Skip to main content

Part of the book series: Studies in Computational Intelligence ((SCI,volume 36))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Zadeh L.A. (1999) From computing with numbers to computing with words - from manipulation of measurements to manipulation of perceptions. IEEE Transactions on Circuits and Systems 1: Fundamental Theory and Applications, vol. 45, 105–119

    Article  MathSciNet  Google Scholar 

  2. Zadeh L.A. (2001) A new direction in AI: Toward a computational theory of perceptions. AI Magazine, Spring 2001, 73–84

    Google Scholar 

  3. Zadeh L.A. (2002) Toward a perception-based theory of probabilistic reasoning with imprecise probabilities. Journal of Statistical Planning and Inference vol. 105, 233–264

    Article  MATH  MathSciNet  Google Scholar 

  4. Zadeh L.A. (1997) Toward a theory of fuzzy information granulation and its centrality in human reasoning and fuzzy logic. Fuzzy Sets and Systems, vol. 90, 111–127

    Article  MATH  MathSciNet  Google Scholar 

  5. Zadeh L.A. (2003) Web intelligence and fuzzy logic - the concept of Web IQ (WIQ). WI’03 and IAT’03 Keynote Talk, Halifax, Canada, October 2003

    Google Scholar 

  6. Jang J.-S.R., Sun C.T., Mizutani E. (1997) Neuro-Fuzzy and Soft Computing. A Computational Approach to Learning and Machine Intelligence. Prentice-Hall, NJ, USA

    Google Scholar 

  7. Kosko B. (1997) Fuzzy Engineering. Prentice-Hall, NJ, USA

    MATH  Google Scholar 

  8. Klir G.J., Clair U.S., Yuan B. (1997) Fuzzy Set Theory: Foundations and Applications, Prentice Hall, NJ, USA

    MATH  Google Scholar 

  9. Zadeh L.A. (1973) Outline of a new approach to the analysis of complex systems and decision processes. IEEE Transactions on Systems, Man and Cybernetics SMC-3, 28–44

    MathSciNet  Google Scholar 

  10. Hand D., Manilla H., Smyth P. (2001) Principles of Data Mining. MIT, Cambridge

    Google Scholar 

  11. KDnuggets: Polls: Time-Series Data Mining (Nov 2004) What Types of Time-Series Data Mining You’ve Done? http://www.kdnuggets.com/polls/2004/time_series_data_mining.htm

  12. Lin J., Keogh E., Lonardi S., Chiu B. (2003) A symbolic representation of time series, with implications for streaming algorithms. Proceedings of the 8th ACM SIGMOD Workshop on Research Issues in Data Mining and Knowledge Discovery. San Diego, CA

    Google Scholar 

  13. Das G., Lin K.I., Mannila H., Renganathan G., Smyth P. (1998) Rule discovery from time series. Proceedings of KDD98, 16–22

    Google Scholar 

  14. Agrawal R., Psaila G., Wimmers E.L., Zait M. (1995) Querying shapes of histories. Proceedings of the 21st International Conference on Very Large Databases, VLDB ‘95, Zurich, Switzerland, 502–514

    Google Scholar 

  15. Sripada S.G., Reiter E., Hunter J., Yu J. (2002) Segmenting time series for weather forecasting. Proceedings of ES2002, 193–206

    Google Scholar 

  16. Cohen P., Adams N. (2001) An algorithm for segmenting categorical time series into meaningful episodes. Proceedings of the Fourth International Symposium on Intelligent Data Analysis, Lisbon Portugal

    Google Scholar 

  17. Keogh E.J., Chu S., Hart D., Pazzani M. (2001) An online algorithm for segmenting time series. Proceedings of IEEE International Conference on Data Mining, 289–296

    Google Scholar 

  18. Agrawal R., Faloutsos C., Swami A. (1993) Efficient similarity search in sequence databases. Proceedings of the 4th International Conference on Foundations of Data Organization and Algorithms, Chicago, 69–84

    Google Scholar 

  19. Agrawal R., Psaila G. (1995) Active data mining. Proceedings of the First International Conference on Knowledge Discovery and Data Mining, Montreal

    Google Scholar 

  20. Last M., Klein Y., Kandel A. (2001) Knowledge discovery in time series databases. IEEE Transactions on Systems, Man, and Cybernetics, vol. 31B, 160–169

    Google Scholar 

  21. Cheung J.T., Stephanopoulos G. (1990) Representation of process trends. Part I. A formal representation framework. Computers and Chemical Engineering, vol. 14, 495–510

    Article  Google Scholar 

  22. Cheung J.T. (1992) Representation and extraction of trends from process data. D.Sci.Th., Massachusetts Institute of Technology, Cambridge/MA, USA

