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Introduction

1.1 Dynamics

In order to investigate some physical phenomenon usually one constructs its
mathematical model. The model is a system of equations which describe a
process under study in mathematical terms. Equations involved in a system
may be of different nature. The dependence between quantities involved in
equations may be linear, i.e. this dependence is represented by a linear func-
tion, or nonlinear. Parameters may be included in equations, and in this case
we have the equations with parameters. Equations may contain both func-
tions sought for and their derivatives – differential equations. Such models are
commonly known, e.g. a model of the pendulum motion, a model of the fluid
motion, a model of the heat diffusion, a model of the bacteria reproduction,
and other. By the process we mean the observed parameters variables which
depend on the time t. Parameter values at a time t determine the state of
a process. The set of process states constitutes the phase space of a system.
Thus, a system of equations describing a given process is determined on the
phase space.

For an example, the law of radioactive decay can be stated as: the rate
of the decay at a given moment is proportional to an amount of a substance
remaining at this moment. In this case the state of a process is determined by
the amount of a substance. The process of bacteria reproduction under wide
enough amount of a nutritive material can be stated as: the rate of population
reproduction is proportional to the population size. In this case the state of
a process is determined by the bacteria quantity. In the cases just discussed
above, the phase space is one-dimensional and constitutes the set of positive
real numbers.

Let us consider a mechanical system that describes the motion of a mass
point. The state of the mass point is specified by two quantities: coordi-
nates and velocity. In order to determine uniquely the state of the mass point
one needs different number of characteristics depending on where the move-
ment occurs. If the mass point moves along the straight line, one needs two
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quantities: line coordinate and velocity. Thus, the phase space is the plane R
2

or its part. If the mass point moves in the plane, the point position is deter-
mined by its two coordinates and by two components of the velocity vector.
Hence, the phase space is four-dimensional Euclidean space R

4. Similarly, to
describe the motion of a mass point in the three-dimensional space one needs
six quantities that determine the point state at a given time, and the phase
space is R

6.
A system of equations governs changes in the object state that occurs

with time via some law. If this law is expressed by a system of differential
equations then one says that a continuous-time system is given. If equations
that govern a system determine changes of the object state through a fixed
time interval then the system is called a discrete-time system. A length of the
time interval is determined by a problem at hand. Thus, we can became aware
of the behavior of an object at hand by treating the movement of points in a
phase space at given instants of time with the law of this movement governed
by the system of equations.

One of the mostly known classes of systems is that describing so-called
determinate processes. This means that there exists a rule in terms of a system
of equations that uniquely determines the future and the past of the process
on the basis of knowledge of its state at present. The systems describing
radioactive decay and bacteria reproduction as well as mechanical systems of
a mass point motion outlined above are determinate, i.e. the process progress is
uniquely determined by initial conditions and equations. Needless to say that
there exist also indeterminate systems, e.g. the process of heat propagation
in a medium is semi-determinate as the future is determined by the present
whereas the past is not. It is well known that the motion of particles in
quantum mechanics is an indeterminate process.

It should be noted that whether or not a process is determinate can be
established only experimentally, hence with a certain degree of accuracy. In
the subsequent discussion we will return to this subject, but now we suppose
that a mathematical model reflects closely a given physical process, i.e. the
model is sufficiently accurate. In what follows we will treat both discrete and
continuous dynamical systems.

A discrete system is given by a mapping (a difference equation) of the form

xn+1 = f(xn),

where each subsequent system state xn+1 is uniquely determined by its previ-
ous state xn and the mapping f , n can be viewed as the discrete time. Thus,
the evolution of the system is governed by the sequence {xn, n ∈ Z} in the
phase space. A continuous dynamical system is generally given by an equation
of the form

dx

dt
= F (x)
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or by a system of such equations. Let Φ(t, x0) be a solution of the equation,
where x0 is an initial state at t = 0, t is viewed as the time. In this case,
the system evolution is governed by the curve {x = Φ(t, x0), t ∈ R} in the
phase space. Fundamental theorems of the differential equations theory en-
sure the existence of the solution Φ under some reasonable conditions posed
on the mapping F , however, its explicit finding (integration of a system) is a
sufficiently challenging task. Moreover, solutions of the most part of differen-
tial equations cannot be expressed in elementary functions. In practice, when
solving an actual problem, Φ is often constructed numerically.

