZ-monads to prove our claim.

6.2 The Gleason Core and Density Axioms

The existence of a locally connected coreflection (or to use Lawvere’s term
‘Gleason core’) was proved by Gleason (1963) for spaces, and by Funk (1999)
for Grothendieck toposes. Although we know of no geometric morphism
E �� S for which the Gleason core Ê �� E does not exist, we do not
know either whether the Gleason core always exists. Therefore, the assump-
tion that every bounded topos over an arbitrary base topos S have a Gleason
core may restrict the generality of our results. On the other hand, we do wish
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to retain the generality of S for other reasons. For instance, in Chapter 9 we
consider E -valued distributions over E in order to introduce a notion of index
of a complete spread.

Throughout, M denotes a completion KZ-monad in a 2-category K .

Definition 6.2.1 An object X of K is said to admit a Gleason core relative
to M if there exists a 1-cell X̂

εX �� X in K , such that X̂ �� T has an
M-adjoint, universal with this property. In other words, any 1-cell Y �� X
in K , such that Y �� T admits an M-adjoint, factors uniquely (up to 2-
isomorphism) through X̂

εX �� X.

Proposition 6.2.2 For an object X of K , the Gleason core axiom relative
to M holds for X iff the category K (T,M(X)) has a terminal object, denoted
�. The Gleason core is always a discrete M-fibration. Explicitly, the Gleason
core of such an object X may be constructed by means of the bicomma object

X M(X)
δX

��

X̂

X

εX

��

X̂ T
x̂ �� T

M(X)

�
��

��

in K .

Proof . The category K (T,M(X)) = KM (T,X) is equivalent to the cate-
gory of discrete M-fibrations over X, where the equivalence is given by the
above bicomma object construction (Cor. 5.1.5). If K (T,M(X)) has a termi-
nal, then x̂ in the bicomma object admits an M-adjoint and εX is the Gleason
core. On the other hand, if X has a Gleason core, then it is necessarily the
bicomma of the left extension of δX · εX along x̂, denoted �. In other words,
the Gleason core must be a discrete M-fibration, and � is indeed the terminal
object of K (T,M(X)). �

Proposition 6.2.3 Let M be a locally full and faithful, closed, completion
KZ-monad on a 2-category K . Then for each object X of K for which the
Gleason core axiom holds, composition with the discrete M-fibration X̂

εX �� X
induces an equivalence between the categories of discrete M-fibrations over X
and over X̂.

Proof . This result is a consequence of Theorem 6.1.8, the universal property
of the bicomma objects defining discrete M-fibrations over X, and of the
equivalence between K (T,M(X)) and discrete M-fibrations over X. �

Remark 6.2.4

1. By Proposition 6.2.2 for the symmetric monad M in TopS , the Gleason
core axiom for an object E of TopS is equivalent to the existence of a
terminal distribution on E . We have M(E ) � M(Ê ).
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2. We have E(E ) � E(Ê ), when E has a Gleason core. Thus, distributions
on such an E are supported on its Gleason core.

3. There exist non-trivial Grothendieck toposes whose Gleason cores are triv-
ial. For such a Grothendieck topos, no non-zero distributions exist - in
particular, the terminal distribution agrees with the zero distribution.

Proposition 6.2.5 Assume that M is a completion KZ-monad. Then for any
object B, the identity 1B is a discrete M-fibration iff B �� T admits an M-
adjoint. In this case, the 1-cell T �� M(B) that corresponds to 1B is rb · δT .
This 1-cell is the terminal object in K (T,M(B)).

Proof . If 1B is a discrete fibration, then by definition B �� T admits an
M-adjoint. If B �� T admits an M-adjoint, then

B M(B)
δB

��

B

B

1

��

B T
b �� T

M(B)

rb·δT

��
��

is a bicomma object. �

Assume that B has the property described in Proposition 6.2.5. Let us
denote the left extension Σb(δB) = rb · δT by �. If X

f �� B is any discrete
opfibration, corresponding to Σf (δT · x), then taking p = � in (5.1) gives

f.� = M(f) · rf · � ∼= M(f) · rf · rb · δT
∼= M(f) · rx · δT = Σx(δB · f) .

Thus, this special case of the action provides a functor

ΦB : KM(B, T ) �� KM(T,B) ; f 	→ f.� (6.1)

given by ‘inversion’:
Σf (δT · x) 	→ Σx(δB · f) .

Example 6.2.6 For any topos E , idE is a discrete fibration for the symmetric
monad iff E is a locally connected topos. The inversion formula is another
way of describing the Lawvere action F 	→ F.π0, such that F.π0(X) = π0(F ×
X). Distributions of the form F.π0 are what Lawvere has termed absolutely
continuous (relative to π0).

If B has a Gleason core, corresponding to a terminal 1-cell � : T �� M(B),
then the functor ΦB(f) = f.� (6.1) still makes sense.

Definition 6.2.7 Suppose that B has a Gleason core. We say that B admits
a density (for M) if the inversion functor ΦB has a right adjoint. We call this
right adjoint the density functor for B, denoted dB. This defines a monad in
KM(B, T ) that we call the density monad associated with M.
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Proposition 6.2.8 A locally connected topos admits a density for the sym-
metric monad.

Proof . Let 〈C, J〉 denote a locally connected site, with sheaves Sh(C, J).
We have π0 � ∆. Define

d(µ)(c) = {nat. trans. hc.π0
�� µ} .

Then d(µ) is a sheaf, and d is right adjoint to inversion (Example 6.2.6). �

Remark 6.2.9

1. Consider again the specific case of the symmetric monad in the 2-category
TopS . Then TopS (E ,M(S )) is equivalent to the topos frame E , and
TopS (S ,M(E )) is equivalent to the distribution category E(E ). Thus,
for a locally connected topos E , the adjoint pair ΦE � dE = d connects E
with E(E ), where

ΦE : E �� E(E ) ,

associates with an object X of E the distribution X.e!, such that

(X.e!)(Y ) = e!(X × Y ) .

2. The density of a distribution on a locally connected topos E coincides with
the object of E -points of the corresponding (localic) complete spread. Thus,
we may generalize the density to any topos:

d(µ) = object of E -points of the complete spread of µ .

If E has a Gleason core, so that E(E ) has a terminal object 1, then the
above d is given by

d(µ) = Hom(1, µ) ,

and moreover d has a left adjoint in this case:

( ).1 : E �� E(E ) .

3. Intuitively, the density monad is in some ways similar to the regularization
monad in the lattice of open sets of a topological space, which associates
with an open set the interior of its closure. But consider the example of
the real numbers R. Regularization in O(R) is non-trivial, but the density
monad in Sh(R) is the identity monad.

Exercises 6.2.10

1. Prove Proposition 5.1.3.
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2. Suppose that K has bipullbacks, and that M is a locally full and faithful
completion KZ-monad (as always). Show that the action f.ψ of discrete
opfibrations on discrete fibrations can be equivalently described:

f.ψ = Σk(δB · f · π1) ,

where

X B
f

��

K

X

π1

��

K Y
π2 �� Y

B

ψ

��

is a bipullback.
3. Investigate what are the algebras for the density monad in a locally con-

nected topos.
4. Fill in the details of the proof of Proposition 6.2.3.

6.3 The Twisted Single Universe

We define a category, the twist category, whose objects are twisted maps be-
tween M-bifibrations.

Definition 6.3.1 For objects A and B in K , denote by Tw(A,B) the fol-
lowing category. An object is a 3-tuple (yEψ, t, xDϕ) where the spans xDϕ :
A �� B and yEψ : B �� A are M-bifibrations, and E

t �� D is a 1-cell for
which the following diagram commutes (up to 2-isomorphism).

D �x
��

B

D





ϕ

B E�� y
E

�

ψ

����
t����

����

We shall denote such an object more simply by (E, t,D). A morphism

(E, t,D) �� (E′, t′,D′)

is a pair (α, β) such that α : E �� E′ is a 1-cell of bifibrations B �� A, β :
D �� D′ is a 1-cell of bifibrations A �� B, such that there is a commutative
diagram

D D′
β

��

E

D

t

��

E E′α �� E′

D′

t′

��

up to 2-isomorphism.
Under the assumption that K has a terminal object �, we denote the

category Tw(�, B) just by Tw(B), and call it the twist category of B.
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Assume now that M is a closed completion KZ-monad in a 2-category K ,
and that B is an object of K that has a Gleason core relative to M. Using the
existence of the density functor, we may now explicitate Tw(B) as a single
universe for discrete M-fibrations and discrete M-opfibrations over B.

