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Branching Random Walk

Branching random walk serves as the mean-field model for many interact-
ing models involving branching, including lattice trees and percolation. In
Sect. 15.1, we consider a natural mean-field model of lattice trees, which turns
out to be intimately related to branching random walk with Poisson offspring
distribution. In Sect. 15.2 we compute several generating functions important
for a particular model of branching random walk. These will be used to de-
rive the scaling limit of the branching random walk model in Chap. 16. In
Sect. 15.3, we define a model of weakly self-avoiding lattice trees in terms of
branching random walk.

15.1 A Mean-Field Model

The mean-field model for the self-avoiding walk is simple random walk, which
forgets about the self-avoidance interaction. It is natural to attempt to define
a mean-field model of lattice trees by somehow forgetting about the mutual
avoidance of the branches in a lattice tree. In this section, we define such
a mean-field model, as in [61]. For simplicity, we consider only the nearest-
neighbour model.

It is convenient to switch to a site activity (or “fugacity”), rather than
a bond activity. This means that we weight vertices rather than bonds by
z, so that the one-point function of (7.20) becomes now g(z) = G

(1)
z =∑

T :T�0 z|T |+1. If we remove the product containing the interaction in the
two-point function (8.2), we obtain

∑
ω∈W(0,x)(g(z))|ω|+1. It is also useful to

keep track of the length of the path ω by associating an activity ζ to each
bond in this path. This prompts us to define the two-point function of the
mean-field model by

Fz,ζ(x) =
∑

ω∈W(0,x)

(f(z))|ω|+1

(
ζ

2d

)|ω|
, (15.1)
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where the function f(z), to be specified below, is the one-point function for the
mean-field model, and where the factor 1

2d has been included as a convenient
normalization. The sum in (15.1) is taken over simple random walks. Thus,
Fz,ζ(x) can be written in terms of the simple random walk two-point func-
tion (1.17) as Fz,ζ(x) = f(z)Cζf(z)/2d(0, x), and hence, by (1.18), its Fourier
transform is

F̂z,ζ(k) =
f(z)

1 − ζf(z)D̂(k)
, (15.2)

with D̂(k) given by (1.12). The random walk two-point function has crit-
ical value 1

2d , corresponding to ζf(z) = 1. We will realize the latter with
ζ = f(z) = 1.

For the function f(z), we require by analogy with (7.22) (taking into ac-
count the switch to site activity), that f(z) satisfy the differential equation

F̂z,1(0) = z
df(z)

dz
. (15.3)

Combining (15.3) and (15.2) gives

f(z)
1 − f(z)

= z
df(z)

dz
. (15.4)

Integrating the separable equation (15.4) over an interval [z, z0] gives

f(z)e−f(z)

f(z0)e−f(z0)
=

z

z0
. (15.5)

The initial condition z0 = 1 and f(z0) = 1 is a choice of normalization and
gives

f(z)e−f(z) = ze−1. (15.6)

By (15.6), f can be written as f(z) = −W (−ze−1), where W is the princi-
pal branch of the Lambert W function defined by W (w)eW (w) = w [56]. The
latter is analytic on the w-plane with branch cut (−∞,−e−1], corresponding
to a branch cut [1,∞) for f(z) (and gives f(0) = 0, as it should). This uniquely
specifies f(z), and hence F̂z,ζ(k). The same functions f(z) and F̂z,ζ(k) will
arise below in Theorem 15.2 for a model of branching random walk.

15.2 Branching Random Walk

In this section, we define a model of branching random walk in terms of em-
beddings of trees into Z

d. The presentation is based on [30]. Some related
ideas can be found in [36].

The trees are the family trees of the critical Galton–Watson branching
process with Poisson offspring distribution. In more detail, we begin with a
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single individual having ξ offspring, where ξ is a Poisson random variable of
mean 1, i.e., P(ξ = m) = (em!)−1. Each of the offspring then independently
has offspring of its own, with the same critical Poisson distribution. To indi-
cate when two trees are the same, we describe them in terms of words. The
root is the word 0. The children of the root are the words 01, 02, . . . 0ξ0. The
children of 01 are the words 011, . . . , 01ξ01, and so on. A tree is then uniquely
represented by a set of words, and two trees are the same if and only if they
are represented by the same set of words. A tree T consisting of exactly n
individuals, with the ith individual having ξi offspring, has probability

P(T ) =
∏

i∈T

1
e ξi!

= e−n
∏

i∈T

1
ξi!

. (15.7)

The product in (15.7) is over the vertices of T .
We define an embedding ϕ of T into Z

d to be a mapping from the vertices
of T into Z

d, such that the root is mapped to the origin and adjacent vertices
in the tree are mapped to nearest neighbours in Z

d. There is no assumption
that ϕ is injective, and different vertices of T can be mapped to the same
vertex in Z

d. Given a tree T having |T | vertices, there are (2d)|T |−1 possible
embeddings ϕ of T . A branching random walk configuration is then a pair
(T, ϕ), with associated probability

P(T, ϕ) =
1

(2d)|T |−1
P(T ). (15.8)

Our aim in this section is to compute the r-point functions of this branch-
ing random walk model. These are generating functions for trees of fixed total
number of vertices n, which visit a specified set of r− 1 vertices in a specified
manner (the rth point is the origin, where the embedding is rooted).