At this point of view, discrete dynamical systems are more favored for the
study as the mapping f is similar to the solution Φ and the integration of a
system does not complicate understanding of the system evolution. Computer
modeling allows to construct easily a trajectory of the system on each finite-
time interval that gives a possibility to solve many problems. If we simulate
an orbit of a dynamical system for a given initial condition we reach to an
attractor of this system and in general, we are not be able to locate any
other objects existing in the state space. Although several coexisting attractors
might be detected by variation of initial conditions, it is not possible to find
unstable objects like, for instance, unstable limit cycles. In this context we
need methods that studies the global structure of dynamical system rather
than tracing single orbits in the state space.

The method presented approaches this task. It provides a unified frame-
work for the acquisition of information about the system flow without any
restrictions concerning the stability of specific invariant sets.

1.2 Order and Disorder

Since the behavior of the process described by a determinate system is
uniquely determined by a given initial state, it is reasonable to assume that
the behavior of such a system is sufficiently regular, i.e. it obeys a certain
law. This mode of thought prevailed in the 19th century. However, with the
advance of science our concepts on outward things have been changed. In the
20th century, theory of relativity, quantum mechanics, and theory of chaos
have been created.

The theory of relativity dispelled Newton’s ideas about the absolute nature
of time and space. The quantum mechanics showed that many physical phe-
nomena cannot be considered determinate. The theory of chaos proved that
many determinate systems can exhibit irregularity, i.e. they obey solutions
that depend on the time in an unpredictable way. One example of chaotic
dependence is the decimal representation of an irrational number, where each
subsequent digit may be arbitrary independently of preceding digits, i.e. being
aware of the first n digits one cannot predict the next one.

The term “chaos” was likely introduced by J. Yorke in 60th. How-
ever, H. Poincaré is recognized a pioneer in the study of chaotic behavior
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of trajectories [117]. In 1888, H. Poincaré [116] revealed strongly unstable
trajectories in the three-body problem. For this work, in 1889 he was awarded
a prize of Swedish King Oscar II. More precisely, H. Poincaré proved the
existence of so-called doubly asymptotic orbits in the three-body problem.
Now these orbits are called homoclinic. The main property of such an orbit
is that it starts and ends near the same periodic orbit. It should be noted
that in this case chaotic trajectories appear in a fully determinate mechanical
system that obeys Newton’s laws.

In 1935, G. Birkhoff [13] applied symbolic dynamics for coding trajectories
near a homoclinic orbit. The same technique was used by S. Smale [136] in
construction of the so-called “horseshoe” – a simple model of the chaotic
dynamics. Smale’s “horseshoe” influenced very much on the theory of chaos
as this example is typical and the symbolic dynamics methods turned out to
be just an instrument that allows to describe the nature of chaos.

The systematic study of chaos begins in 1960, when researches perceived
that even very simple nonlinear models can provide as much disorder as the
most violent waterfall. Minor distinctions between initial conditions produce
considerable difference in results that is called a “sensitive dependence on ini-
tial conditions”. One of the pioneer investigators of chaos, E. Lorenz, called
this phenomenon a “butterfly effect”: trembling of the butterfly wings may
cause a tornado in New York within a month. However, the majority of re-
searches continue to hold the viewpoint of Laplace, a philosopher and math-
ematician of the 18th century, who reasoned that there exists formulas that
describe the motion of all physical bodies and hence there is nothing inde-
terminate neither in the future nor in the past. They believe that by adding
complexity to a mathematical model and by increasing accuracy of calcula-
tions on can achieve an absolute determinate description of a system, the chaos
in a model is viewed as a weakness of the model and the work of investigator is
negatively appreciated. If in the course of investigation or in the performance
of experiment it emerges that instability or chaos are inherent characteristics
of an object of study then this is explained by extraneous “noise”, unaccounted
perturbations, or bad quality of the experiment performance. It is reasonable
that biologists, physiologists, economists and others desire to decompose sys-
tems investigated into “elements” and then to construct their determinate
models. However, it should be remembered the following:

1) the absolute accuracy of calculations cannot be achieved;
2) the more complicated mathematical models, the greater is the dependence

on initial conditions.

In addition, many of system parameters are known with a certain degree
of accuracy, e.g. the acceleration of gravity. Moreover, every model describes a
real system only approximately and an initial state is also not known precisely.
An attempt to achieve a closer description of a system implies a complication
of a mathematical model which generally becomes nonlinear. This inevitably
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leads to systems admitting indeterminate or chaotic solutions (trajectories).
Hence, we cannot circumvent chaotic behavior of systems and must foresee
the chaos and control it. A practical implementation of such an approach is
a solution of the problem of transmitting information. It is known that the
transmission of information (in computers, telephone nets, etc.) is attended
with interference or noise: intervals of pure transmission alternate with in-
tervals with noise. The unexpected appearance of noise was believed to be
associated with a “human element”. Costly attempts to improve characteris-
tics of nets or to increase signal power did not lead to solution of the problem
of noise. Intervals of pure transmission and intervals of noise are arranged
highly chaotic both in duration and in order. However, it turned out that in
the chaos of noise and pure intervals there is a certain regularity: the mean
ratio of the summarized time of pure transmission and the summarized time
of noise is kept constant and, in addition, this ratio is independent of the
scale, i.e. it is the same both for an hour and for a second. This means that
the problem of noise is not a local problem and is associated not only with a
“human element”. The way out from this seemingly hopeless situation is very
simple: it is reasonable to use a rather weak and inexpensive communication
network but duplicate it for correcting errors. This strategy of communicating
information is applied now in computer networks.

Economics also provides examples of the chaotic behavior. Studying the
variation diagram of prices of cotton within eight years, Hautxacker, a profes-
sor of economics at the Harvard university, revealed that there were too many
big jumps and that the frequency curve did not correlate with the normal dis-
tribution curve. He consulted B. Mandelbrot who worked in the IBM research
center. A computer analysis of the variation of prices showed that the points
which do not fall on the normal distribution curve form a strange symmetry.
Each individual jump of the price is random, but the sequence of such jumps
is independent of the scale: day’s and month’s jumps correspond well to each
other under appropriate scaling of the time. Such a regularity persists during
the last sixty years with two world wars and many crises. Thus, a striking
regularity appears within chaotic dynamics.

Chaotic behavior can be viewed not only in statistic processes but in de-
terminate ones. Let us consider a pendulum built up from two or more rigid
components. The first component is secured at a fixed point, to the end of
the first component is secured the second component, and so forth. This me-
chanical system is entirely determinate and described by a collection of dif-
ferential equations. If one actuates the pendulum in such away that it highly
rotates then a chaotic motion can be observed: The pendulum will change
the direction of rotation in a chaotic manner. In addition, it is impossible to
repeat exactly the motion in subsequent experiments. Thus, we can observe
chaos in fully determinate mechanical systems. An explanation is very simple:
the system offers the property of sensitive dependence on initial conditions
[136], [21].



6 1 Introduction

1.3 Orbit Coding

The modern theory and practice of dynamical systems require the necessity
of studying structures that fall outside the scope of traditional subjects of
mathematical analysis — analytic formulas, integrals, series, etc. An impor-
tant tool that allows to investigate such complicate phenomena as chaos and
strange attractors is the method of symbolic dynamics. The name reflects the
main idea of the method — the description of system dynamics by admissi-
ble sequences (admissible words) of symbols from a finite symbol collection
(alphabet). We explain this idea by the following hypothetic sample.

Assume that a “device” (realizable or hypothetic) note a system state (a
position of the phase point) by some values. These values are obtained with
certain accuracy. For example, an electronic clock displays the value ti, when
the exact time t lies in the interval [ti, ti +h), where h > 0 depends on clock’s
design. It is convenient to suppose that the phase space M of the system
studied is covered by a finite number of cells {Mi} and the “device” marks the
cell number (index) i when the point x is in the cell Mi. The cells Mi and Mj

can intersect when the device indicator is exactly on the boundary between Mi

and Mj . In the last case any of i and j are accepted as correct. For simplicity
we suppose that the device marks indices of cells through equal time intervals
and the trajectory (the sequence of phase points under the action of a system)
is coded by the sequence of indices of the system {z(k), k ∈ Z}. As indices,
we can use symbols of different nature: numbers, letters, coordinates etc. If
symbols are letters of some alphabet then the number of letters coincides with
the number of cells and trajectories are coded by sequences of letters named
admissible words. For transmission of communications by telegraph, as an
example, an alphabet with two symbols (“dot” and “dash”) is usually used.

Thus, the set of potential system states (phase space) is divided into a finite
number of cells. Each cell is coded by a symbol and the “device” in every unit
of time “displays” a symbol which corresponds to that cell where the system
occurs. Notice that given a sequence of symbols, we can uniquely restore the
sequence of cells a trajectory passes through. Clearly, the smaller are cells,
the closer is the description of dynamics. The transition from an infinite phase
space to a finite collection of symbols can be viewed as a discretization of the
phase space.

Thus, the behavior of a system is “coded” with a specially constructed
language; in so doing there is a certain correspondence between sequences
of symbols and the system dynamics. For example, to a periodic orbit there
corresponds a sequence formed by repeated blocks of symbols. The property
of orbit recurrence is expressed in repetition of a symbol in an admissible
word. Thus, the system dynamics is determined not by values of symbols
but by their order in the sequence. Notice that the system dynamics specifies
the permissibility of transition from one cell to another and, hence, from one
symbol to other symbol; the transition from one symbol to several ones is
not excluded. In this case the set of all admissible words is infinite. As an
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illustration, if the alphabet is formed by the symbols {0, 1} and transitions
from each symbol to an each one are allowed then we obtain the set of infinite
binary sequences with continuum cardinality. If the transition from 1 to 0 is
forbidden, we obtain sequences that differ where the transition from 0 to 1
occurs; such sequences form a denumerable set. The first system has the infi-
nite number of periodic orbits, whereas the second one has only two periodic
orbits: {. . . 0 . . . } and {. . . 1 . . . }.

G. Hadamard was the first who used coding of trajectories. In 1898 he
applied coding of trajectories by sequences of symbols to obtain the global
behavior of geodesics on surfaces of negative curvature [50]. M. Morse [89]
is recognized as a founder of symbolic dynamics methods. The term “sym-
bolic dynamics” was introduced by M. Morse and Hedlund [90] who laid the
foundations of its methods. They described the main subject as follows.

“The methods used in the study of recurrence and transitivity frequently
combine classical differential analysis with a more abstract symbolic analysis.
This involves a characterization of the ordinary dynamical trajectory by an
unending sequence of symbols termed symbolic trajectory such that the prop-
erties of recurrence and transitivity of the dynamical trajectory are reflected
in analogous properties of its symbolic trajectory.”

These ideas led in the 1960’s an 1970’s to the development of powerful
mathematical tools to investigate a class of extremely non-trivial dynamical
systems. R. Bowen [14, 15] made an essential contribution to their deve-
lopment. Smale’s “horseshoe” mentioned above influenced very much the ad-
vancement of the theory. In 1972 V.M. Alekseev [3] applied symbolic dynamics
to investigate some problems of celestial mechanics. He put into use the term
“symbolic image” to name the space of admissible sequences in coding trajec-
tories of a system. For theoretical background and applications of symbolic
dynamics we refer the reader to the lectures by V.M. Alekseev [4].

In an attempt to find an approach to computer modeling of dynamical sys-
tems, C. Hsu [57] elaborated the “cell-to-cell mapping” method. This method
performs well in studying the global structure of dynamical systems with
chaotic behavior of trajectories. The idea of the method is to approximate a
given mapping by a mapping of “cells”; the image of the cell Mi is considered
to coincide with the cell Mj provided the center of Mi is mapped by f to
some point of Mj . The method suggested by C. Hsu is computer-oriented and
admits a straightforward computer implementation. One of the weaknesses
of the method is its insufficient theoretical justification. That is why results
and conclusions of simulation require detailed analysis and verification. It is
also known a generalized version of the method when the image f(Mi) of Mi

may consists of several cells {Mj} with probability proportional to the volume
(the measure) of the intersection f(Mi) ∩ Mj . Such approach leads to finite
Markov’s chains which theory is well developed. In this case the computer im-
plementation is rather complicate and presents certain difficulties. A detailed
description of these methods can be found in [57].
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In 1983 G.S. Osipenko [95] introduced the notion of symbolic image of a
dynamical system with respect to a finite covering. A symbolic image is an
oriented graph with vertices i corresponding to the cells Mi and edges i → j;
the edge i → j exists if and only if there is a point x ∈ Mi whose image
f(x) lies in Mj . By transforming the system flow into graph we are able to
formulate investigation methods as graph algorithms. The following relations
between an initial system and its symbolic image hold:

trajectories of a system agree with admissible paths on the graph;
symbolic image reflects the global structure of a dynamical system;
symbolic image can be considered as a finite approximation of a system;
the maximal diameter of cells control an accuracy of approximation.

We notice that there exist several other approaches which use concepts similar
to the construction of the symbolic image graph. In Mischaikow [84], a sym-
bolic image-like graph, called a multivalued mapping, is constructed in order
to compute isolated blocks in the context of the Conley Index Theory [28].
The set-oriented methods of Dellnitz, Hohmann and Junge [7, 31, 33, 36] use
a scheme similar to our graph and apply a subdivision technique which is
also used slightly modified in our implementation. Hruska [56] makes a box
chain construction to get a directed graph with the aim to compute an
expanding metric for dynamical systems. An analogous tool for discretization
of dynamical systems was applied by F.S. Hunt [58] and Diamond et al [38].
Furthermore, there are many other constructive and computer-oriented meth-
ods, of this kind [29,30,46,48,78,134,135].

M. Dellnitz et al [32, 33, 36] elaborated a subdivision technique for the
numerical study of dynamical systems. The main point of this method is as
follows: a studied domain is covered by boxes or cells, according to certain
rules, a part of cells is excluded from consideration while the remainder part
is subdivided, then this procedure is repeated. This approach was used in
construction of algorithms localizing various invariant sets, in particular, a
numerical method for construction of stable and unstable invariant manifolds
was obtained [32]. Algorithms for calculating approximations of the invariant
measure and the Lyapunov exponent were also created [35, 36]. Based on
the algorithms just mentioned, the package GAIO (available at http://math-
www.uni-paderborn.de/agdellnotz/gaio/) was elaborated.

A general scheme of the symbolic analysis proposed is as follows. By a fi-
nite covering of the phase space of a dynamical system we construct a directed
graph (symbolic image) with vertices corresponding to cells of the covering
and edges corresponding to admissible transitions. A symbolic image can be
viewed as a finite discrete approximation of a dynamical system; the fine is
the covering, the closer is the approximation. A process of adaptive subdivi-
sion of cells allows to construct a sequence of symbolic images and in so doing
to refine qualitative characteristics of a system. The method described above
can be used to solve the following problems:
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1. Localization of periodic orbits with a given period,
2. Construction of periodic orbit,
3. Localization of the chain recurrent set,
4. Construction of positive (negative) invariant sets,
5. Construction of attractors and domains of attraction,
6. Construction of filtrations and fine sequence of filtrations,
7. Construction of the structural graph,
8. Estimation of the topological entropy,
9. Estimation of Lyapunov exponents,

10. Estimation of the Morse spectrum,
11. Verification of hyperbolicity,
12. Verification of structural stability,
13. Verification of controllability,
14. Construction of isolating neighborhoods of invariant sets.
15. Calculation of the Conley index.

We remark that the symbolic image construction opens the door to appli-
cations of several new methods for the investigation of dynamical systems.
Quite a lot of information can be gathered by this, and there might be even
some more techniques, yet undiscovered, which could be built around symbolic
image in the future.

1.4 Dynamical Systems

Let M be a subset in the q-dimensional Euclidean space R
q. In what follows we

assume that M is a closed bounded set (a compact) or a smooth manifold in
R

q. Let Z and R stand for the sets of integers and real numbers, respectively.
By a dynamical system we mean a continuous mapping Φ(x, t), where x ∈ M ,
t ∈ Z (t ∈ R), such that Φ : M × Z → M (Φ : M × R → M) and

Φ(x, 0) = x,

Φ(Φ(x, t), s) = Φ(x, t + s),

for all t, s ∈ Z (t, s ∈ R). The variable t is thought of as the time and M is
named the phase space. If t ∈ Z then we have a discrete time system called, for
brevity, discrete system (cascade). Discrete dynamical systems result gener-
ally from iterative processes or difference equations xn+1 = f(xn). In the case
when t ∈ R we deal with a continuous time system called, for brevity, con-
tinuous system (flow). Continuous dynamical systems result generally from
autonomous systems of ordinary differential equations ẋ = f(x), i.e. from
systems with right hand sides independent of time.

Example 1. Linear equation.
Consider the linear differential equation ẋ = ax on the straight line

R. The solution with initial conditions (x0, t0) is of the form F (x0, t − t0)
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= x0 exp a(t − t0). In this case the continuous dynamical system is given by
the mapping F (x, t), i.e.

Φ(x, t) = x exp at.

If a < 0 then x exp at → 0 as t → +∞. If a > 0 and x �= 0 then x exp at → ±∞
as t → +∞. By fixing the time t of the shift along trajectories, e.g. t = 1, we
reach to the discrete dynamical system

xn+1 = bxn

where b = exp a is a positive constant. The discrete system xn+1 = bxn can be
considered independently of the differential equation and, as this holds, the
constant b may be negative. In the last case the mapping Φ(x) = bx is said to
reverse orientation.

Example 2. The Lotka-Volterra equations.
The Lotka-Volterra equations are a system of differential equations of

the form
ẋ1 = (a − bx2)x1

ẋ2 = (−c + dx1)x2,
(1.1)

where a, b, c, and d are positive parameters. The Lotka-Volterra equations
are one of the mostly known examples that present dynamics of two inter-
acting biological populations. In (1.1) x1 and x2 stand for quantities of preys
and predators, respectively, a is the reproduction rate of predators in the ab-
sence of preys, the term −bx2 means losses via preys. Thus, for predators
the population growth per one predator ẋ1/x1 equals a− bx2. In the absence
of predators the population of preys decreases, so that ẋ2/x2 = −c, c > 0
provided x1 = 0. The term dx1 compensates this decrease in the case of
“lucky hunting”.

1.4.1 Discrete Dynamical Systems

Assume that a continuous mapping f : M → M has the continuous inverse
f−1, i.e. f is a homeomorphism. Then f generates a discrete dynamical system
of the form Φ(x, n) = fn(x), n ∈ Z. The mapping fm(x) is an m-times
composition of the function f for m > 0 and an m-times composition of the
function f−1 for m < 0; if m = 0 then f is the identity mapping.

Thus, we study the dynamics of the cascade

xk+1 = f(xk), xk ∈ M ⊂ R
q, k ∈ Z.

Sometimes we will require a homeomorphism f to be a diffeomorphism. This
means that there exists continuous partial derivatives of f and f−1.

The trajectory (or the orbit) of the point x0 is an infinite two-sided
sequence

T (x0) = {xk = fk(x0), k ∈ Z}.
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A point x0 is called fixed point if f(x0) = x0. The trajectory of a fixed point
consists of a single point T (x0) = {x0}. A point x0 is called p-periodic point
if fp(x0) = x0; a least positive integer p with this property is called the least
period. For example, a fixed point is a p-periodic point for each positive integer
p but its least period is 1. The trajectory of a periodic point x0 with the least
period p consists of p distinct points T (x0) = {x0, x1, ...., xp−1}.

Example 3. Consider the mapping of the plane R
2 into itself:

f : (x, y) → (ay + bx2,−ax).

Since f(0, 0) = (0, 0) the origin (0, 0) is a fixed point with trajectory T (0, 0) =
{(0, 0)}. If b �= 0 there exists one more fixed point (x0, y0), where x0 = (1 +
a2)/b, y0 = −a(1 + a2)/b, with trajectory T (x0, y0) = {(x0, y0)}. If b = 0
then the mapping f is a composition of two linear mappings: f = L1 ◦ L2,
where L1 is a multiplication by a and L2 = (y,−x) is a rotation through
the angle α = −90◦. When a = 1, f is reduced to a rotation; each point
(x, y) �= (0, 0) generates the periodic trajectory with least period p = 4,
i.e. f4(x, y) = (x, y). As an example, the trajectory of the point (1, 1) is of
the form T (1, 1) = {(1, 1), (1,−1), (−1,−1), (−1, 1)}. It turns out that under
certain values of a and b the dynamical system posses infinitely many periodic
trajectories with unbounded least periods (see [57]).

1.4.2 Continuous Dynamical Systems

To describe a continuous dynamical system given by ordinary differential
equations we use the shift operator along its trajectories defined as follows.
Consider the system of differential equations

ẋ = F (t, x),

where x ∈ M , F (t, x) is a C1 vector field periodic in t with period ω. Let
Φ(t, t0, x0) be the solution of the system with initial conditions Φ(t0, t0, x0) =
x0. The investigation of the global dynamics of the system can be performed
by studying the Poincaré mapping f(x) = Φ(ω, 0, x) of the system which is
nothing that the shift operator along trajectories through the period ω.

Example 4. Duffing equation with forcing.
Consider the damped Duffing equation with forcing

ẍ + kẋ + αx + βx3 = B cos(ht),

where t is an independent variable, k, α, β, B, and h �= 0 are parameters, x is
a function sought for. Setting y = ẋ we get an equivalent system of the form

ẋ = y,

ẏ = −ky − αx− βx3 + B cos(ht).



12 1 Introduction

If B �= 0 then the system is periodic in t with least period ω = 2π
h . Let

(X(t, x, y), Y (t, x, y)) be its solution with initial conditions (x, y) at t = 0. If
we put, say, h = 2 then the Poincaré mapping takes the form

f : (x, y) → (X(π, x, y), Y (π, x, y)).

If the system is autonomous (i.e. the vector field F is independent of t),
an arbitrary ω �= 0 can be reasoned as a period. For example, without loss of
generality we may take 1. The shift operator takes the form f(x) = Φ(ω, x),
where Φ(t, x) is the solution of autonomous system such that Φ(0, x) = x.
When differential equations are solved numerically, for instance, by the Runge-
Kutta or the Adams methods, we get the shift operator approximately.

Example 5. Duffing equation without forcing.
Consider the damped Duffing equation without forcing

ẍ + kẋ + αx + βx3 = 0.

The corresponding system

ẋ = y,

ẏ = −ky − αx− βx3,

is autonomous and the shift operator may be written as

f : (x, y) → (X(1, x, y), Y (1, x, y)).

To study the systems listed above methods of computer modeling are widely
applied. For example, the use of the MAPLE yields good results. Obtained
with the Runge-Kutta method, the phase portrait of the system

ẋ = y,

ẏ = x − 0.27x3 − 0.48y,

is depicted in Fig. 1.1.
The system has three equilibriums O, A, and B. There are two trajectories

that approach O as t → +∞. These trajectories are called stable separatri-
ces and denoted by W s(O). Thus, for each x ∈ W s(O) the omega limit set
(ω-limit set) of x coincides with O. There are also two trajectories called
unstable separatrices and denoted by Wu(O) that approach O as t → −∞.
Similarly, for each x ∈ Wu(O) the alpha limit set (α-limit set) of x is O. Other
trajectories, except for W s(O) approach equilibriums A and B as t → +∞.

Relationship between discrete and continuous dynamical sys-
tems. Historically, in the dynamical systems theory continuous dynamical
systems governed by ordinary differential equations have been the main ob-
ject of investigation. However, recent trends are to give much attention to
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Fig. 1.1. The phase portrait of Duffing’s equation

discrete systems governed by diffeomorphisms. Let us show that there is a
connection between continuous and discrete systems. We will convince that
each continuous system generates a discrete system and vice versa, moreover
there is a natural correspondence between trajectories of the systems. The
most simple way to obtain a discrete system from a continuous one is to
consider the shift mapping (shift operator) at a fixed time along trajecto-
ries. The method for constructing the shift mapping was discussed above. By
the theorems of existence of ODE solutions and differentiability of solutions
with respect to initial data, the shift mapping is a diffeomorphism provided
the original system is smooth. In connection with this an inverse problem of
including a diffeomorphism in a flow arises: for a given diffeomorphism one
needs to find a vector field whose shift operator coincides with the diffeomor-
phism. However, as M.I. Brin [16] showed, most of diffeomorphisms cannot be
included in flows as shift operators. For example, if a diffeomorphism is ori-
entation revising, i.e. its Jacobian is negative, it cannot be included in a flow
since the shift operator is always continuously transformed into the identity
mapping with positive Jacobian. Thus, diffeomorphisms constitute essentially
wide class than flows generated by differential equations on the same mani-
fold. However, using the notion of a section mapping introduced by Poincaré
one can construct the correspondence where the opposite situation appears.
As an example, consider the section of a torus. A torus can be viewed as the
product of two circles T = S × S with the coordinates (x, y), 0 ≤ x, y ≤ 1.
Let a vector field F on T be such that its trajectories intersect transversally
the circle S × 0, which called a section of the flow on a torus. Suppose that
the trajectory which starts from the point (x, 0), x ∈ S returns back to S in a
unit time at the point (f(x), 0). In this manner the diffeomorphism f : S 	→ S
called a first return mapping arises. Poincaré was the first who applied this
construction to study the system dynamics near a periodic trajectory. In this
case, the section is a surface transverse to a periodic trajectory and the re-
turn time depends on an initial point. Consider now the inverse passage from
a diffeomorphism to a vector field. Let f : M 	→ M be a diffeomorphism
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of a manifold M . First of all we define the new manifold M∗ by identifying
the points (x, 1) and (f(x), 0) in the product M × [0, 1]. Clearly, for the unit
vector field F = (0, 1) on M × [0, 1], the manifold M × 0 ∼= M is a section.
The field F generates the vector field F ∗ on M∗ such that its trajectories
intersect transversally M and take the point x to f(x) in a unit time. Thus,
the diffeomorphism f on M generates the vector field F ∗ on M∗ for which the
shift mapping on the zero section M coincides with f , dimM∗ = dimM + 1.
Both of the methods discussed for correlation of flows and diffeomorphisms
indicate that the qualitative theory of smooth flows (differential equations)
and the theory of discrete systems develop in parallel though can differ
in details.