Theorem 6.3.2 Let M be a closed completion KZ-monad in K and let B
be any object such that B

b �� T admits an M-adjoint. Assume also that B
admits a density d. Then Tw(B) is equivalent to the category KM(B,�) ↓
d, obtained by Artin glueing along d. The glueing category KM(B,�) ↓ d
contains as full subcategories both KM(B,�) and KM(�, B).

Proof . An object of Tw(B) is a 3-tuple (E, t,D) (Definition 6.3.1); such a
t may be regarded as a morphism

t : Σψ(δB · y) �� Σx(δB · ϕ) .

Equivalently, for q = Σy(δ� · ψ) and r = Σx(δB · ϕ), we have t : ΦB(q) �� r,
which is given, suggestively, as

Σx·t(δB · ϕ · t) �� Σx(δB · ϕ).

By the adjointness ΦB � dB , this t corresponds uniquely to a morphism
t̂ : q �� d(r), i.e., to an object of the glueing category KM(B,�) ↓ d. This
process is functorial and reversible, giving the desired equivalence. It follows
from that the glueing category contains both full subcategories as claimed. �

Exercises 6.3.3

1. Show that if X
f �� B is a discrete opfibration, and B admits a Gleason

core, then so does X.
2. Generalize Theorem 6.3.2, by assuming only that B has a Gleason core

and a density.
3. The work of Carboni and Johnstone [CJ95] shows that the twist category

Tw(P(C)) is again a presheaf topos, say P(K). Give an explicit description
of K as a full subcategory of the category Tw(P(C)), using the definition
of the latter. In particular, identify K with the collage of C.

4. The category ULF/C of unique lifting of factorizations, also known as
the category of discrete Giraud-Conduché fibrations over C, is not a
topos in general, but it is a topos for any C that is “paths linearizable”
[BN00, BF00]. This too is a single universe for local homeomorphisms
and complete spreads, as it can be generalized to toposes by the familiar
amalgamation construction. Produce a comparison map between the two
“single universes” Tw(P(C)) and ULF/C and study its properties. Notice
that, unlike ULF/C, the category Tw(P(C)) is a topos for any C.

5. Show how the action of discrete fibrations on discrete opfibrations may
be naturally described in ULF/C using the comprehensive factorization of
functors.
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6.4 Linear KZ-Monads

Distributions have a basic additive property: two distributions

E
µ �� X , F

λ �� X

may be paired into a single distribution 〈µ, λ〉 on the coproduct E +S F ,
such that

〈µ, λ〉(E,F ) = µ(E) + λ(F ) .

We remind the reader that the topos frame of E +S F is the underlying
category product E ×F (of course not to be confused with the topos product
E ×S F ). The functor 〈µ, λ〉 just defined is indeed a distribution because
〈µ, λ〉 � 〈µ∗, λ∗〉. It should be noted that a coproduct inclusion E

ι �� E +S F
is locally connected such that ι!(E) = (E, 0). We recover µ by composing with
ι! (and similarly λ) thereby establishing an equivalence between such pairs of
distributions and distributions on E +S F . Furthermore, a distribution on
the coproduct is isomorphic to the pairing of its restriction to the summands,
because the two distributions have the same right adjoint.

Since the symmetric monad classifies distributions we immediately con-
clude that there is a canonical equivalence

〈rE , rF 〉 : M(E +S F ) � M(E ) ×S M(F )

of toposes.
We are indicating here that the equivalence is given explicitly by pairing

right adjoints rE and rF , where M(ιE ) � rE (geometric morphisms). Finally,
we remark that since the coproduct inclusion ι is indeed an inclusion in the
sense of geometric morphisms, we conclude that rE · M(ι) ∼= idM(E ). We say
that ι has a coreflection M-adjoint.

The additivity of the symmetric monad is reflected in the fact that its
discrete fibrations, the complete spreads, may be summed. To be more precise,
the ‘TopS is extensive’ equivalence

TopS /(E +S F ) � TopS /E × TopS /F

restricts to complete spreads. This is intuitively plausible, but to prove it we
must invoke the comprehensive factorization. This suggests and we prove that
a similar result holds in the generic context (Theorem 6.4.6).

