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Ikeda Mapping Dynamics

The Ikeda map I we study is given by

I : z 	→ R + C2z exp(i(C1 − C3/(1 + |z|2)), z ∈ C, (16.1)

where C is the complex plane of the variable z = x + iy and R, C1, C2,
and C3 are real constants (mapping parameters). The Ikeda map occurs in
the modeling of optical recording media (crystals) [60]. The numerical results
obtained to date (see [94], [120], [48], [37], [144]) show that under certain para-
meter values the Ikeda map exhibits highly complicated dynamical behavior.
In particular, the Ikeda map can have infinitely many hyperbolic periodic
orbits, which are located in a bounded part of C, and a strange attractor (the
Ikeda attractor). We also consider the modifications of the Ikeda map like
mappings reversing orientation and hyperbolic. The aim of the chapter is to
give an analysis of the topological structure of orbits by symbolic dynamics
methods (the package ASIDS) and by iterations of curves (the package Line).
We also present an analysis of orbit behavior near fixed and periodic points
and of bifurcations that lead to chaotic attractors as parameters vary.

16.1 Analytical Results

In this section we give some simple analytical results on the Ikeda map we
need in the sequel. In the real notation the Ikeda map takes the form

I : (x, y) 	→ (R + C2(x cos τ − y sin τ), C2(x sin τ + y cos τ)), (16.2)

where τ = C1 − C3/(1 + x2 + y2). Some obvious properties of the Ikeda map
are listed below.

1. The map I can be viewed as a composition of the three diffeomorphisms
T1, T2, and T3 of the plane onto itself:

I = T3 ◦ T2 ◦ T1,
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where T1(x, y) = (x cos τ−y sin τ, x sin τ+y cos τ) is a rotation through the
angle τ = τ(r), r2 = x2 +y2, T2(u, v) = (C2u,C2v) is a linear homothetic,
and T3(s, t) = (R + s, t) is a translation along the real axis.

2. If C2 > 0 then I is an orientation preserving diffeomorphism of the plane
onto itself.

3. If |C2| < 1 then the map I is dissipative, i.e. there exists an h > 0 such
that

lim
n→∞

sup ||In(x, y)|| < h

for each point (x, y).
4. If |C2| < 1 then every disk Kr = {(x, y) : x2 + y2 < r2} with the radius

r > |R|/(1 − |C2|) is mapped into itself, i.e. I(Kr) ⊂ int Kr.
5. For every point (x, y) the Jacobian of I is of the form detDI(x, y) = C2

2.
Thus, if |C2| < 1 then I contracts the area, i.e. for the Lebesque measure
of every bounded measurable set U we have

mes I(U) ≤ mes U.

Let |C2| < 1. The properties listed above imply the following:

1. Every bounded invariant set U(I(U) = U) is contained in the disk K(r∗)
with the radius r∗ = |R|/(1 − |C2|). Let Ag be the maximal bounded
invariant set of I contained in K(r∗):

Ag =
∞⋂

n=0

In(K(r∗)).

It is well known that the set Ag is closed connected and asymptotically
stable in the large, i.e. Ag is a global attractor. By 5, Ag has measure
zero: mes Ag = 0.

2. The behavior of orbits of I is entirely determined by the behavior of orbits
from Ag. In particular, periodic, nonwandering, and chainrecurrent orbits
of I are contained in Ag. Results of numerical explorations mentioned
above indicate that under certain parameter values the diffeomorphism
I can have infinitely many hyperbolic periodic orbits with periods tend-
ing to infinity. This leads to the existence of homoclinic orbits and inde-
composable continua in Ag. The last means that Ag has a very intricate
topological structure.

16.2 Numerical Results

Numerical simulations of the dynamical behavior of the map I have been
carried out with C1 = 0.4, C2 = 0.9, C3 = 6.0. The parameter R takes the
values within the segment [0; 1.1] increasing by R = 0.01. For each value
of R, phase portraits are indexed by small letters a, b, anew. The obtained
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values will be given in approximations. Results of the numerical study are the
following.

As R increases from 0 to approximately 0.367, the global attractor Ag is a
single asymptotically stable fixed point, i.e. I offers the convergence property.

16.2.1 R = 0.3

The Ikeda map has the fixed point A0(0.1766, 0.2298). This fixed point attracts
all other orbits.