    Google Scholar 

  23. Kivikunnas S. (1999) Overview of process trend analysis methods and applications. Proceedings of Workshop on Applications in Chemical and Biochemical Industry. Aachen, Germany

    Google Scholar 

  24. Colomer J., Melendez J., De la Rosa J.L., Aguilar J. (1997) A qualitative/quantitative representation of signals for supervision of continuous systems. Proceedings of European Control Conference-ECC97, Brussels

    Google Scholar 

  25. Colomer J. (1998) Representacio Qualitativa Asincrona de Senyals Per a la Supervisio Experta de Processos, Ph.D. dissertation, University of Girona (UdG), Catalonia, Spain

    Google Scholar 

  26. Konstantinov K.B., Yoshida T. (1992) Real-time qualitative analysis of the temporal shapes of(bio) process variables. American Institute of Chemical Engineers Journal vol. 38, no. 11, 1703–1715

    Google Scholar 

  27. Höppner F. (2003) Knowledge Discovery from Sequential Data. Dissertation. Braunschweig University

    Google Scholar 

  28. Forbus K.D. (1984) Qualitative process theory. Artificial Intelligence, vol. 24, 85–168

    Article  Google Scholar 

  29. Kuipers B. (1984) Commonsense reasoning about causality: deriving behavior from structure. Artificial Intelligence, vol. 24, 169–203

    Article  Google Scholar 

  30. Batyrshin I., Wagenknecht M. (2002) Towards a linguistic description of dependencies in data. International Journal of Applied Mathematics and Computer Science. Special Issue on Computing with Words and Perceptions (ed. by D. Rutkowska, J. Kacprzyk, L.A. Zadeh), vol. 12, no. 3, 391–401

    Google Scholar 

  31. Batyrshin I., Herrera-Avelar R., Sheremetov L., Suarez R. (2004) On qualitative description of time series based on moving approximations. Proceedings of the International Conference on Fuzzy Sets and Soft Computing in Economics and Finance, FSSCEF 2004, St. Petersburg, Russia, vol. I, 73–80

    Google Scholar 

  32. Batyrshin I., Herrera-Avelar R., Sheremetov L., Panova A. Moving approximation transform and local trend associations in time series data bases. In this book.

    Google Scholar 

  33. Federal Reserve Board, http://www.federalreserve.gov/rnd.htm

  34. Boyd S. (1998) TREND: A system for generating intelligent descriptions of time-series data. In Proceedings of the IEEE International Conference on Intelligent Processing Systems (ICIPS1998)

    Google Scholar 

  35. Bezdek J.C. (1993) Fuzzy models and digital signal processing (for pattern recognition): Is this a good marriage?. Digital Signal Processing, vol. 3, no. 4, 253–270

    Article  Google Scholar 

  36. Stockman G., Kanal L., Kyle M.C. (1976) Structural pattern recognition of carotid pulse waves using a general waveform parsing system. CACM 19, 2, 688–695

    Google Scholar 

  37. Baldwin J.F., Martin T.P., Rossiter J.M. (1998) Time series modelling and prediction using fuzzy trend information. Proceedings of the Fifth International Conference on Soft Computing and Information/Intelligent Systems, 499–502

    Google Scholar 

  38. Baldwin J.F., Martin T.P., Pilsworth B.W. (1995) Fril - Fuzzy and Evidential Reasoning in Artificial Intelligence. Research Studies Press Ltd

    Google Scholar 

  39. Smyth P., Goodman R. M. (1991) Rule induction using information theory. In: Knowledge Discovery in Databases, MIT, Cambridge, MA, Chapter 9, 159–176

    Google Scholar 

  40. Höppner F. (2001) Learning temporal rules from state sequences. IJCAI Workshop on Learning from Temporal and Spatial Data, Seattle, USA, 25–31

    Google Scholar 

  41. Allen J.F. (1983) Maintaining knowledge about temporal intervals. Communications of the ACM, vol. 26, no. 11, 832–843

    Article  MATH  Google Scholar 

  42. Ohlbach H.J. (2004) Relations between fuzzy time intervals. Proceedings of 11th International Symposium on Temporal Representation and Reasoning, Tatihoui, Normandie, France

    Google Scholar 

  43. Nagypál G., Motik B. (2003) A fuzzy model for representing uncertain, subjective, and vague temporal knowledge in ontologies. Proceedings of the International Conference on Ontologies, Databases and Applications of Semantics, (ODBASE), volume 2888 of LNCS. Springer, Berlin Heidelberg New York, 906–923

    Google Scholar 

  44. Dubois D., Prade H. (1989) Processing fuzzy temporal knowledge. IEEE Transactions on Systems, Man and Cybernetics, vol. 19, 729–744