We may now posit what we mean by an additive KZ-monad in the generic
context. It makes sense to study additivity in an extensive 2-category K .
Throughout, f∗ denotes pullback along a 1-cell f in K .

Definition 6.4.1 A KZ-monad M in an extensive 2-category K is said to
be additive, or to satisfy the exponential law, if

1. for any two objects X and Y of K , the coproduct injections X
ιX �� X + Y

and Y
ιY �� X + Y have coreflection M-adjoints rX and rY , and
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2. ‘M(X + Y ) � M(X) × M(Y )’: for any coproduct diagram in K , below
left,

Y ZιY

��YY

XXX

Z

ιX

��
M(Y )M(Y )

M(Z)

M(Y )

rY

��

M(Z) M(X)
rX �� M(X)M(X)

the right-hand diagram is a product diagram.

Remark 6.4.2 If M is additive, then for any two objects X and Y of K , the
functor

M(ιX)∗ : K /M(X + Y ) �� K /M(X)

is just composition with rX . This is so because we are assuming that rX is a
coreflection: rX · M(ιX) ∼= idM(X).

Lemma 6.4.3 Let K be an extensive 2-category. Let G0
p0 �� D0 and

G1
p1 �� D1 be two 1-cells in K . Then the sum

G0 + G1
p0+p1�� D0 + D1

is M-final iff each of the 1-cells p0, p1 is M-final.

Proof . We may establish this using the characterization of M-final 1-cells
given in Lemma 6.1.2. �

It is our aim in this section to introduce a notion of linear KZ-monad in an
extensive 2-category K with pullbacks. Let K be an object of a 2-category K .
Let K! : K /K �� K denote composition with K �� T , where T denotes
the pseudo-terminal object in K . We have K! � K∗.

Definition 6.4.4 A KZ-monad M in K is said to be K -equivariant, or just
equivariant, if it is given by the following data and conditions:

1. For every object K, a KZ-monad

(MK , δK , µK)

in K /K. The case K = T gives a KZ-monad (M, δ, µ) in K .
2. We have ‘MK(K ×X) � K ×M(K)’. Precisely, we require a connecting

pseudo-natural transformation

ρ : K! ◦ MK �� M ◦ K!

such that for any object X of K the right hand square below is a pull-
back and the left hand one commutes. The left hand square is therefore a
pullback.
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X M(X)
δX

��

K × X

X

π2

��

K × X MK(K × X)
δK

K∗X �� MK(K × X)

M(X)

πX

��
T��

K
π1 �� K

T
��

We systematically abuse the notation slightly. For instance, MK(K ×
X)

π1 �� K means

MK

⎛

⎜
⎝

K × X

K

π1
��

⎞

⎟
⎠

as an object of K /K. πX denotes the composite 1-cell

MK(K × X)
ρK∗X �� M(K × X)

M(π2)�� M(X) .

3. The ρ’s commute with the multiplications µK and µ: for any object
X �� K of K /K, the diagram

MK(X) M(X)ρX

��

(MK)2(X)

MK(X)

µK
X

��

(MK)2(X) M2(X)
M(ρX)·ρMK X�� M2(X)

M(X)

µX

��

commutes in K .
4. Finally, we require that if a 1-cell A

q �� Y over K admits an MK-adjoint
MK(q) � rK

q , then it admits an M-adjoint M(q) � rq in K , and the
canonical 2-cell

ρA · rK
q

�� rq · ρY

is an isomorphism.

Definition 6.4.5 A linear KZ-monad in an extensive 2-category K with
pullbacks is one that is both additive (Definition 6.4.1) and K -equivariant
(Definition 6.4.4).

Theorem 6.4.6 Let M be a KZ-monad in an extensive 2-category with pull-
backs, and assume that coproduct injections have coreflection M-adjoints. If
M is closed, completion, and equivariant, then M is additive.