16.2.2 R = 0.4

The Ikeda map has three fixed points: the fixed point A0(0.2280, 0.2568),
the hyperbolic saddle point H0(3.0508,−1.6442), and the stable focus
S0(3.7763, 0.8930), see Fig. 16.1,a where the global attractor of the map is
shown. The unstable manifold Wu(H0) of H0 consists of two separatrices; the
limit set of the left separatrix is the sink A0

∗ = A0 and the limit set of the
right one is S0. However, while S0 is a regular focus, the sink A0

∗ has a suffi-
ciently complicated topological structure (see Fig. 16.1,b). The stable manifold
W s(H0) of the saddle H0 separates the basins W s(A0

∗) and W s(S0) of the
attractors A0

∗ and S0.

16.2.3 R = 0.5

While R increases from R = 0.4 to R = 0.5 the sink A∗
0 bifurcates to the at-

tractor A which when R = 0.5 contains the sink A0(0.2784, 0.2734), the period

A0

S0

H0

a b

Fig. 16.1. Ikeda map for R = 0.4
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Fig. 16.2. Ikeda map for R = 0.5

2 sink S(0.0897,−0.7195), (0.6758, 0.6141), and the period 2 hyperbolic saddle
H(1.0017, 0.0376), (−0.2517,−0.4987) (see Fig. 16.2,a). The unstable separa-
trices Wu(H) of H ends at A0 and S. The closure of the unstable manifold
Wu(H) (colored dark) coincides with the attractor A = Wu(H)+A0+S. The
stable manifold W s(H) (colored light) separates the basins of attraction of
A0 and S. The basin boundary of A is formed by the stable manifold W s(H0)
of the hyperbolic fixed point H0 at approximately (2.2330,−2.3346) (see
Fig. 16.2,b). The unstable manifold Wu(H0) of H0 consists of two separatrices,
the left one ends at A and the right one ends at the sink S0(3.5231, 2.1942).
The closure of Wu(H0) is the global attractor Ag = Wu(H0) + A + S0 of
the map. This form of the global attractor is preserved up to the parame-
ter value R = 1, except that the structure of the attractor A varies over a
wide range.

16.2.4 R = 0.6

The sink A0(0.3397, 0.2809), the period 2 hyperbolic orbit H(1.0094,−0.1100),
(−0.2110,−0.4211), and the period 2 sink S(0.5997, 0.6757), (0.2188,−0.7184)
are contained in the attractor A. The unstable manifold Wu(H) of each point
of the orbit H is formed by two separatrices, one of these separatrices ends at
the sink A0, (see Fig. 16.3,a), while the other one intersects the stable mani-
fold W s(H), giving rise to a sequence of homoclinic points. Some homoclinic
points are listed in the following list:
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Fig. 16.3. Ikeda map for R = 0.6

(x = 0.192905, y = −0.358028); (x = −0.208911, y = −0.421623);

(x = 0.193456, y = −0.357745); (x = −0.210681, y = −0.421222);

(x = −0.196432, y = −0.424266); (x = −0.210709, y = −0.421216);

(x = −0.197692, y = −0.420132); (x = −0.210990, y = −0.421152);

(x = −0.211047, y = −0.421139); (x = −0.210997, y = −0.421150);

(x = −0.208703, y = −0.421670); (x = −0.211034, y = −0.421142).

The Figure 16.3,b where the stable W s(H) and unstable Wu(H) mani-
folds are depicted, indicates the transverse character of intersections of these
manifolds near T . Since at R = 0.5 the manifolds Wu(H) and W s(H) are
disjoint then there exists a parameter value R∗, 0.5 < R∗ < 0.6, such that
the manifold Wu(H) is tangent to the manifold W s(H). The stable manifold
W s(H) of the orbit H forms the boundary of the basins of attraction of the
sink A0 and the period 2 attractor A2, which contains the period 2 sink S.
In Fig. 16.4,c is shown the basin of attraction of A2 (colored white grey). Its
component containing the point (0.2188,−0.7184) of the sink S is shown in
Fig. 16.4,d.

