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The Newton polygon method

Almost all techniques for solving asymptotic systems of equations are explic-
itly or implicitly based on the Newton polygon method. In this section we
explain this technique in the elementary case of algebraic equations over grid-
based algebras C[[M]], where C is a constant field of characteristic zero
and M a totally ordered monomial group with Q-powers. In later chapters of
this book, the method will be generalized to linear and non-linear differential
equations.

In section 3.1, we first illustrate the Newton polygon method by some
examples. One important feature of our exposition is that we systemat-
ically work with “asymptotic algebraic equations”, which are polynomial
equations P (f) = 0 over C[[M]] together with asymptotic side-conditions,
like f ≺ v. Asymptotic algebraic equations admit natural invariants, like
the “Newton degree”, which are useful in the termination proof of the method.
Another important ingredient is the consideration of equations P ′(f) = 0,
P ′′(f) =0, etc. in the case when P (f)= 0 admits almost multiple roots.

In section 3.2, we prove a version of the implicit function theorem for
grid-based series. Our proof uses a syntactic technique which will be further
generalized in chapter 6. The implicit function theorem corresponds to the
resolution of asymptotic algebraic equations of Newton degree one. In sec-
tion 3.3, we show how to compute the solutions to an asymptotic algebraic
equation using the Newton polygon method. We also prove that C[[M]] is
algebraically closed or real closed, if this is the case for C.

The end of this chapter contains a digression on “Cartesian representa-
tions”, which allow for a finer calculus on grid-based series. This calculus is
based on the observation that any grid-based series can be represented by
a multivariate Laurent series. By restricting these Laurent series to be of a
special form, it is possible to define special types of grid-based series, such as
convergent, algebraic or effective grid-based series. In section 3.5, we will show
that the Newton polygon method can again be applied to these more special
types of grid-based series.



Cartesian representations are essential for the development of effective
asymptotics [vdH97], but they will only rarely occur later in this book (the
main exceptions being section 4.5 and some of the exercises). Therefore, sec-
tions 3.4 and 3.5 may be skipped in a first reading.

3.1 The method illustrated by examples

3.1.1 The Newton polygon and its slopes

Consider the equation

P (f)=
∑

i�0

Pi f
i = z3 f6 + z4 f5 + f4− 2 f3 + f2 + z

1− z2
f + z3

1− z
=0 (3.1)

and a Puiseux series f = c zµ + � ∈ C[c][[zQ]], where c � 0 is a formal
parameter. We call µ= val f the dominant exponent or valuation of f . Then

α =min
i

val(Pi z
iµ)=min {3, µ +1, 2 µ, 3 µ, 4 µ, 5 µ +4, 6 µ +3}

is the dominant exponent of P (f)∈C[c][[zQ]] and

NP ,zµ(c)
 P (f)zα = 0 (3.2)

is a non-trivial polynomial equation in c. We call NP ,zµ and (3.2) the Newton
polynomial resp. Newton equation associated to zµ.

Let us now replace c by a non-zero value in C, so that f = c zµ + � ∈
C[[zQ]]. If f is a solution to (3.1), then we have in particular NP ,zµ(c) = 0.
Consequently, NP ,zµ must contain at least two terms, so that α occurs at least
twice among the numbers 3, µ+1, 2 µ, 3 µ, 4 µ, 5 µ+4, 6 µ+3. It follows that

µ∈ {2, 1, 0,−3

2
}.

We call 2, 1, 0 and −3

2
the starting exponents for (3.1). The corresponding

monomials z2, z, 1 and z−3/2 are called starting monomials for (3.1).

The starting exponents may be determined graphically from the Newton
polygon associated to (3.1), which is defined to be the convex hull of all
points (i, ν) with ν � val Pi. Here points (i, ν) ∈N×Q really encode points
(f i, zν) ∈ fN × zQ (recall the explanations below figure 2.1). The Newton
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polygon associated to (3.1) is drawn at the left hand side of figure 3.1. The
diagonal slopes

(1, z3) → (f , z) (µ = 2)
(f , z) → (f2, 1) (µ = 1)

(f2, 1) → (f4, 1) (µ = 0)
(f4, 1) → (f6, z3) (µ =−3

2
)

correspond to the starting exponents for (3.1).
Given a starting exponent µ ∈ Q for (3.1), a non-zero solution c of the

corresponding Newton equation is called a starting coefficient and c zµ a
starting term. Below, we listed the starting coefficients c as a function of µ
in the case of equation (3.2):

µ NP ,µ c multiplicity
2 c + 1 −1 1
1 c2 + c −1 1
0 c4− 2 c3 + c2 1 2
3

2
c6 + c4 −i, i 1

Notice that the Newton polynomials can again be read off from the Newton
polygon. Indeed, when labeling each point (f i, zµ) by the coefficient of zµ

in Pi, the coefficients of NP ,zµ are precisely the coefficients on the edge with
slope µ.

Given a starting term c zµ ∈ C zQ, we can now consider the equation
P̃ (f̃ ) = 0 which is obtained from (3.1), by substituting c zµ + f̃ for f , and
where f̃ satisfies the asymptotic constraint f̃ ≺zµ. For instance, if czµ=1z0,
then we obtain:

P̃ (f̃ ) = z3 f̃ 6 +(6z3) f̃ 5 +(15 z3 + 5 z4 + 1) f̃ 4 +
(20 z3 + 10 z4 + 2) f̃ 3 + (15 z3 + 10 z4 +1) f̃ 2 +(
6 z3 +5 z4 + z

1− z2

)
f̃ + z4 + z3 + z4 + z3 + z

1− z2 =0 (f̃ ≺ 1) (3.3)

The Newton polygon associated to (3.3) is illustrated at the right hand side of
figure 3.1. It remains to be shown that we may solve (3.3) by using the same
method in a recursive way.

3.1.2 Equations with asymptotic constraints and refinements

First of all, since the new equation (3.3) comes with the asymptotic side-con-
dition f̃ ≺ 1, it is convenient to study polynomial equations with asymptotic
side-conditions

P (f) =0 (f ≺ zν) (3.4)
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Fig. 3.1. The left-hand side shows the Newton polygon associated to the
equation (3.1). The slopes of the four edges correspond to the starting expo-
nents 2, 1, 0 and −3

2
(from left to right). After the substitution

f→ 1+ f̃ (f̃ ≺ 1),

we obtain the equation (3.3), whose Newton polygon is shown at the right-
hand side. Each non-zero coefficient Pi,zα in the equation (3.1) for f induces
a “row” of (potentially) non-zero coefficients P̃ı̃ ,zα in the equation for f̃ , in
the direction of the arrows. The horizontal direction of the arrows corre-
sponds to the slope of the starting exponent 0. Moreover, the fact that 1 is
a starting term corresponds to the fact that the coefficient of the lowest left-
most induced point vanishes.

in a systematic way. The case of usual polynomial equations is recovered by
allowing ν = −∞. In order to solve (3.4), we now only keep those starting
monomials zµ for P (f)=0 which satisfy the asymptotic side condition zµ≺zν,
i.e. µ >ν.

The highest degree of NP ,zµ for a monomial zµ≺ zν is called the Newton
degree of (3.4). If d>0, then P is either divisible by f (and f =0 is a solution
to (3.4)), or (3.4) admits a starting monomial (and we can carry out one step
of the above resolution procedure). If d =0, then (3.4) admits no solutions.

Remark 3.1. Graphically speaking, the starting exponents for (3.4) correspond
to sufficiently steep slopes in the Newton polygon (see figure 3.2). Using
a substitution f = zν f̃ , the equation (3.4) may always be transformed into an
equation

P̃ (f̃ )= 0 (f̃ ≺ 1)

with a normalized asymptotic side-condition (the case ν = −∞ has to be
handled with some additional care). Such transformations, called multiplica-
tive conjugations , will be useful in chapter 8, and their effect on the Newton
polygon is illustrated in figure 3.2.
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Fig. 3.2. At the left-hand side, we have illustrated the Newton polygon for
the asymptotic equation P (f) = 0 (f ≺ z1/2). The dashed line corresponds
to the slope 1/2 and the edges of the Newton polygon with slope > 1/2 have
been highlighted. Notice that the Newton degree d = 2 corresponds to the
first coordinate of the rightmost point on an edge with slope > 1/2. At the
right-hand side, we have shown the “pivoting” effect around the origin of the
substitution f = z1/2 f̃ on the Newton polygon.

Given a starting term ϕ= τ = c zµ or a more general series ϕ= c zµ +� ∈
C[[zQ]], we next consider the transformation

f = ϕ + f̃ (f̃ ≺ zν̃), (3.5)

with zν̃ � zµ, which transforms (3.4) into a new asymptotic polynomial equa-
tion

P̃ (f̃ )= 0 (f̃ ≺ zν̃). (3.6)

Transformations like (3.5) are called refinements . A refinement is said to be
admissible, if the Newton degree of (3.6) does not vanish.

Now the process of computing starting terms and their corresponding
refinements is generally infinite and even transfinite. A priori , the process
therefore only generates an infinite number of necessary conditions for Puiseux
series f to satisfy (3.4). In order to really solve (3.4), we have to prove that,
after a finite number of steps of the Newton polygon method, and whatever
starting terms we chose (when we have a choice), we obtain an asymptotic
polynomial equation with a unique solution. In the next section, we will prove
an implicit function theorem which guarantees the existence of such a unique
solution for equations of Newton degree one. Such equations will be said to
be quasi-linear .

Returning to our example equation (3.1), it can be checked that each of
the refinements

f = −z2 + f̃ (f̃ ≺ z2);
f = −z + f̃ (f̃ ≺ z);
f = −i z−3/2 + f̃ (f̃ ≺ z−3/2);
f = i z−3/2 + f̃ (f̃ ≺ z−3/2)
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leads to a quasi-linear equation in f̃ . The case

f = 1+ f̃ (f̃ ≺ 1)

leads to an equation of Newton degree 2 (it will be shown later that the
Newton degree of (3.6) coincides with the multiplicity of c as a root of NP ,zµ).
Therefore, the last case necessitates one more step of the Newton polygon
method:

f̃ = −i z
√

+ f̃̃ ( f̃̃ ≺ z1/2);

f̃ = i z
√

+ f̃̃ ( f̃̃ ≺ z1/2).

For both refinements, it can be checked that the asymptotic equation in f̃̃
is quasi-linear. Hence, after a finite number of steps, we have obtained a
complete description of the set of solutions to (3.1). The first terms of these
solutions are as follows:

fI = −z2− 2 z3− 4 z4− 13 z5− 50 z6 + O(z7);
fII = −z +3 z2− 8 z3 + 46 z4− 200 z5 +O(z6);

fIII = 1− i z1/2 + 1

2
z + 5 i

8
z3/2− z2 + O(z5/2);

fIV = 1 + i z1/2 + 1

2
z − 5 i

8
z3/2− z2 + O(z5/2);

fV = −i z−3/2− 1− 1

2
z − i z3/2− i

2
z5/2 + O(z3);

fVI = i z−3/2− 1− 1

2
z + i z3/2 + i

2
z5/2 + O(z3).

3.1.3 Almost double roots

Usually the Newton degrees rapidly decreases during refinements and we are
quickly left with only quasi-linear equations. However, in the presence of
almost multiple roots, the Newton degree may remain bigger than two for
quite a while. Consider for instance the equation

(
f − 1

1− z

)2
= ε2 (3.7)

over C[[z; ε]], with z≺ 1 and ε≺ 1. This equation has Newton degree 2, and
after n steps of the ordinary Newton polygon method, we obtain the equation

(
f̃ − zn

1− z

)2

= ε2 (f̃ ≺ zn−1),

which still has Newton degree 2. In order to enforce termination, an additional
trick is applied: consider the first derivative

2 f − 2
1− z

=0
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of the equation (3.7) w.r.t. f . This derived equation is quasi-linear, so it
admits a unique solution

ϕ = 1
1− z

.

Now, instead of performing the usual refinement f = 1 + f̃ (f̃ ≺ 1) in the
original equation (3.7), we perform refinement

f = ϕ+ f̃ (f̃ ≺ 1).
This yields the equation

f̃ 2 = ε2 (f̃ ≺ 1).

Applying one more step of the Newton polygon method yields the admissible
refinements

f̃ = −ε + f̃̃ (f̃ ≺ ε);

f̃ = ε+ f̃̃ (f̃ ≺ ε).

In both cases, we obtain a quasi-linear equation in f̃̃ :

−2 ε f̃̃ + f̃̃
2

= 0 (f̃ ≺ ε);

2 ε f̃̃ + f̃̃
2

= 0 (f̃ ≺ ε).

In section 3.3.2, we will show that this trick applies in general, and that the
resulting method always yields a complete description of the solution set after
a finite number of steps.

Remark 3.2. The idea of using repeated differentiation in order to handle
almost multiple solutions is old [Smi75] and has been used in computer algebra
before [Chi86, Gri91]. Our contribution has been to incorporate it directly into
the Newton polygon process, as will be shown in more detail in section 3.3.2.

3.2 The implicit series theorem

In the previous section, we have stressed the particular importance of quasi-
linear equations when solving asymptotic polynomial equations. In this sec-
tion, we will prove an implicit series theorem for polynomial equations. In the
next section, we will apply this theorem to show that quasi-linear equations
admit unique solutions. The implicit series theorem admits several proofs (see
the exercises). The proof we present here uses a powerful syntactic technique,
which will be generalized in chapter 6.

Theorem 3.3. Let C be a ring and M a monomial monoid. Consider the
polynomial equation

Pn fn +� + P0 =0 (3.8)

with coefficients P0, � , Pn ∈ C[[M�]], such that P0,1 = 0 and P1,1 ∈ C∗.
Then (3.8) admits a unique solution in C[[M≺]].
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Proof. Since P1,1∈C∗, the series P1 is invertible in C[[M�]]. Modulo division
of (3.8) by P1, we may therefore assume without loss of generality that P1=1.
Setting Qi =−Pi for all i� 1, we may then rewrite (3.8) as

f = Q0 + Q2 f2 +� + Qn fn. (3.9)

Now consider the set T of trees with nodes of arities in {0, 2,� , n} and such
that each node of arity i is labeled by a monomial in suppQi. To each such tree

t = v

t1 � ti

∈T

we recursively associate a coefficient ct∈C and a monomial mt∈M by

ct = Qi,v ct1� cti
;

mt = v mt1� mti.

Now we observe that each of these monomials mt is infinitesimal, with

mt∈ (supp Q0) · (supp Q0∪ supp Q2∪� ∪ supp Qn)∗. (3.10)

Hence the mapping t� mt is strictly increasing, when T is given the embed-
dability ordering from section 1.4. From Kruskal’s theorem, it follows that
the family (ct mt)t∈T is well-based and even grid-based, because of (3.10). We
claim that f =

∑
t∈T ct mt is the unique solution to (3.9).

First of all, f is indeed a solution to (3.9), since

f =
∑

i∈{0,2,� ,n}

∑

v∈supp Qi

∑

t1,� ,ti∈T

c v

t1 � ti

m v

t1 � ti

=
∑

i∈{0,2,� ,n}

∑

v∈supp Qi

∑

t1,� ,ti∈T

(Qi,v v) (ct1 mt1)� (cti
mti

)

=
∑

i∈{0,2,� ,n}

(
∑

v∈supp Qi

Qi,v v

)


∏

j=1

i ∑

tj∈T

ctj mtj





=
∑

i∈{0,2,� ,n}
Qi f

i = Q0 + Q2 f2 +� + Qn fn.

In order to see that f is the unique solution to (3.8), consider the polynomial
R(δ) = P (f + δ). Since f ≺ 1, we have Ri = Pi + o(1) for all i, whence in
particular R1 = 1+ o(1). Furthermore, P (f)= 0 implies R0 = 0. Now assume
that g≺ 1 were another root of P . Then δ = g− f ≺ 1 would be a root of R,
so that

δ = (R1 +R2 δ +� + Rn−1 δn−1)−1 R(δ)= 0, (3.11)

since R1 + R2 δ +� +Rn−1 δn−1 = 1+ o(1) is invertible. �
Exercise 3.1. Generalize theorem 3.3 to the case when (3.8) is replaced by

P0 + P1 f + P2 f2 +� = 0,

where (Pi)i∈N ∈C[[M�]] is a grid-based family with P0,1 = 0 and P1,1∈C∗.
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Exercise 3.2. Give an alternative proof of theorem 3.3, using the fact that (3.9)
admits a unique power series solution in Z[[Q2 Q0, � , Qn Q0

n−1]] Q0, when
considered as an equation with coefficients in Z[[Q0, Q2,� , Qn]].

Exercise 3.3. Assuming that M is totally ordered, give yet another alternative
proof of theorem 3.3, by computing the terms of the unique solution by trans-
finite induction.

Exercise 3.4. Let C 〈〈z1, � , zn〉〉 denote the ring of non-commutative power
series in z1,� , zn over C. Consider the equation

f(g(z1,� , zn), z1,� , zn) = 0 (3.12)

with f ∈ C 〈〈y, z1, � , zn〉〉, f1 = 0 and invertible fy. Prove that (3.12) admits
a unique infinitesimal solution g ∈C 〈〈z1,� , zn〉〉.

3.3 The Newton polygon method

3.3.1 Newton polynomials and Newton degree

Let C be a constant field of characteristic zero and M a totally ordered
monomial group withQ-powers. Consider the asymptotic polynomial equation

Pn fn +� + P0 = 0 (f ≺ v), (3.13)

with coefficients in C[[M]] and v∈M. In order to capture ordinary polyno-
mial equations, we will also allow v = �M, where �M is a formal monomial
with �M�M. A starting monomial of f relative to (3.13) is a monomial m≺v

in M, such that there exist 0� i< j �n and n∈M with Pi m
i	Pj mj	n and

Pk mk � n for all other k. To such a starting monomial m we associate the
equation

NP ,m(c)= Pn,n/md cn +� + P0,n =0, (3.14)

and NP ,m is called the Newton polynomial associated to m. A starting term
of f relative to (3.13) is a term τ = c m, where m is a starting monomial
of f relative to (3.13) and c∈C� a non-zero root of NP ,m. In that case, the
multiplicity of τ is defined to be the multiplicity of c as a root of NP ,m. Notice
that there are only a finite number of starting terms relative to (3.13).

Proposition 3.4. Let f be a non-zero solution to (3.13). Then τf is a starting
term for (3.13). �

The Newton degree d of (3.13) is defined to be the largest degree of the
Newton polynomial associated to a monomial m ≺ v. In particular, if there
exists no starting monomial relative to (3.13), then the Newton degree equals
the valuation of P in f . If d=1, then we say that (3.13) is quasi-linear . The
previous proposition implies that (3.13) does not admit any solution, if d=0.
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Lemma 3.5. If (3.13) is quasi-linear, then it admits a unique solution
in C[[M]].

Proof. If P0 = 0, then our statement follows from proposition 3.4, since
there are no starting monomials. Otherwise, our statement follows from the-
orem 3.3, after substitution of f n for f in (3.13), where n is chosen �-maximal
such that dP1 � dPi n

i−1 for all i, and after division of (3.13) by dP1. �

3.3.2 Decrease of the Newton degree during refinements

A refinement is a change of variables together with the imposition of an
asymptotic constraint:

f = ϕ+ f̃ (f̃ ≺ ṽ), (3.15)

where ϕ≺v and ṽ�v. Such a refinement transforms (3.13) into an asymptotic
polynomial equation in f̃ :

P̃ n f̃ n +� + P̃ 0 =0 (f̃ ≺ ṽ), (3.16)

where

P̃ i =
1
i!

P (i)(ϕ)=
∑

k=i

n (
k
i

)
Pk ϕk−i, (3.17)

for each i. We say that the refinement (3.15) is admissible if the Newton degree
of (3.16) is strictly positive.

Lemma 3.6. Consider the refinement (3.15) with ṽ= dϕ. Then

a) The Newton degree of (3.16) coincides with the multiplicity of c as a root
of NP ,m. In particular, (3.15) is admissible if and only if cm is a starting
term for (3.13).

b) The Newton degree of (3.16) is bounded by the Newton degree of (3.13).

Proof. Let d be maximal such that Pd md � Pi mi for all i, and denote
n= d(Pd)md. Then d is bounded by the Newton degree of (3.13) and

P̃ i = 1
i!

∑

k=i

n (
k
i

)
Pk ϕk−i

= 1
i!

∑

k=i

n (
k
i

)
(Pk,nm−k + o(1)) n m−k (c + o(1))k−i mk−i

= 1
i!

NP ,m
(i) (c) n mi + o(nmi),

for all i. In particular, denoting the multiplicity of c as a root of NP ,m by d̃,
we have P̃ d̃	 n m−d̃. Moreover, for all i � d̃, we have P̃ i � n m−i. Hence, for
any i > d̃ and m̃≺ m, we have P̃ i m̃i ≺ P̃ d̃ m̃d̃. This shows that the Newton
degree of (3.16) is at most d̃.
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Let us now show that the Newton degree of (3.16) is precisely d̃. Choose
m̃≺m large enough, so that

m̃ �
dP̃ i(f̃ )

dP̃ d̃(f̃ )

d̃ − i

√

for all i < d̃. Then degNP̃ ,m̃ = d̃. �

If one step of the Newton polygon method does not suffice to decrease
the Newton degree, then two steps do, when applying the trick from the next
lemma:

Lemma 3.7. Let d be the Newton degree of (3.13). If f admits a unique
starting monomial m and NP ,m a unique root c of multiplicity d, then

a) The equation

P (d−1)(ϕ) =0 (ϕ≺ v) (3.18)

is quasi-linear and its unique solution satisfies ϕ= c m + o(m).
b) The Newton degree of any refinement

f̃ = ϕ̃ + f̃̃ ( f̃̃ ≺ ṽ̃)

relative to (3.16) with ṽ̃ = dϕ̃̃ is strictly inferior to d.

Proof. Notice first that NP ′,m=NP ,m
′ for all polynomials P and monomials m.

Consequently, (3.18) is quasi-linear and c is a single root of NP (d−1),m. This
proves (a).

As to (b), we first observe that P̃ d−1 = P (d−1)(ϕ) = 0. Given m̃ ≺ ṽ, it
follows that NP̃ ,m,d−1 = 0. In particular, there do not exist α � 0, β � 0
with NP̃ , m̃

(c̃) = α (c̃ − β)d. In other words, NP̃ , m̃
does not admit roots of

multiplicity d. We conclude by lemma 3.6. �

3.3.3 Resolution of asymptotic polynomial equations

Theorem 3.8. Let C be an algebraically closed field of characteristic zero
and M a totally ordered monomial group with Q-powers. Then C[[M]] is
algebraically closed.

Proof. Consider the following algorithm:

Algorithm polynomial_solve

Input: An asymptotic polynomial equation (3.13).
Output: The set of solutions to (3.13).

1. Compute the starting terms c1 m1,� , cν mν of f relative to (3.13).
2. If ν =1 and c1 is a root of multiplicity d of NP ,m1, then let ϕ be the unique

solution to (3.18). Refine (3.15) and apply polynomial_solve to (3.16).
Return the so obtained solutions to (3.13).
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3. For each 1 � i � ν, refine

f = ci mi + f̃ (f̃ ≺mi)

and apply polynomial_solve to the new equation in f̃ . Collect and return
the so obtained solutions to (3.13), together with 0, if P is divisible by f .

The correctness of polynomial_solve is clear; its termination follows from
lemmas 3.6(b) and 3.7(b). Since C is algebraically closed, all Newton poly-
nomials considered in the algorithm split over C. Hence, polynomial_solve
returns d solutions to (3.13) in C[[M]], when counting with multiplicities.
In particular, when taking v =�M�M, we obtain n solutions, so C[[M]] is
algebraically closed. �

Corollary 3.9. Let C be a real closed field and M a totally ordered monomial
group with Q-powers. Then C[[M]] is real closed.

Proof. By the theorem, a polynomial equation P (n) = 0 of degree n over
C[[M]] admits n solutions in C[i][[M]], when counting with multiplicities.
Moreover, each root ϕ∈C[i][[M]] \C[[M]] is imaginary, because

i = ϕ−Re ϕ

Im ϕ
∈C[[M]][ϕ]

for such ϕ. Therefore all real roots of P are in C[[M]]. �

Corollary 3.10. The field C[[zQ]] of Puiseux series over an algebraically
resp. real closed field C is algebraically resp. real closed. �

Exercise 3.5. Consider an asymptotic algebraic equation (3.13) of Newton
degree d. Let τ1,� , τk be the starting terms of (3.13), with multiplicities µ1,� ,
µk. Prove that

µ1 +� + µk � d.

Also show that µ1 +� + µk = d if C is algebraically closed.

Exercise 3.6.

a) Show that the computation of all solutions to (3.13) can be represented
by a finite tree, whose non-root nodes are labeled by refinements. Applied
to (3.1), this would yields the following tree:

f = f̃

f =−z2+f̃

f̃ ≺ z2

f =−z+f̃

f̃ ≺ z

f = 1+ f̃

f̃ ≺ 1

f = 1− i z1/2+f̃

f̃ ≺ z1/2

f = 1+ i z1/2+f̃

f̃ ≺ z1/2

f =−iz−3/2+ f̃

f̃ ≺ z−3/2

f = i z−3/2+f̃

f̃ ≺ z−3/2

68 3 The Newton polygon method



b) Show that the successors of each node may be ordered in a natural way, if C
is a real field, and if we restrict our attention to real algebraic solutions. Prove
that the natural ordering on the leaves, which is induced by this ordering,
corresponds to the usual ordering of the solutions.

Exercise 3.7.

a) Generalize the results of this chapter to asymptotic equations of infinite
degree in f , but of finite Newton degree.

b) Give an example of an asymptotic equation of infinite degree in f , with
infinitely many solutions.

Exercise 3.8. Consider an asymptotic polynomial equation

P (f) = 0 (f ≺ v)

of Newton degree d, with P ∈ C[[M]][F ] and v ∈ M. Consider the monomial
monoid U = M×FN with

m F i≺ 1⇔m vi≺ 1∨ (m vi =1∧ i > 0).

a) Show that there exists a unique invertible series u∈C[[U]] such that P̃ =uP
is a monoic polynomial in C[[M]][F ].

b) Show that deg P̃ = d.

3.4 Cartesian representations

In this section, we show that grid-based series may be represented by (finite
sums of) multivariate Laurent series in which we substitute an infinitesimal
monomial for each variable. Such representations are very useful for finer
computations with grid-based series.

3.4.1 Cartesian representations

Let C[[M]] be a grid-based algebra. A Cartesian representation for a series
f ∈ C[[M]] is a multivariate Laurent series f̌ ∈ C((ž1, � , žk)), such that
f = ϕ̂(f̌ ) for some morphism of monomial monoids ϕ: ž1

Z� žk
Z→M. Writing

f̌ = ǧ ž1
α1� žk

αk, with ǧ ∈C[[ ž1,� , žk]], we may also interpret f as the product
of a “series” ϕ̂(ǧ) in ϕ(ž1),� , ϕ(žk) and the monomial m = ϕ(ž1

α1� žk
αk).

More generally, a semi-Cartesian representation for f ∈ C[[M]] is an
expression of the form

f = ϕ̂(ǧ1) m1 +� + ϕ̂(ǧl) ml ,

where g1, � , gl ∈ C[[ž1, � , žk]], m1, � , ml ∈ M and ϕ: ž1
N � žk

N → M is a
morphism of monomial monoids.

Proposition 3.11.
a) Any grid-based series f ∈C[[M]] admits a semi-Cartesian representation.
b) If M is a monomial group, which is generated by its infinitesimal elements,

then each grid-based series f ∈C[[M]] admits a Cartesian representation.
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Proof.

a) Let m1,� , mk ∈M≺ and n1,� , nl∈M be such that

supp f ⊆{m1,� , mk}∗ {n1,� , nl}.
For each v∈ supp f , let

nv = card {(α1,� , αk, i)∈Nk×{1,� , l}: v = m1
α1� mk

αk ni}.
Let

ǧi =
∑

α1,� ,αk∈Nk

fm1
α1� mk

αkni

nm1
α1� mk

αkni

ž1
α1� žk

αk

for all 1 � i� l and let ϕ: ž1
N� žk

N→M, ž1
α1� žk

αk� m1
α1� mk

αk. Then

f = ϕ̂(ǧ1) n1 +� + ϕ̂(ǧl) nl.

b) For certain mk+1,� , mp∈M≺ and βi,j ∈Z, we may write

ni = mk+1
βi,k+1� mp

βi,p,

for all 1 � i� l. Let ψ: ž1
Z� žp

Z→M, ž1
α1� žp

αp� m1
α1� mp

αp and

f̌ =
∑

i=1

l

ǧi žk+1
βi,k+1� žp

βi,p.

Then f = ψ̂(f̌ ). �

Cartesian or semi-Cartesian representations f1 = ϕ̂1(f̌1) and f2 = ϕ̂2(f̌2) are
said to be compatible, if f̌1 and f̌2 belong to the same algebra C((ž1,� , žk))
of Laurent series, and if ϕ1 = ϕ2.

Proposition 3.12.

a) Any f1,� , fn∈C[[M]] admit compatible semi-Cartesian representations.
b) If M is a monomial group, which is generated by its infinitesimal elements,

then any f1,� , fn∈C[[M]] admit compatible Cartesian representations.

Proof. By the previous proposition, f1,� , fn admit semi-Cartesian represen-
tations fi = ϕ̂i(f̌i), where f̌i ∈ C((ži,1, � , ži,ki

)) and ϕi: ži,1
N � ži,ki

N →M for
each i. Now consider

ψ:
∏

i=1

n ∏

j=1

ki

ži,j
N � M

∏

i=1

n ∏

j=1

ki

ži,j
αi,j �

∏

i=1

n

ϕ̂i

(
∏

j=1

ki

ži,j
αi,j

)

.

Then fi = ψ̂(F̌i) for each i, where F̌i is the image of f̌i under the natural
inclusion of C((ži,1, � , ži,ki

)) into C((ž1,1, � , ž1,k1, � , žn,1, � , žn,kn
)). This

proves (a); part (b) is proved in a similar way. �
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3.4.2 Inserting new infinitesimal monomials

In proposition 3.12 we drastically increased the size of the Cartesian basis in
order to obtain compatible Cartesian representations. The following lemma
is often useful, if one wants to keep this size as low as possible.

Lemma 3.13. Let z1, � , zk, m1, � , ml be infinitesimal elements of a totally
ordered monomial group M with Q-powers, such that m1, � , ml ∈ z1

Z � zk
Z.

Then there exist infinitesimal z1
′ , � , zk

′ ∈ z1
Q � zk

Q with z1, � , zk, m1, � ,

ml∈ (z1′ )N� (zk
′ )N.

Proof. It suffices to prove the lemma for l = 1; the general case follows by
induction over l. The case l = 1 is proved by induction over k. For k = 0,
there is nothing to prove. So assume that k � 1 and let m1 = z1

α1 � zk
αk with

α1,� , αk∈Z. Without loss of generality, we may assume that αk >0, modulo
a permutation of variables. Putting n = z1

α1 � zk−1
αk−1, we now distinguish the

following three cases:

1. If n ≺ 1, then there exist infinitesimal z1
′ � zk−1

′ ∈ z1
Z � zk−1

Z , such that
z1,� , zk−1,n∈(z1′ )N� (zk−1

′ )N, by the induction hypothesis. Taking zk
′ = zk,

we now have zk, m1 = n zk
αk∈ (z1′ )N� (zk

′ )N, since αk > 0.
2. If n = 1, then m1 = zk

αk, and we may take z1
′ = z1,� , zk

′ = zk.
3. If n � 1, then there exists infinitesimal z1

′ � zk−1
′ ∈ z1

Z � zk−1
Z , such that

z1
1/αk,� , zk−1

1/αk, n−1/αk∈ (z1′ )N� (zk−1
′ )N. Taking zk

′ = z1
α1/αk� zk−1

αk−1/αk
zk,

we again have zk = zk
′ n−1/αk, m1 = (zk

′ )αk∈ (z1′ )N� (zk
′ )N . �

When doing computations on grid-based series in C[[M]], one often works
with respect to a Cartesian basis Z=(z1,� , zk) of infinitesimal elements in M.
Each time one encounters a series f ∈ C[[M]] which cannot be represented
by a series in C((ž1,� , žk)), one has to replace Z by a wider Cartesian basis
Z′ = (z1′ , � , zk ′

′ ) with z1, � , zk ∈ (z1′ )N � (zk ′
′ )N. The corresponding mapping

C((ž1,� , žk))→C((ž1
′ ,� , žk ′

′ )) is called a widening . Lemma 3.13 enables us
to keep the Cartesian basis reasonably small during the computation.

3.5 Local communities

Let C be a ring and M a monomial group which is generated by its infinites-
imal elements. Given a set Ak ⊆ C[[z1, � , zk]] for each k ∈N, we denote by
C[[M]]A the set of all grid-based series f ∈C[[M]], which admit a Cartesian
representation f̌ ∈ Ak z1

Z � zk
Z for some k ∈N. In this section, we will show

that if the Ak satisfy appropriate conditions, then many types of computations
which can be carried out in C[[M]] can also be carried out in C[[M]]A.
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3.5.1 Cartesian communities

Let C be a ring. A sequence (Ak)k∈N with Ak ⊆ C[[z1, � , zk]] is said to be
a Cartesian community over C, if the following conditions are satisfied:
CC1. z1∈A1.
CC2. Ak is a C-algebra for each k ∈N.
CC3. The Ak are stable under strong monomial morphisms.
In CC3, a strong monomial morphism is strong C-algebra morphism which
maps monomials to monomials. In our case, a monomial preserving strong
morphism from C[[z1,� , zk]] into C[[z1,� , zk ′]] is always of the form

σ: C[[z1,� , zk]] � C[[z1,� , zk ′]];
f(z1,� , zk) � f(z1

α1,1� zk ′
α1,k′

,� , z1
αk,1� zk ′

αk,k′),

where αi,j ∈ N and
∑

j αi,j � 0 for all i. In particular, CA3 implies that
the Ak are stable under widenings.

Proposition 3.14. Let (Ak)k∈N be a Cartesian community over C and let M

be a monomial group. Then C[[M]]A is a C-algebra.

Proof. We clearly have C ⊆ C[[M]]A. Let f̂ , ĝ ∈ C[[M]]A. Mimicking the
proof of proposition 3.12, we observe that f and g admit compatible Cartesian
representations f , g ∈ Ak z1

Z � zk
Z. Then f + g, f − g and f g are Cartesian

representations of f̂ + ĝ , f̂ − ĝ resp. f̂ ĝ . �

3.5.2 Local communities

A local community is a Cartesian community (Ak)k∈N, which satisfies the
following additional conditions:
LC1. For each f ∈Ak with [zk

0]f = 0, we have f/zk ∈Ak.
LC2. Given g ∈Ak and f1,� , fk∈Al

≺, we have g ◦ (f1,� , fk)∈Al.
LC3. Given f ∈ Ak+1 with [z10 � zk+1

0 ] f = 0 and [z10 � zk
0 zk+1

1 ]f ∈ C∗, the
unique series ϕ∈C[[z1,� , zk]] with f ◦ (z1,� , zk, ϕ)= 0 belongs to Ak.

In LC1 and LC3, the notation [z1
α1 � zp

αp] f stands for the coefficient of
z1
α1� zp

αp in f . The condition LC3 should be considered as an implicit function
theorem for the local community. Notice that Ak is stable under ∂/∂ zi for
all {i∈ 1,� , k}, since

∂f

∂ zi
= f ◦ (z1,� , zi + zk+1,� , zk)− f

zk+1
◦ (z1,� , zk, 0). (3.19)

Remark 3.15. In [vdH97], the conditions LC2 and LC3 were replaced by
a single, equivalent condition: given f ∈ Ak+1 as in LC3, we required that
im ϕ ⊆ Ak, for the unique strong C-algebra morphism ϕ: C[[z1, � , zk+1]] →
C[[z1, � , zk]], such that ϕ|C[[z1,� ,zk]] = IdC[[z1,� ,zk]] and ϕ(f) = 0. We also
explicitly requested the stability under differentiation, although (3.19) shows
that this is superfluous.
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Example 3.16. Let C be a subfield of C and let Ak =C{{z1,� , zk}} be the set
of convergent power series in k variables over C, for each k∈N. Then the Ak

form a local community. If M is a monomial group, then C{{M}}= C[[M]]A

will also be called the set of convergent grid-based series in M over C.

Example 3.17. For each k∈N, let Ak be the set of power series in C[[z1,� , zk]],
which satisfy an algebraic equation over C[z1,� , zk]. Then the Ak form a local
community.

3.5.3 Faithful Cartesian representations

In this and the next section, A=(Ak)k∈N is a local community. A Cartesian
representation f ∈ C((z1, � , zk)) is said to be faithful , if for each dominant
monomial d of f , there exists a dominant monomial d̂

′ of f̂ , with d̂� d̂
′.

Proposition 3.18. Let (Ai)i∈N be a local community and f ∈Ak. Then

a) For each 1 � i� k and α∈Z, we have [zk
α]f ∈Ak−1.

b) For each initial segment I⊆ z1
Z� zk

Z, we have

fI =
∑

m∈I

fm m∈Ak.

Proof. For each α, let fα=[zk
α]f . We will prove (a) by a weak induction over α.

If α = 0, then [zk
0]f = f ◦ (z1,� , zk−1, 0)∈Ak−1. If α > 0, then

[zk
α]f = f − ([zk

0]f) zk
0 −� − ([zk

α−1]f) zk
α−1

zk
α .

By the weak induction hypothesis and LC1, we thus have [zk
α]f ∈Ak.

In order to prove (b), let D={d1,� ,dl} be the finite anti-chain of maximal
elements of I, so that I= in(d1,� ,dl). Let n be the number of variables which
effectively occur in D, i.e. the number of i∈{1,� , k}, such that dj = z1

α1� zk
αk

with αi� 0 for some j. We prove (b) by weak induction over n. If n=0, then
either l = 0 and fI = 0, or l = 1, d1 = {1} and fI = f .

Assume now that n>0 and order the variables z1,� , zk in such a way that
zk effectively occurs in one of the di. For each α∈N, let

Iα = {m∈ z1
N� zk−1

N : m zk
α∈ I};

Dα = {m∈ z1
N� zk−1

N : m zk
α∈D}.

We observe that

Iα = in(D0�� �Dα)∩ z1
N� zk−1

N .

In particular, if ν is maximal with Dν � ∅, then Iα = Iν for all α � ν and

I = I0 � � � Iν−1 zk
ν−1 � Iν zk

ν+N,
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so that

fI = f0,I0 zk
0 +� + fν−1,Iν−1 zk

ν−1 +
(

f − f0 zk
0 −� − fk−1 zk

ν−1

zk
ν

)

Iνzk
N

zk
ν.

Moreover, for each α, at most n − 1 variables effectively occur in the set
D0 � � � Dα of dominant monomials of Iα. Therefore fI ∈ Ak, by the
induction hypothesis. �

Proposition 3.19. Given a Cartesian representation

f ∈Ak z1
Z� zk

Z

of a series f̂ ∈C[[M]], its truncation

f̃ = f{m∈z1
N� zk

N :∃n̂∈supp f̂ , m̂�n̂}∈Ak z1
Z� zk

Z

is a faithful Cartesian representation of the same series f̂. �

3.5.4 Applications of faithful Cartesian representations

Proposition 3.20. Let f̂ ∈C[[M]]A be series, which is either

a) infinitesimal,
b) bounded, or
c) regular.

Then f̂ admits a Cartesian representation in Ak z1
Z� zk

Z for some k∈N, which
is also infinitesimal, bounded resp. regular.

Proof. Assume that f̂ is infinitesimal and let f ∈ Ak z1
Z � zk

Z be a faithful
Cartesian representation of f̂ , with dominant monomials d1, � , dl ≺ 1. For
each i∈ {1,� , l}, let

fi = fin(d1,� ,di)− fin(d1,� ,di−1)∈Ak z1
Z� zk

Z,

with dfi = di. Then f = f1 +� + fl and

f̃ =
∑

i=1

l

fi
d1

di
zk+i

is an infinitesimal Cartesian representation of f̂ in Ak+l, when setting ẑk+i=
d̂i/d̂1 for each i∈ {1,� , l}. This proves (a).

If f̂ is bounded, then let g ∈ Ak be an infinitesimal Cartesian represen-
tation of ĝ = f̂ − f̂{1}. Now f = g + f̂{1} z1

0� zk
0 ∈Ak is a bounded Cartesian

representation of f̂ . This proves (b).
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Assume finally that f̂ � 0 is regular, with dominant monomial d̂. Let g∈Ak

be a bounded Cartesian representation of ĝ = f̂ /d̂. Since ĝ0� 0, the series g

is necessarily regular. Now take a Cartesian monomial d which represents d̂

(e.g. among the dominant monomials of a faithful Cartesian representation
of d̂). Then f = g d is a regular Cartesian representation of f̂ . �

3.5.5 The Newton polygon method revisited

Theorem 3.21. Let (Ak)k∈N be a local community over a ring C and let M

be a monomial monoid. Consider the polynomial equation

P̂n f̂
n
+� + P̂0 = 0 (3.20)

with coefficients P̂0, � , P̂n ∈ C[[M�]]A, such that (P̂0)1 = 0 and (P̂1)1 ∈ C∗.
Then (3.20) admits a unique solution in C[[M≺]]A.

Proof. By proposition 3.20, there exist bounded Cartesian representations
P0,� , Pn∈Ak for certain ẑ1,� , ẑk ∈M. Now consider the series

P = P0 + P1 zk+1 +� + Pn zk+1
n ∈Ak+1.