Proof . Since K is extensive, the functor

Φ : K /X × K /Y �� K /(X + Y ) ,

given by coproduct, is an equivalence with pseudoinverse
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Ψ : K /(X + Y ) �� K /X × K /Y

given by bipullback along the coproduct injections. For a completion KZ-
monad M, there is for each object X a full and faithful functor

K (T,M(X)) �� K /X , (6.2)

via a bicomma object constuction equating K (T,M(X)) with the full sub-
category of K /X whose objects are the discrete M-fibrations (whose domain
admits an M-adjoint). Furthermore, Ψ restricts to

〈rX , rY 〉 : M(X + Y ) �� M(X) × M(Y ) ,

because discrete fibrations are pullback stable along 1-cells with M-adjoints.
We now claim that Φ restricts to a functor

M(X) × M(Y ) �� M(X + Y ) .

This is the case iff the coproduct A + B
ϕ+ψ �� X + Y of two discrete M-

fibrations A
ϕ �� X and B

ψ �� Y is again a discrete M-fibration. We shall
prove that this is so when M is closed.

Note that if A �� T and B �� T have M-adjoints, then (A+B) �� T
has an M-adjoint. Consider the comprehensive factorization of A + B

ϕ+ψ ��

X + Y . Observe that the M-final factor ρ is the sum of two 1-cells ρ0 and
ρ1, each of which must be M-final, by Lemma 6.4.3. Our assumption that the
given 1-cells ϕ and ψ are discrete M-fibrations implies that ρ0 and ρ1 are both
isomorphisms, hence so is their sum ρ.

Finally, when M is equivariant (6.2) holds in any slice K /K, so that we
may essentially repeat the above argument for ‘generalized points’
K �� M(X). �

Example 6.4.7

1. We saw at the beginning of this section that the symmetric monad is addi-
tive in TopS . It is also equivariant. For instance, the forward preservation
of M-adjoints (requirement 4) amounts to the observation that for any geo-
metric morphism T �� S , a T -essential geometric morphism over T
is S -essential as a geometric morphism over S . The pullback equivalence
MK(K×X) � K×M(X) for toposes is in a new guise another important
fact about distributions and change of base discovered by A. M. Pitts. This
fact says that the topos pullback is universal for distributions, not just left
exact distributions.

2. The lower bagdomain BL and probability distributions classifier T are both
closed, completion and equivariant KZ-monads in TopS . BL is additive
since 〈µ, λ〉 preserves pullbacks if both µ and λ do; however, T is not addi-
tive because 〈µ, λ〉 will not preserve 1 if µ and λ do. This is consistent with
Theorem 6.4.6, because coproduct inclusions in TopS have (coreflection)
BL-adjoints, but they do not have T-adjoints.
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Remark 6.4.8 The present exposition of additive and equivariant KZ-monads
is only the beginning of an interesting subject. For instance, a simpler char-
acterization of completion KZ-monads is available in the K -equivariant case.
This leads to a slightly different characterization of the algebras, which holds
for the symmetric monad, resulting in another Waelbroeck theorem with lo-
cally connected geometric morphisms in place of essential ones, and pullbacks
in place of bicomma objects.

Exercises 6.4.9

1. Prove that the homomorphisms for the algebras in a linear KZ-monad M
in an extensive 2-category K are linear in the usual sense, meaning that
they preserve addition and scalar multiplication.

6.5 Pitts’ Theorem Revisited

We shall now explain Pitts’ theorem (herein Theorem 4.3.1) in terms of a
linear KZ-monad. Although this is not a direct explanation, we feel that it
is worthwhile. For instance, we gain new information about the geometric
morphism opposite the upper one in a topos bicomma object in which the
lower geometric morphism is essential.

The following lemma is at the heart of the bicomma object construction
in the presence of an equivariant KZ-monad: it shows how to construct a
bicomma object by localizing.

Lemma 6.5.1 Under the above notation, let M be a locally full and faithful,
‘closed, equivariant KZ-monad in K . Suppose that a 1-cell X

ϕ �� K admits
an M-adjoint, and let n denote the pairing (1K , rϕ · δK), where M(ϕ) � rϕ.
Suppose that

K × X MK(K × X)
δK

K∗X

��

A

K × X

p

��

A K
q �� K

MK(K × X)

n=(1K ,rϕ·δK)

��
��

is a bicomma object in K /K such that q admits an MK-adjoint and the BCC
holds for MK : MK(p) · rK

q
∼= µK

K∗X · MK(n). Then

X Kϕ
��

A

X

π2·p
��

A K
q �� K

K

1K

��
��

is a bicomma object in K and the BCC holds for M in K (by equivariance,
q admits an M-adjoint): rϕ

∼= M(π2 · p) · rq.
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Proof . Since M is locally full and faithful, 2-cells in a diagram

X Kϕ
��

B

X

u

��

B K
v �� K

K

1K

��
��

are in bijection with 2-cells

M(ϕ) · δX · u ∼= δK · ϕ · u �� δK · v
δX · u �� rϕ · δK · v .

Now chase through the following diagram:

A

p

��

A Kq
�� K

n

��

B

K

v

�����������������������B

A
���

�
�

�B

(v,u)

���
��

��
��

��
��

��
��

��

��

X M(X)
δX

��

K × X

X

π2

��

K × X MK(K × X)
δK

K∗X �� MK(K × X)

M(X)

πX

��
T��

K
π1 �� K

T
��

1K

���
��

��
��

��
��

��
�

where πX · n = rϕ · δK .
As for the BCC for M in K , it suffices to show

rϕ · δK
∼= M(π2 · p) · rq · δK ,

since both 1-cells in the BCC equation are M-homomorphisms. We have

M(π2 · p) · rq · δK
∼= πX · MK(p) · rK

q · δK
K

∼= πX · µK
K∗X · MK(n) · δK

K∼= πX · µK
K∗X · δK

MK(K∗X)
· n

∼= πX · n
∼= rϕ · δK .

�

Remark 6.5.2 The 1-cell p in the hypothesis of Lemma 6.5.1 is a discrete
MK-fibration.

We turn to the existence of topos bicomma objects, and a proof of Pitts’
bicomma object theorem.

By Lemma 6.5.1, any topos bicomma object



126 6 Closed and Linear KZ-Monads

X Tϕ
��

A

X

p

��

A T
q �� T

T

idT

��
��

(6.3)

in TopS in which ϕ is S -essential can be obtained by localizing over T .
Indeed, the above bicomma object reduces to the bicomma object

X ×S T MT (X ×S T )
δT

��

A

X ×S T
��

A T
q �� T

MT (X ×S T )

f

��
��

(6.4)

in TopT for some point f . Thus, it suffices to construct bicomma objects
δ ⇓ f of diagrams

E M(E )
δ

��EE

SSS

M(E )

f

��
,

where now the usual S denotes the base topos. The geometric morphism
opposite f in such a bicomma object is what we call a discrete M-fibration.
We have seen in § 5.2 that such bicomma objects exist, and that by their very
construction a discrete M-fibration is precisely a complete spread geometric
morphism.

Remark 6.5.3

1. The combination of bicomma objects (6.3) and the pullback stability of
locally connected geometric morphisms (Exercise 2) gives Pitts’ Theorem.

2. We gain the extra information that in (6.4) A
(p,q) �� X ×S T is a T -

complete spread.
3. For toposes E and G over S , the functor which associates to a geometric

morphism G
ρ �� M(E ) the complete spread (γ, λ) : Y �� G ×S E for

the bicomma object

E M(E )
δ

��

Y

E

λ

��

Y G
γ �� G

M(E )

ρ

��
��

is an equivalence of TopS (G ,M(E )) with the category of complete spreads
over G ×S E with locally connected G -domain. It is reasonable to call the
bifibration (γ, λ) a generalized complete spread over S . Such a λ may not
be localic, and Y �� S may not be locally connected, although γ is.
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Exercises 6.5.4

1. Show that “admits an M-adjoint” is stable under bipullback.
2. Let M be K -equivariant. Show that if X �� T admits an M-adjoint,

then for any K, K ×X �� K admits an MK-adjoint (and hence admits
an M-adjoint) and the BCC holds for M and the bipullback

X T��

K × X

X
��

K × X K�� K

T
��

in K .
3. What is the point f in the bicomma object (6.3)?

Further reading: Bunge [Bun95, Bun74, Bun04], Bunge & Funk [BF99],
Bunge & Niefield [BN00], Bunge & Fiore [BF00], Carboni & Johnstone [CJ95],
Johnstone [Joh99], Kock [Koc75], Street [Str, Str74], Waelbroeck [Wae67],
Zöeberlein [Zoe76].