The attractor A2 is a closure of the unstable manifold Wu(P ) of the period
6 hyperbolic orbit P (0.1869,−0.5785), (0.3556, 0.7053), (0.2818,−0.7800),
(0.6249, 0.6969), (0.1343,−0.7635), (0.8751, 0.4730). Each connected compo-
nent of Wu(P ) consists of two separatrices, the one ends at the sink S, while
the other one ends at the chaotic attractor A3 (see Fig. 16.4,e). A3 contains the
attractor A4, induced by the unstable manifold Wu(Q) of the period 6 orbit
Q. In Fig. 16.4,f are shown the point (0.2056,−0.4874) of the orbit Q (depicted
as a black dot) and its stable and unstable manifolds. The attractor A4 is a
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Fig. 16.4. Ikeda map for R = 0.6

closure of the unstable manifold Wu(Q), which ends at the period 12 sink G.
Fig. 16.4,f presents also two points (0.2022,−0.4816) and (0.2095, 0.4953) of
the orbit G.

It is interesting to note that the stable and unstable manifolds are tangent
at Q forming a sink. The global attractor A is a closure of the unstable
manifold of the orbit H : A = Wu(H)+A2+A0. The stable manifold W s(H0)
of the hyperbolic point H0(1.7660,−2.4891) is the common boundary of basins
of attraction of A and the sink S0(3.3064, 2.8382). The displacement of A,H0

and S0 is similar to that in the cases R = 0.5 and R = 0.7.
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Fig. 16.5. Ikeda map for R = 0.7

16.2.5 R = 0.7

The Ikeda map with R = 0.7 has the inverse saddle fix point A0(0.3804, 02817)
(see Fig. 16.5,a). The unstable manifold Wu(A0) of A0 ends at the sink formed
by a pair of the period 2 points S(0.1548, 0.2030), (0.6110, 0.2118) which is a
minimal attractor. The inverse saddle point A0 and the period 2 sink S arise
from the sink A0 while R varies from R = 0.6 up to R = 0.7. A closure of
the unstable manifold Wu(A0) forms the attractor A1 = Wu(A0) + S. The
Ikeda map reverse the orientation of Wu(A0) and hence the orientation of
W s(A0) is also reversed since the Ikeda map is orientation preserving. There
exists the period 2 hyperbolic orbit H1(0.5772, 0.6788), (0.3102,−0.7009) with
transverse intersection of the stable Wu(H1) and unstable Wu(H1) manifolds
forming the chaotic attractor A2 = Wu(H1) (see Fig. 16.5,b). The attractor
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A2 has two connected components derived from components of the unsta-
ble manifold Wu(H1) for points of the orbit H1. The attractor A2 can be
viewed as a two-periodic attractor since the Ikeda map takes one connected
component of A2 onto the other one. The unstable manifold Wu(H) of the
period 2 hyperbolic orbit H(−0.1364,−0.3495), (0.9931,−0.1676) is formed
by two separatrices Wu(H)1 and Wu(H)2, which ends at the attractors A1

and A2, respectively. Thus, the closure of Wu(H) makes up the attractor
A = A1 + Wu(H) + A2 of the form A = S + Wu(A0) + Wu(H) + Wu(H1)
(see Fig. 16.5,c).

The stable manifold W s(H0) of the hyperbolic fixed point H0(1.5062,
−2.5002) separates the basins of attraction of the attractor A and the
sink S0(3.1580, 3.2738). The unstable manifold Wu(H0) of H0 is formed by
two separatrices, the left one ends at the attractor A while the right one
ends at the sink S0. The closure of Wu(H0) generates the global attractor
Ag = A + Wu(H0) + S0 (see Fig. 16.5,d).

16.2.6 R = 0.8

The Ikeda map has the inverse saddle A0 at approximately (0.4311, 0.2761)
(see Fig. 16.6,a). Two unstable separatrices Wu(H)S of the period 2 orbit
H(0.9429,−0.1339), (−0.0296,−0.2155) end at the period 2 sink S(0.0387,
−0.0345), (0.8467,−0.0013) while two other ones Wu(H) intersect the stable
manifolds W s(A0) and W s(H1) (colored light) of the saddle A0 and the period
2 hyperbolic orbit H1(0.3844,−0.6761), (0.5798, 0.6644). The unstable mani-
folds Wu(A0) and Wu(H1) (colored dark) intersect in turn the stable manifold
W s(H), forming the heteroclinic cycle A0 → H1 → H → A0 (see Fig. 16.6,a).
The closure of unstable manifolds of the cycle generates the attractor A (see
Fig. 16.6,b).