    Article  MathSciNet  Google Scholar 

  45. Dubois D., Prade H. (1986) Possibility Theory: An Approach to Computerized Processing of Uncertainty. Plenum, New York

    Google Scholar 

  46. Kurutach W. (1995) Modelling fuzzy interval-based temporal information: a temporal database perspective. Proceedings of 1995 IEEE International Conference on Fuzzy Systems, Yokohama, Japan, 741–748

    Google Scholar 

  47. Godo L., Vila L. (1995) Possibilistic temporal reasoning based on fuzzy temporal constraints. IJCAI’95: Proceedings International Joint Conference on Artificial Intelligence, Montreal

    Google Scholar 

  48. Dutta S. (1988) An event-based fuzzy temporal logic. Proceedings of the 18th IEEE Intnational Symposium on Multiple-Valued Logic, Palma de Mallorca, Spain, 64–71

    Google Scholar 

  49. Badaloni S., Giacomin M. (2000) A fuzzy extension of Allen's interval algebra. In E. Lamma, P. Mello (Eds.), AI*IA99: Advances in Artificial Intelligence, Selected Papers- Lecture Notes in Artificial Intelligence,1792,155–165, Springer, Berlin Heidelberg New York

    Google Scholar 

  50. Badaloni S., Giacomin M. (2006) The algebra IAfuz: a framework for qualitative fuzzy temporal reasoning. Artificial Intelligence, vol. 170, 872–908, Elsevier

    Article  MATH  MathSciNet  Google Scholar 

  51. Maner W., Joyce S. (1997) WXSYS: Weather Lore + Fuzzy Logic = Weather Forecasts.Presentedatthe1997CLIPS Virtual Conference (http://web.cs.bgsu.edu/maner/wxsys/wxsys.htm)

  52. Kukich K. (1983) Design of a knowledge-based report generator. Proceedings of the 21st Annual Meeting of the Association for Computational Linguistics (ACL-1983), 145–150

    Google Scholar 

  53. StockReporter. http://www.ics.mq.edu.au/~ltgdemo/StockReporter/about.html

  54. Reiter E., Dale R. (2000) Building Natural Language Generation Systems, (Studies in Natural Language Processing). Cambridge University Press, Cambridge

    Google Scholar 

  55. Yu J., Reiter E., Hunter J., Mellish C. (2007) Choosing the content of textual summaries of large time-series data sets. Natural Language Engineering. (To appear)

    Google Scholar 

  56. www.weather.com

  57. Pons O., Vila M. A., Kacprzyk J. (Eds.). (2000) Knowledge Management in Fuzzy Databases, Physica, Wurzburg

    MATH  Google Scholar 

  58. Kandel A., Last M., Bunke H. (Eds). (2001) Data Mining and Computational Intelligence, Studies in Fuzziness and Soft Computing, vol.68,Physica, Wurzburg

    Google Scholar 

  59. Kacprzyk J., Zadro ny S. (1998) Data Mining via Linguistic Summaries of Data: An Interactive Approach, In T. Yamakawa and G. Matsumoto(Eds.): Methodologies for the Conception, Design and Application of Soft Computing (Proceedings of IIZUKA’98, Iizuka, Japan), 668–671

    Google Scholar 

  60. Yager R.R. (1991) On linguistic summaries of data, In: Piatetsky-Shapiro G. and Frawley B. (Eds.): Knowledge Discovery in Databases, MIT, Cambridge, MA, 347–363

    Google Scholar 

  61. Yager R.R. (1995) Fuzzy summaries in database mining. Proceedings of the 11th Conference on Artificial Intelligence for Applications, Los Angeles, USA, 265–269

    Google Scholar 

  62. Allen J.F., Perrault C.R.(1980) Analyzing intention in utterances. Artificial Intelligence, vol. 15, 143–178

    Article  Google Scholar 

  63. Batyrshin I., Sheremetov L. Perception-based functions in qualitative forecasting. In this book

    Google Scholar 

  64. Zadeh L.A. Computation with information described in natural language - the concept of generalized-constraint-based computation. International Conference on Computational Intelligence for Modelling Control and Automation - CIMCA’2005, Vienna, Austria, http://csdl2.computer.org/comp/proceedings/cimca/ 2005/2504/01/25041xxx.pdf

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Batyrshin, I., Sheremetov, L., Herrera-Avelar, R. (2007). Perception Based Patterns in Time Series Data Mining. In: Batyrshin, I., Kacprzyk, J., Sheremetov, L., Zadeh, L.A. (eds) Perception-based Data Mining and Decision Making in Economics and Finance. Studies in Computational Intelligence, vol 36. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-36247-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-36247-0_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-36244-9

  • Online ISBN: 978-3-540-36247-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics