
3

The Lace Expansion for the Self-Avoiding Walk

The lace expansion was derived by Brydges and Spencer in [45]. Their deriva-
tion, which is given below in Sects. 3.2–3.3, involves an expansion and re-
summation procedure closely related to the cluster expansions of statistical
mechanics [40]. It was later noted that the lace expansion can also be seen as
resulting from repeated application of the inclusion-exclusion relation [186].
For a more combinatorial description of the lace expansion, see [211]. We first
discuss the inclusion-exclusion approach.

3.1 Inclusion-Exclusion

The inclusion-exclusion approach to the lace expansion is closely related to
the method of proof of Theorem 2.3. In that proof, a single inclusion-exclusion
was used to obtain upper and lower bounds. Here, we will derive an identity
by using repeated inclusion-exclusion.

For simplicity, we restrict attention to the strictly self-avoiding walk (λ =
1). We consider a walk taking steps in a finite set Ω, so that ω(i+1)−ω(i) ∈ Ω
for each i, but there is no need here for a symmetry assumption and Ω is an
arbitrary finite set. As in (1.10), we write

D(x) =
1
|Ω|I[x ∈ Ω]. (3.1)

We rewrite cn(x) using the inclusion-exclusion relation. Namely, we first
count all walks from 0 to x which are self-avoiding after the first step, and then
subtract the contribution due to those which are not self-avoiding from the
beginning, i.e., walks that return to the origin. Since c1(0, y) = 1 for y ∈ Ω,
this gives

cn(x) = (c1 ∗ cn−1)(x) −
∑

y∈Ω

∑

ω(1)∈Sn−1(y,x)

I[0 ∈ ω(1)]. (3.2)
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Comparing with (1.5), it is the second term on the right hand side that makes
the above equation interesting.

The inclusion-exclusion relation can now be applied to the last term of
(3.2), as follows. Let s be the first (and only) time that ω(1)(s) = 0. Then for
y ∈ Ω,

∑

ω(1)∈Sn−1(y,x)

I[0 ∈ ω(1)]

=
n−1∑

s=1

∑

ω(2) ∈ Ss(y, 0)

ω(3) ∈ Sn−1−s(0, x)

I[ω(2) ∩ ω(3) = {0}] (3.3)

=
n−1∑

s=1

[
cs(y, 0)cn−1−s(0, x) −

∑

ω(2) ∈ Ss(y, 0)

ω(3) ∈ Sn−1−s(0, x)

I[ω(2) ∩ ω(3) �= {0}]
]
.

We can interpret cs(y, 0) as the number of (s + 1)-step walks which step from
the origin directly to y, then return to the origin in s steps, and which have
distinct vertices apart from the fact that they return to their starting point.
Let Us denote the set of all s-step self-avoiding loops at the origin (s-step
walks which begin and end at the origin but which otherwise have distinct
vertices), and let us be the cardinality of Us. Then

∑

y∈Ω

∑

ω(1)∈Sn−1(y,x)

I[0 ∈ ω(1)]

=
n∑

s=2

uscn−s(x) −
n∑

s=2

∑

ω(2) ∈ Us

ω(3) ∈ Sn−s(0, x)

I[ω(2) ∩ ω(3) �= {0}]. (3.4)

Continuing in this fashion, in the last term on the right hand side of the
above equation, let t ≥ 1 be the first time along ω(3) that ω(3)(t) ∈ ω(2), and
let v = ω(3)(t). Then the inclusion-exclusion relation can be applied again
to remove the avoidance between the portions of ω(3) before and after t,
and correct for this removal by the subtraction of a term involving a further
intersection. Repetition of this procedure leads to the convolution equation

cn(0, x) = (|Ω|D ∗ cn−1)(x) +
n∑

m=2

(πm ∗ cn−m)(x), (3.5)

where we have used c1(x) = |Ω|D(x), and where πm is given by

πm(v) =
∞∑

N=1

(−1)Nπ(N)
m (v), (3.6)

with the terms on the right hand side defined as follows. The N = 1 term is
given by
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π
(1)
m (v) = δ0,vum = δ0,v ,0

where the diagram represents um. The N = 2 term is

π(2)
m (v) =

∑

m1, m2, m3 :
m1 + m2 + m3 = m

∑

ω1∈Sm1 (0,v)

∑

ω2∈Sm2 (v,0)

∑

ω3∈Sm3 (0,v)

I(ω1, ω2, ω3),

where I(ω1, ω2, ω3) is equal to 1 if the ωi are pairwise mutually avoiding apart
from their common endpoints, and otherwise equals 0. Diagrammatically this
can be represented by

π
(2)
m (v) = ,0 v

where each line represents a sum over self-avoiding walks between the end-
points of the line, with mutual avoidance between the three pairs of lines in
the diagram. Similarly

π
(3)
m (v) = ,

0 v

where now there is mutual avoidance between some but not all pairs of lines in
the diagram; a precise description requires some care. The unlabelled vertex is
summed over Z

d. A slashed diagram line is used to indicate a walk which may
have zero steps, i.e., be a single site, whereas lines without a slash correspond
to walks of at least one step. All the higher order terms can be expressed
as diagrams in this way, and with some care it is possible to keep track of
the pattern of mutual avoidance between subwalks (individual lines in the
diagram) which emerges. The algebraic derivation of the expansion, described
next, keeps track of this mutual avoidance automatically. Equations (3.5)–
(3.6) constitute the lace expansion. No laces have appeared yet, but they will
come later.

Exercise 3.1. Determine a precise expression for π
(3)
m (v). What is the picture

for π
(4)
m (v)?

3.2 Expansion

In this and the following section, we give the original derivation of the lace
expansion due to Brydges and Spencer [45]. The expansion applies in a more
general context than we have considered so far, and we will give a quite general
derivation.
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Consider walks taking steps in a finite subset Ω ⊂ Z
d. Suppose that to

each walk ω = (ω(0), ω(1), . . . , ω(n)) and each pair s, t ∈ {0, 1, . . . , n}, we are
given a complex number Ust(ω) (for example, (2.1)).

Definition 3.2. (i) Given an interval I = [a, b] of positive integers, we refer
to a pair {s, t} (s < t) of elements of I as an edge. To abbreviate the notation,
we usually write st for {s, t}. A set of edges is called a graph. The set of all
graphs on [a, b] is denoted B[a, b].
(ii) A graph Γ is said to be connected if both a and b are endpoints of edges
in Γ , and if in addition, for any c ∈ (a, b), there are s, t ∈ [a, b] such that s <
c < t and st ∈ Γ . In other words, Γ is connected if, as intervals, ∪st∈Γ (s, t) =
(a, b). The set of all connected graphs on [a, b] is denoted G[a, b].

An apology is required for graph theorists. The above notion of connectiv-
ity is not the usual notion of path-connectivity in graph theory. Instead, the
above notion relies heavily on the fact that the vertices of the graph are lin-
early ordered in time, and may be justified by the fact that connected graphs
are those for which ∪st∈Γ (s, t) is equal to the connected interval (a, b). In any
event, it is decidedly not path-connectivity. There are connected graphs that
are not path-connected, and vice versa. It is convenient to have in mind the
representation of graphs illustrated in Fig. 3.1.

We set K[a, a] = 1, and for a < b we define

K[a, b] =
∏

a≤s<t≤b

(1 + Ust), (3.7)

where the dependence on ω is left implicit. By expanding the product in (3.7),
we obtain

K[a, b] =
∑

Γ∈B[a,b]

∏

st∈Γ

Ust. (3.8)

a b

a b

a b

a b

(a)

(b)

Fig. 3.1. Graphs in which an edge st is represented by an arc joining s and t. The
graphs in (a) are not connected, whereas the graphs in (b) are connected.
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Note that B[a, b] contains the graph with no edges, so our convention that
K[a, a] = 1 is consistent with the standard convention that an empty product
is equal to 1.

Exercise 3.3. Prove (3.8).