The attractor A contains the sink S and, hence, is not a minimal attractor.
The basin of attraction W s(A) of A is bounded by the stable manifold W s(H0)
of the saddle fixed point H0(1.3219,−2.4527), the complement to the closure
of W s(A) is the basin of attraction of the focus S0(3.0614, 1.6110). As above,
the left unstable separatrix Wu(H0)l of H0 ends at the attractor A while the
right one Wu(H0)r ends at the sink S0. The global attractor Ag is the closure
of the unstable manifold Wu(H0) of the saddle H0 : Ag = Wu(H0) + A + S0.
We notice that at R = 0.7 the unstable manifold Wu(A0) ends at the sink S,
whereas at R = 0.8 the sink S is the limit of the unstable separatrix Wu(H),
i.e. a bifurcation occurs.

16.2.7 R = 0.9

The Ikeda mapping with R = 0.9 has a chaotic minimal attractor named the
Ikeda attractor. As R increases from R = 0.8 to R = 0.9, the following bifurca-
tion occurs: the period 2 sink S and the period 2 hyperbolic orbit H disappear.
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Fig. 16.6. Ikeda map for R = 0.8

The attractor A contains the inverse saddle A0(0.4819, 0.2645) and the period
2 hyperbolic orbit H1(0.5964, 0.6394), (0.4497,−0.6453). The stable W s(A0)
and W s(H1) and unstable Wu(A0) and Wu(H1) manifolds (separatrices) of
these saddles intersect and form the heteroclinic cycle A0 → H1 → A0 (see.
Fig. 16.7,a) generating the chaotic attractor A which is the closure of the un-
stable manifolds Wu(A0) or Wu(H1). There exists a pair of the period 3 hy-
perbolic orbits P3(0.8091, 0.7834), (0.9960,−1.0090), (−0.0280,−0.8758) and
Q3(1.3512,−0.0707), (0.6568,−1.1932), (−0.2418,−0.4462) (see Fig. 16.7,b).
The stable and unstable manifolds of orbits P3 and Q3 intersect forming the
heteroclinic cycle which also generates the attractor A. The closure of the un-
stable manifold of any one of the orbits A0, H1, P3 or Q3 is the attractor A (see
Fig. 16.7,c). Outside the attractor A there is the saddle H0(1.1987,−2.3769)
whose left separatrix Wu(H0)l ends at the attractor A. The right unstable
separatrix Wu(H0)r ends at the sink S0(3.0027, 3.8945) (see Fig. 16.7,d). The
stable manifold W s(H0) of the saddle H0 separates the basin of attraction
W s(A) of the attractor A and the basin of attraction W s(S0) of the sink S0.
The closure of the unstable manifold Wu(H0) generates the global attractor
Ag = A + Wu(H0) + S0. The map has no other period 2 and period 3 orbits.

16.2.8 R = 1.0

When R goes from 0.9 to R = 1.0 the period 1, period 2, and period 3 orbits
survive, except that their coordinates vary: when R = 1.0 (see Fig. 16.8,a)
the inverse saddle A0 is approximately (0.5228, 0.2469), the period 2 hy-
perbolic orbit H1 is approximately (0.6216, 0.6059), (0.5098,−0.6084), and
the period 3 hyperbolic orbits P3 and Q3 are approximately (0.7795, 0.7672),
(1.0140,−0.9832), (0.0858,−0.8832) and (0.6583,−1.1541), (1.3297,−0.1427),
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Fig. 16.7. Ikeda map for R = 0.9
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Fig. 16.8. Ikeda map for R = 1.0

(−0.1353,−0.3756), respectively. The closure of unstable manifold of any or-
bit A0, H1, P3 or Q3 is an attractor A (see Fig. 16.8,b). The basin of attrac-
tion of A is bounded by the stable manifold W s(H0) of the hyperbolic fixed
point H0(1.1142,−2.2857) which is nearly tangent to A (see Fig. 16.8,b). The
enlarged scale phase portraits (Figs. 16.9,c and 16.9,d) show that the dis-
tance between A and W s(H0) near points B and C is yet positive. The
stable manifold W s(H0) is a common boundary of the basins of attraction
of the attractor A and the sink S0(2.9721, 4.1459). The stable and unstable
manifolds of H0 are nearly tangent forming a sufficiently fine domain of attrac-
tion near points of “nearly tangency”. The right separatrix Wu(H0)r ends at
the sink S0(2.9721, 4.1459) and the left one Wu(H0)l approaches the chaotic
attractor A.

16.2.9 R = 1.1

The mapping I has the following orbits with periods 1, 2, and 3: the in-
verse saddle A0(0.5837, 0.2232), the period 2 orbit H2(0.6525, 0.5641), (0.5670,
−0.5643), and the period 3 orbits P3(0.1906,−0.8730), (1.0240,−0.9557),
(0.7718, 0.7342) and Q3(0.6660,−1.0738), (−0.0110,−0.2430), (1.2810,
−0.1232). The relative positions of these orbits are similar to the case
R = 1.0. The stable and unstable manifolds of the hyperbolic fixed point
H0(1.05926,−2.1850) intersect transversally generating a homoclinic orbit
(Fig. 16.10,a).
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Fig. 16.9. Ikeda map for R = 1.0

Fig. 16.10,b displays the manner in which the manifolds W s(H0) and
Wu(H0) intersect near H0. Furthermore, Fig. 16.10,a shows that the stable
and unstable manifolds of A0 and H0 intersect generating a heteroclinic cycle.
Thus, the attractor A fails when R goes from 1.0 to 1.1. The global attractor
Ag is the closure of the unstable manifolds of H0 or A0. The right unstable
separatrix Wu(H0)r ends at the focus S0(2.9630, 4.3773). Moreover, all other
unstable manifolds stretching along Wu(H0)r approach S0 as well. The set
of chain recurrent points except for S0 is the closure of points of intersection
of W s(H0) and Wu(H0), Fig. 16.11,d displays a neighborhood of the chain
recurrent set.
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Fig. 16.11. Ikeda map for R = 1.1

16.3 Modified Ikeda Mappings

In this section we consider some possible modifications of the Ikeda mapping.
With this aim in view, let us rewrite the Ikeda mapping in the form
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J : (x, y) 	→ (R + a(x cos τ − y sin τ), b(x sin τ + y cos τ)), (16.3)

where τ = 0.4−6/(1+x2+y2). For the normal Ikeda mapping a = b = C2 and
C2 ∈ (0, 1), i.e. the mapping is an orientation preserving contraction. Now we
will not assume a = b, in particular, a and b may be of opposite signs.

16.3.1 Mappings Preserving Orientation

Inverse Attraction: R = 3, a = b = −0.9

The mapping J has the hyperbolic fixed point H(1.6030, 0.8268) with non-
empty intersection of stable and unstable manifolds: W s(H) ∩ Wu(H). The
stable and unstable manifolds are nearly tangent at a homoclinic point
(Fig. 16.12,a). Since a = b < 0, J revises the orientation of W s(H) and Wu(H)
and H is an inverse saddle. There exists the period 2 sink S(0.0320, 0.3637),
(3.3216,−0.0835), which is contained in the limit set of Wu(H). The closure
of Wu(H) forms the global attractor Ag (Fig. 16.12,b). The global attrac-
tor involves the chain recurrent set Q, which contains the orbits H and S
and the points of intersection of W s(H) and Wu(H) (homoclinic points).
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H

S

S

a b

Fig. 16.12. Ikeda map for R = 3, a = b = −0.9

c d

Fig. 16.13. Ikeda map for R = 3, a = b = −0.9
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A neighborhood of Q obtained by the symbolic dynamics methods is shown
in Fig. 16.13,c. A neighborhood of S (colored dark) is a lower bound for a
basin of attraction of S. The manifolds W s(H) and Wu(H) and their in-
tersection points are presented in Fig. 16.13,d. The set of homoclinic points
W s(H) ∩Wu(H) is a lower bound for the chain recurrent set Q.

Hyperbolic Mapping: R = 1, a = 0.9, b = 1.2

There exists hyperbolic fixed point H(−0.1824,−2.3536) with nonempty in-
tersection of the stable and unstable manifolds. The stable and unstable
manifolds of H and the point F (0.0851, 0.9643) homoclinic to H are shown
in Fig. 16.14,a. Table presents numerical results of successive computation of
points H and F .

Step Fixed point Homoclinic point

30 x = −0.18235986, y = −2.35361944 x = −0.08509742, y = 0.96427872
31 x = −0.18235987, y = −2.35361803 x = −0.08144479, y = 0.96428413
32 x = −0.18235936, y = −2.35361106 x = −0.08519972, y = 0.96428226

The mapping has the hyperbolic fixed point H1(0.5153, 0.2835) and the
period 2 hyperbolic orbit P (0.3708, 0.6824), (0.5505,−0.7136). The stable and
unstable manifolds of H, H1 and P intersect generating heteroclinic cycles (see
Fig. 16.14,b). Fig. 16.14,c shows how the stable and unstable manifolds of P
are situated. The set of points homoclinic to H (constructed as an intersection
of W s(H) and Wu(H)) is a lower bound of the chain-recurrent set Q and is
depicted in Fig. 16.14,d. A neighborhood of Q (an upper bound) obtained by
localization using symbolic dynamics methods is displayed in Fig. 16.15,e. The
stable manifold W s(H) of H and stable manifolds of all other orbits from Q
start from the source S(−2.9622, 5.8918), see Fig. 16.15,f.

Expansion: R = 1, a = b = 1.2

The mapping J increases an area by a2 = 1.44 and has a global re-
peller Rg. This repeller contains the hyperbolic fixed point H(0.4368, 0.3100)
which stable and unstable manifolds intersect generating a homoclinic con-
tour. The fixed point H is an inverse saddle, i.e. the map J reverses ori-
entation on W s(H) and Wu(H). In addition, there exists the 2-periodic
orbit H1(0.5132,−0.7463), (0.1850, 0.7191) whose stable W s(H1) and unsta-
ble Wu(H1) manifolds intersect each other and stable W s(H) and unstable
Wu(H) manifolds of H generating a heteroclinic contour (see Fig. 16.16,a).
The closure of W s(H) (or W s(H1)) forms the repeller R. Fig. 16.16,b presents
the repeller R and the manifolds W s(H) and Wu(H). The set of points (col-
ored dark) of intersection of stable and unstable manifolds of H and H1 (a
lower bound for Q) is depicted in Fig. 16.16,b. Obtained by symbolic dynam-
ics methods, a neighborhood of the chain-recurrent set Q (an upper bound)
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Fig. 16.14. Ikeda map for R = 1, a = 0.9, b = 1.2

containing R is shown in Fig. 16.17,c. It seems likely that R = Q. Outside R
there exists a hyperbolic fixed point H0(−1.2588,−2.5318) (see Fig. 16.17,d),
the left separatrix of which starts from R and the right one starts from the
source S(−3.7022, 2.3228).

16.3.2 Mappings Reversing Orientation

Contraction: R = 1, a = 0.9, b = −0.9

The map J decreases an area and has a global attractor Ag. There
exist two hyperbolic fixed points H0(0.5726, 0.6602) and H1(0.5606,−0.5692)
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Fig. 16.15. Ikeda map for R = 1, a = 0.9, b = 1.2
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Fig. 16.16. Ikeda map for R = 1, a = b = 1.2

whose stable and unstable manifolds intersect forming a heteroclinic cycle. In
addition, there is a unique 2-periodic hyperbolic orbit P (0.9391,−0.2036),
(0.1539, 0.1791) whose stable (unstable) manifold intersects Wu(H0) and
Wu(H1) (W s(H0) and W s(H0)) forming a heteroclinic cycle (Fig. 16.18,a).
Points of intersection of stable and unstable manifolds of these orbits (colored
dark in Fig. 16.18,b) yield a lower bound for the chain-recurrent set Q. An
upper bound for Q obtained by symbolic dynamics methods is depicted in
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Fig. 16.17. Ikeda map for R = 1, a = b = 1.2
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Fig. 16.18. Ikeda map for R = 1, a = 0.9, b = −0.9

Fig. 16.19,c. Near H0 the manifold W s(H0) bounds Q, with the left separa-
trix Wu(H0)l involved in Q and the right one Wu(H0)r going to the right
(Figs. 16.19,a,b and d). Near H1 the manifold Wu(H1) bounds Q, with the
right separatrix Wu(H1)r involved in Q and the left one Wu(H1)l going to
infinity (Figs. 16.18,a,b). Stretching along the right separatrix Wu(H0)r, un-
stable manifolds start from Q and end at the sink S(9.7301,−1.5751). Stable
manifolds start from Q and along the left separatrix W s(H0)l reach infinity
in the form of “rabbit ears” (Fig. 16.19,d and Fig. 16.20). The global attractor
Ag is the closure of Wu(H0) (Fig. 16.20).
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Fig. 16.19. Ikeda map for R = 1, a = 0.9, b = −0.9

S

Fig. 16.20. Ikeda map for R = 1, a = 0.9, b = −0.9

Contraction: R = 2, a = −0.9, b = 0.9.