We have [z10� zk+1
0 ]P =0 and [z10� zk

0 zk+1
1 ]P ∈C∗, so there exists a f ∈Ak with

P ◦ (z1,� , zk, f)= P0 + P1 f +� + Pn fn = 0,

by LC3. We conclude that f̂ ∈ C[[M]]A satisfies P̂n f̂
n

+ � + P̂0 = 0. The
uniqueness of f̂ follows from theorem 3.3. �

Theorem 3.22. Let (Ak)k∈N be a local community over a (real) algebraically
closed field C and M a totally ordered monomial group with Q-powers. Then
C[[M]]A is a (real) algebraically closed field.

Proof. The proof is analogous to the proof of theorem 3.8. In the present case,
theorem 3.21 ensures that ϕ∈C[[M]]A in step 2 of polynomial_solve. �

Exercise 3.9. Let C be a ring, M a monomial monoid and (Ak)k∈N a local
community. We define C[[M]]A to be the set of series f in C[[M]], which admit
a semi-Cartesian representation

f = ϕ̂(f̌1) m1 +� + ϕ̂(f̌p)mp

with f̌1,� , f̌p∈Ak for some k ∈N, ϕ: ž1
N� žk

N→M and m1,� , mp∈M. Which
results from this section generalize to this more general setting?

Exercise 3.10. Let C be a field. A series f in C[[z1, � , zk]] is said to be dif-
ferentially algebraic, if the field generated by its partial derivatives ∂i1+� +ik f/
(∂ z1)i1� (∂ zk)ik has finite transcendence degree over C. Prove that the collection
of such series forms a local community over C.
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Exercise 3.11. Assume that C is an effective field, i.e. all field operations can
be performed by algorithm. In what follows, we will measure the complexity of
algorithms in terms of the number of such field operations.

a) A series f ∈C[[z1,� , zk]] is said to be effective , if there is an algorithm which
takes α1, � , αk ∈ N on input, and which outputs fα1,� ,αk

. Show that the
collection of effective series form a local community.

b) An effective series f ∈ C[[z1, � , zk]] is said to be of polynomial time com-
plexity , if there is an algorithm, which takes n ∈ N on input and which
computes fα1,� ,αn

for all α1,� , αn with α1 +� + αn � k in time
(

n + k
n

)
O(1).

Show that the collection of such series forms a local community. What about
even better time complexities?

Exercise 3.12. Let (Ak)k∈N be a local community and let

f ∈Ak z1
Z � zk

Z

be a Cartesian representation of an infinitesimal, bounded or regular grid-based
series f̂ in C[[M]]. Show that, modulo widenings, there exists an infinitesimal,
bounded resp. regular Cartesian representation of f̂ , with respect to a Cartesian
basis with at most k elements.

Exercise 3.13. Let (Ak)k∈N be a local community over a field C.

a) If f ∈C[[M]]A,≺ and g ∈A1, then show that g ◦ f ∈C[[M]]A.
b) If M is totally ordered, then prove that C[[M]]A is a field.

Exercise 3.14. Let (Ak)k∈N be a local community over a field C and let M

be a totally ordered monomial group. Prove that f	, f�, f≺∈C[[M]]A for any
f ∈C[[M]]A, and

C[[M]]A = C[[M]]A,	⊕C ⊕C[[M]]A,≺.

Exercise 3.15. Let (Ak)k∈N be a Cartesian community. Given monomial
groups M and N, let A (C[[M]], C[[N]]) be the set of strong C-algebra
morphisms from C[[M]] into C[[N]] and A (C[[M]], C[[N]])A the set of
ϕ∈A (C[[M]], C[[N]]), such that ϕ(m)∈C[[N]]A for all m∈M.

a) Given ϕ ∈ A (C[[M]], C[[N]])A and ψ ∈ A (C[[N]], C[[V]])A, where V is
a third monomial group, prove that ψ ◦ ϕ∈A (C[[M]], C[[V]])A.

b) Given ϕ ∈ A (C[[M]], C[[N]])A and ψ ∈ A (C[[N]], C[[M]]) such that
ψ ◦ ϕ = IdC[[M]], prove that ψ ∈A (C[[N]], C[[M]])A.

Exercise 3.16. Let C be a subfield of C and let M and N be monomial groups
with M ⊆ N. Prove that C{{M}} = C[[M]] ∩ C{{N}}. Does this property
generalize to other local communities?

Exercise 3.17. Let (Ak)k∈N be the local community from example 3.17 and
let M be a totally ordered monomial group. Prove that C[[M]]A is isomorphic
to the algebraic closure of C[M].

Exercise 3.18. Does theorem 3.22 still hold if we remove condition LC2 in the
definition of local communities?
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Exercise 3.19. Consider the resolution of P (f)=0 (f ≺v), with P ∈C[[M]]A

and v∈M.

a) Given a starting term c m of multiplicity d, let n be minimal for � such
that Pi m

i � n for all i. Show that there exist Cartesian coordinates z1,� , zk

with m, n∈ z1
Z� zk

Z, in which Pi mi/n admits a bounded Cartesian represen-
tations ui for all 0 � i � n =degP .

b) Consider a bounded Cartesian representation ϕ ∈ Ak with ϕ ∼ c and let
ũi =
∑

k=i

n (
k
i

)
uk ϕk−i. Given w∈ z1

Q�
� zk

Q�
, let

Qw =
∑

i=0

n

ũi,wd − i F i.

Show that Q=
∑

w
Qw w is a series in C[F ][[z1

1/d!,� , zk
1/d!]]A.

c) For each µ ∈ {0, � , d}, let Iµ be initial segment generated by the w such
that val Qw < µ, and Fµ its complement. We say that ϕFµ

is the part of
multiplicity �µ of ϕ as a zero of u0 +� + un F n. Show that ϕFµ

∈Ak can
be determined effectively for all µ.

d) In polynomial_solve, show that refinements of the type

f = ϕ̂ m + f̃ (f̃ ≺m),

where ϕ ∈ Ck is the unique solution to ∂d−1(u0 + � + un F n)/∂F d−1, may
be replaced by refinements

f = ϕFd − 1 m + f̃ (f̃ ≺m).
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