We set J [a, a] = 1, and for a < b we define a quantity analogous to K[a, b],
but with the sum over graphs restricted to connected graphs:

J [a, b] =
∑

Γ∈G[a,b]

∏

st∈Γ

Ust. (3.9)

Lemma 3.4. For any a < b,

K[a, b] = K[a + 1, b] +
b∑

j=a+1

J [a, j]K[j, b]. (3.10)

Proof. The contribution to the sum on the right hand side of (3.8) due to all
graphs Γ for which a is not in an edge is exactly K[a + 1, b]. To resum the
contribution due to the remaining graphs, we proceed as follows. If Γ does
contain an edge containing a, let j(Γ ) be the largest value of j such that the
set of edges in Γ with both ends in the interval [a, j] forms a connected graph
on [a, j]. Then the sum over Γ factorizes into sums over connected graphs on
[a, j] and arbitrary graphs on [j, b], and resummation of the latter gives

K[a, b] = K[a + 1, b] +
b∑

j=a+1

∑

Γ∈G[a,j]

∏

st∈Γ

Ust K[j, b], (3.11)

which with (3.9) proves the lemma.
Let

cn(x) =
∑

ω∈Wn(x)

K[0, n] =
∑

ω∈Wn(x)

∏

0≤s<t≤n

(1 + Ust(ω)), (3.12)

a generalization of (2.2). It is simplest if we assume that Ust(ω) is invariant
under spatial translation of ω, and under an equal shift of each of s, t and the
time parameter of ω, and we make this assumption. Note that (2.1) obeys the
assumption. We substitute (3.10) into (3.12). A key point is that in the last
term of (3.10) the portion of the walk from time j onwards is independent of
the portion up to time j. Let

πm(x) =
∑

ω∈Wm(0,x)

J [0,m]. (3.13)

Then for n ≥ 1, we obtain

cn(x) = (|Ω|D ∗ cn−1)(x) +
n∑

m=1

(πm ∗ cn−m)(x), (3.14)
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as in (3.5).1 To obtain a more useful representation of πm than (3.13), we
perform a resummation of (3.13) using the notion of laces.

3.3 Laces and Resummation

Definition 3.5. A lace is a minimally connected graph, i.e., a connected graph
for which the removal of any edge would result in a disconnected graph. The
set of laces on [a, b] is denoted by L[a, b], and the set of laces on [a, b] which
consist of exactly N edges is denoted L(N)[a, b].

We write L ∈ L(N)[a, b] as L = {s1t1, . . . , sN tN}, with sl < tl for each l.
The fact that L is a lace is equivalent to a certain ordering of the sl and tl.
For N = 1, we simply have a = s1 < t1 = b. For N ≥ 2, L ∈ L(N)[a, b] if and
only if

a = s1 < s2, sl+1 < tl ≤ sl+2 (l = 1, . . . , N − 2), sN < tN−1 < tN = b
(3.15)

(for N = 2 the vacuous middle inequalities play no role); see Fig. 3.2. Thus L
divides [a, b] into 2N − 1 subintervals:

[s1, s2], [s2, t1], [t1, s3], [s3, t2], . . . , [sN , tN−1], [tN−1, tN ]. (3.16)

Of these, intervals number 3, 5, . . . , (2N − 3) can have zero length for N ≥ 3,
whereas all others have length at least 1.

Exercise 3.6. Prove that (3.15) characterizes laces.

Given a connected graph Γ ∈ G[a, b], the following prescription associates
to Γ a unique lace LΓ ⊂ Γ : The lace LΓ consists of edges s1t1, s2t2, . . ., with
t1, s1, t2, s2, . . . determined, in that order, by

t1 = max{t : at ∈ Γ}, s1 = a,

ti+1 = max{t : ∃s < ti such that st ∈ Γ}, si+1 = min{s : sti+1 ∈ Γ}.
The procedure terminates when ti+1 = b. Given a lace L, the set of all edges
st �∈L such that LL∪{st} = L is denoted C(L). Edges in C(L) are said to be
compatible with L. Fig. 3.3 illustrates these definitions.

Exercise 3.7. Show that LΓ = L if and only if L is a lace, L ⊂ Γ , and
Γ \ L ⊂ C(L).

1 For m = 1, there is a single connected graph {01}, and when Ust is given by
(2.1) we have π1(x) =

∑
ω∈W1(0,x)

U01(ω) = 0, since it is always the case that

ω(0) �= ω(1). Thus the sum over m in (3.14) can be started at m = 2 in this case.



3.3 Laces and Resummation 25

s1 t1

s1 s2 t1 t2

s1 s2 t1 s3 t2 t3

s1 s2 t1 s3 t2 s4 t3 t4

Fig. 3.2. Laces in L(N)[a, b] for N = 1, 2, 3, 4, with s1 = a and tN = b.

a b

a b

a b

a b

(a)

(b)

(c)

Γ

LΓ

L

L

Fig. 3.3. (a) A connected graph Γ and its associated lace L = LΓ . (b) The dotted
edges are compatible with the lace L. (c) The dotted edge is not compatible with
the lace L.

The sum over connected graphs in (3.9) can be performed by first sum-
ming over all laces and then, given a lace, summing over all connected graphs
associated to that lace by the above prescription. This gives

J [a, b] =
∑

L∈L[a,b]

∏

st∈L

Ust

∑

Γ :LΓ =L

∏

s′t′∈Γ\L

Us′t′ . (3.17)
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But, writing Γ ′ = Γ \ L, it follows from Exercise 3.7 that
∑

Γ :LΓ =L

∏

s′t′∈Γ\L

Us′t′ =
∑

Γ ′⊂C(L)

∏

s′t′∈Γ ′

Us′t′ =
∏

s′t′∈C(L)

(1 + Us′t′). (3.18)

Therefore,
J [a, b] =

∑

L∈L[a,b]

∏

st∈L

Ust

∏

s′t′∈C(L)

(1 + Us′t′). (3.19)

Inserting this in (3.13) gives

πm(x) =
∑

ω∈Wm(0,x)

∑

L∈L[0,m]

∏

st∈L

Ust

∏

s′t′∈C(L)

(1 + Us′t′). (3.20)

For a < b we define J (N)[a, b] to be the contribution to (3.17) from laces
consisting of exactly N bonds:

J (N)[a, b] =
∑

L∈L(N)[a,b]

∏

st∈L

Ust

∏

s′t′∈C(L)

(1 + Us′t′). (3.21)

For the special case in which Ust is given by (2.1), each term in the above sum
is either 0 or (−1)N . By (3.17) and (3.21),

J [a, b] =
∞∑

N=1

J (N)[a, b]. (3.22)

The sum over N in (3.22) is a finite sum, since the sum in (3.21) is empty for
N > b − a and hence J (N)[a, b] = 0 if N > b − a.

Now we define

π(N)
m (x) = (−1)N

∑

ω∈Wm(x)

J (N)[0,m]

=
∑

ω∈Wm(x)

∑

L∈L(N)[0,m]

∏

st∈L

(−Ust)
∏

s′t′∈C(L)

(1 + Us′t′). (3.23)

The factor (−1)N on the right hand side of (3.23) has been inserted to arrange
that

π(N)
m (x) ≥ 0 for all N,m, x (3.24)

when Ust is given by Ust of (2.1). By (3.13), (3.22) and (3.23),

πm(x) =
∞∑

N=1

(−1)Nπ(N)
m (x). (3.25)

For the special case in which Ust is given by (2.1), walks making a nonzero
contribution to (3.23) are constrained to have the topology indicated in
Fig. 3.4. In the figure, for

∏
s′t′∈C(L)(1+Us′t′) �= 0, each of the 2N−1 subwalks
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a, b
a, t1 s2, b

s2, t2

a, t1 s3, b

s2, t2

a, t1 s3, t3

s4, b

Fig. 3.4. Self-intersections required for a walk ω with
∏

st∈L
Ust(ω) �= 0, with Ust

given by (2.1), for the laces with N = 1, 2, 3, 4 bonds depicted in Fig. 3.2. The picture
for N = 11 is also shown.

must be a self-avoiding walk, and in addition there must be mutual avoidance
between some (but not all) of the subwalks. The number of loops (faces ex-
cluding the “outside” face) in a diagram is equal to the number of edges in the
corresponding lace. The lines which are slashed correspond to subwalks which
may consist of zero steps, but the others correspond to subwalks consisting
of at least one step. This gives an interpretation of π

(N)
m identical to that ob-

tained in Sect. 3.1, but here there is the advantage that explicit formulas keep
track of the mutual avoidance between subwalks.

It is sometimes convenient to modify the definitions of “connected graph”
and “lace,” and we will do so in Sect. 8.1. A more general theory of laces is
developed and applied in [124, 126], for the analysis of networks of mutually-
avoiding self-avoiding walks. See also [125] for an application of the more
general theory to lattice trees.

3.4 Transformations

Equation (3.14) involves convolution in both space and time. It has been
studied in this form in [29], via fixed point methods.

It is tempting to use transformations to eliminate one or both of these
convolutions. We can eliminate the convolution in space if we take the Fourier
transform (1.6). For n ≥ 1, this gives

ĉn(k) = |Ω|D̂(k)ĉn−1(k) +
n∑

m=1

π̂m(k)ĉn−m(k). (3.26)

Conditions are given in [120] which ensure that solutions of (3.26) have
Gaussian asymptotics, via an analysis based on induction on n.

We may instead prefer to eliminate the convolution in time, by going to
generating functions. Using (2.18) and (3.14), this gives

Gz(x) = δ0,x +
∞∑

n=1

cn(x)zn

= δ0,x + z|Ω|(D ∗ Gz)(x) + (Πz ∗ Gz)(x), (3.27)
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where

Πz(x) =
∞∑

m=1

πm(x)zm. (3.28)

Equation (3.27) has been studied in [90,91].
Finally, we may prefer to eliminate both convolutions by using both the

Fourier transform and generating functions. Taking the Fourier transform of
(3.27) gives

Ĝz(k) = 1 + z|Ω|D̂(k)Ĝz(k) + Π̂z(k)Ĝz(k), (3.29)

which can be solved to give

Ĝz(k) =
1

1 − z|Ω|D̂(k) − Π̂z(k)
. (3.30)

Equation (3.30) has been the point of departure for several studies of the
self-avoiding walk, and we will work with (3.30) in Chap. 5.

Exercise 3.8. The memory-2 walk is the walk with Ust = Ust if t − s ≤ 2,
and otherwise Ust = 0. This is a random walk with no immediate reversals.
Suppose that 0 �∈ Ω ⊂ Z

d is finite and invariant under the symmetries of the
lattice.
(a) What is the value of ĉn(0), the number of n-step memory-2 walks? (Cal-
culation is not required.)
(b) Prove that for the memory-2 walk, for m ≥ 2,

πm(x) =
{
−|Ω|δx,0 if m is even
I[x ∈ Ω] if m is odd.

(c) Suppose that |Ω| > 2. Show that the mean-square displacement for the
memory-two walk is given by

σ2

[(
1 + δ

1 − δ

)

n − 2δ(1 − δn)
(1 − δ)2

]

∼
(

σ2|Ω|
|Ω| − 2

)

n,

where σ2 =
∑

x |x|2D(x) is the variance of D and δ = (|Ω| − 1)−1. One
approach2 is to use (3.26) to compute ∇2ĉn(0). This problem goes back a
long way [18,63,72].
(d) Show that for the memory-two walk,

Ĝz(k) =
1 − z2

1 + (|Ω| − 1)z2 − z|Ω|D̂(k)

2 Verification of the formula by induction seems an unsatisfactory solution, since it
requires prior knowledge of the formula.
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(compare Exercise 2.2 for d = 1). This formula was used to compute the
mean-square displacement via contour integration in [158, Sect. 5.3].

The memory-τ walk is the walk with Ust = Ust if t− s ≤ τ , and otherwise
Ust = 0. Finite-memory walks played an important role in the original analysis
of the lace expansion in [45], but will not concern us further here. For a study
of generating functions of the number of memory-τ walks, for τ ≤ 8, see [171].