The map J decreases an area and the global attractor Ag. There exists
the unique hyperbolic fixed point H(1.3815,−2.4746) (Fig. 16.21,a) whose
stable and unstable manifolds W s(H) and Wu(H) intersect (Fig. 16.21,a
and b). In addition, there is the unique periodic orbit P2(0.2378,−0.7031),
(1.9995, 0.6681) stable and unstable manifolds of which intersect W s(H) and
Wu(H) forming a heteroclinic cycle (Fig. 16.21,a). The global attractor Ag

is a closure of Wu(H) or Wu(P ) (Fig. 16.21,b). The set W s(H) ∩ Wu(H) is
a lower bound for the chain-recurrent set Q. Fig. 16.21,c presents a neigh-
borhood of Q constructed by symbolic dynamics methods. Since Ag con-
tains all limit points, stable manifolds of orbits from Ag cover the plane R2.
Using symbolic dynamics methods we obtain the 6-period hyperbolic orbit
P6 (1.0847,−1.0732), (2.7889,−1.1242), (−0.2626,−1.4846), (3.3560, 0.0508),
(−1.0124,−0.2235), (1.3964, 0.7116). Its Lyapunov exponents are calculated
by λ = 1

6 · ln |γ|, where by are the eigenvalues of the differential of the
Ikeda mapping along the orbit P6. We obtain: γ1 = −23.098, γ2 = −0.012
and λ1 = 0.523 and λ2 = −0.734. The attractor has the 2-periodic or-
bit P2 (0.2385,−0.7024), (1.9989, 0.6691). The eigenvalues of the differential
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Fig. 16.21. Ikeda map for R = 2, a = −0.9, b = 0.9

along P2 are λ1 = −0.134, γ2 = −4.888, and the Lyapunov exponents
λ = 1

2 · ln |γ| are λ1 = −1.004, λ2 = 0.793. There exists the 4-periodic orbit
P4(−0.6836,−0.6319), (0.7312,−0.9389), (1.6003, 0.72792), (3.0613,−0.1713)
with the Lyapunov exponents λ1 = −0.843, λ2 = 0.633.

Hyperbolic Mapping: R = 1, a = −0.9, b = 1.2

The map J has the hyperbolic fixed point H(−0.0950, 2.1937) stable mani-
fold W s(H) of which can be bijectively projected on the x-axis. The map J
reverses orientation on W s(H). The unstable manifold Wu(H) can be bijec-
tively projected on the y-axis near H, however, the lower part of Wu(H) offers
a complicated structure (Fig. 16.22,a). Such a behavior of Wu(H) results from
the fact that Wu(H) intersects the stable manifold W s(Q2) of the 2-periodic
hyperbolic orbit Q2(−1.5584,−1.9046), (3.0088,−1.2438), which in turn has
a homoclinic point of transverse intersection of stable and unstable manifolds
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Fig. 16.22. Ikeda map for R = 1, a = −0.9, b = 1.2
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Fig. 16.23. Ikeda map for R = 1, a = −0.9, b = 1.2

Wu(Q2) and W s(Q2) (Fig. 16.22,b). Fig. 16.23,c shows the manner in which
Wu(Q2) and W s(Q2) intersect near Q2(−1.5584,−1.9046). Besides Q2 there
is another 2-periodic hyperbolic orbit P2(−0.2554,−0.9207), (1.1152, 1.1362)
with homoclinic intersection of its stable and unstable manifolds Wu(P2) and
W s(P2). Fig. 16.23,d shows the manner in which Wu(P2) and W s(P2) in-
tersect near P2(−0.2554,−0.9207). Stable and unstable manifolds of orbits
Q2 and P2 intersect forming a heteroclinic cycle. This leads to the chaotic
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Fig. 16.24. Ikeda map for R = 1, a = −0.9, b = 1.2

chain-recurrent set Q. Fig. 16.24,e depicts a neighborhood (an upper bound)
of Q. The set Wu(Q2)∩W s(Q2) gives a lower bound for Q. Fig. 16.24,f shows
the displacement of Wu(Q2), W s(Q2), and their points of intersection. The
stable manifold W s(H) is in the closure of W s(Q2). The closure of W s(Q2)
forms the set looking like a “Napoleon” hat (Fig. 16.24,f).