We begin with the simplest case r = 1. For z ∈ C with |z| ≤ 1, the
one-point function is defined by

b(1)
z =

∑

(T,ϕ)

P(T, ϕ)z|T | =
∑

T

P(T )z|T |. (15.9)

The series on the right hand side of (15.9) is the generating function for the
probability mass function for the total size of a critical Poisson tree. It con-
verges for |z| ≤ 1, with b

(1)
1 = 1. For general z, b

(1)
z is given in the following

theorem.
We write pm = P(ξ = m) = (em!)−1, and let

P (w) =
∞∑

m=0

pmwm = ew−1 (15.10)

denote the generating function for the critical Poisson distribution.
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Theorem 15.1. For d ≥ 1, the one-point function is given by

b(1)
z =

∞∑

n=1

nn−1

n!
e−nzn, (15.11)

and obeys
b(1)
z e−b(1)z = ze−1. (15.12)

Proof. Conditioning on the number of offspring of the root gives

b(1)
z =

∞∑

m=0

pmz
(
b(1)
z

)m

= zP (b(1)
z ) = zeb(1)z −1, (15.13)

which implies (15.12). The Taylor expansion (15.11) then follows from La-
grange’s inversion formula (see, e.g., [196, p.43]).

Since b
(1)
z is real for real z and b

(1)
0 = 0, it follows from (15.12) that b

(1)
z

is identical to the function f(z) of the mean-field model of Sect. 15.1. Theo-
rem 15.1 rederives the standard result that for the critical Poisson branching
process,

P(|T | = n) =
nn−1

n!
e−n. (15.14)

By Stirling’s formula,

P(|T | = n) ∼ 1√
2π

1
n3/2

. (15.15)

Comparing with (7.2) and (7.3), this is a statement that the critical exponent
θ takes the value θ = 5

2 for branching random walk.
The two-point function is a generating function for critical Poisson branch-

ing random walk which starts at the origin, which has a family tree whose
total size is dual to an activity z, and which visits the vertex x (possibly more
than once) at a time dual to an activity ζ. The two-point function is defined
for z, ζ ∈ C with |z| < 1, |ζ| ≤ 1, and for x ∈ Z

d, by

b
(2)
z,ζ(x) =

∑

(T,ϕ)

P(T, ϕ)z|T |
∑

i∈T

I[ϕ(i) = x]ζ |i|, (15.16)

where |i| denotes the graph distance from i to the root of T . The series (15.16)
clearly converges for |z| < 1, |ζ| ≤ 1, as does its sum over x ∈ Z

d. The follow-
ing theorem gives the Fourier transform of the two-point function, and shows
that it is identical to the mean-field two-point function of Sect. 15.1.

Theorem 15.2. For d ≥ 1, k ∈ [−π, π]d, |z| < 1, |ζ| ≤ 1,

b̂
(2)
z,ζ(k) =

b
(1)
z

1 − ζb
(1)
z D̂(k)

. (15.17)

The denominator of the right hand side vanishes for z = ζ = 1, k = 0, and
in that case b̂

(2)
1,1(0) = ∞.
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Proof. The contribution to the right hand side of (15.16) arising when i is the
root is simply b

(1)
z δ0,x. When i is not the root, we condition on the number

of offspring of the root and on the location of the first step on the branch
containing i, to obtain

b
(2)
z,ζ(x) = b(1)

z δ0,x +
∞∑

m=1

pmm
(
b(1)
z

)m−1

z
(
ζD ∗ b

(2)
z,ζ

)
(x)

= b(1)
z δ0,x + zP ′(b(1)

z )
(
ζD ∗ b

(2)
z,ζ

)
(x). (15.18)

In the second term of the middle member of (15.18), the factor z is associ-
ated with the root, and the factor m corresponds to choosing which of the
root’s offspring is an ancestor of the vertex j. The Poisson generating func-
tion obeys zP ′(b(1)

z ) = zP (b(1)
z ), and by (15.13), this equals b

(1)
z . Taking the

Fourier transform of (15.18) converts the convolution into a product, and we
can then solve for b̂

(2)
z,ζ(k) to obtain

b̂
(2)
z,ζ(k) =

b
(1)
z

1 − ζb
(1)
z D̂(k)

. (15.19)

Note that the denominator is zero when z = ζ = 1 and k = 0.
Finally, we observe that the Fourier transform of (15.16) is given by

b̂
(2)
z,ζ(k) =

∑

(T,ϕ)

∑

j∈T

P(T, ϕ)z|T |eik·ϕ(j)ζ |j|. (15.20)

We conclude from this and (15.15) that

b̂
(2)
1,1(0) =

∑

(T,ϕ)

∑

j∈T

P(T, ϕ) =
∞∑

n=1

nP(|T | = n) = ∞. (15.21)

The two-point function given in Theorem 15.2 can be interpreted as the
two-point function of simple random walk with an activity ζ associated to
each step of the walk and an activity b

(1)
z associated to each vertex. We may

therefore regard a critical Poisson branching random walk configuration con-
taining 0 and x as corresponding to a simple random walk path from 0 to x
with a one-point function attached at each vertex along the way. This was the
philosophy of the mean-field model of Sect. 15.1.

Next, we define the r-point functions for r ≥ 3. Our definition keeps track
of a substantial amount of information, and requires as preparation the fol-
lowing definitions of shape, subshape, skeleton and compatibility.

Shape: Shapes are certain rooted binary trees. For r ≥ 2, we give a recursive
definition of the set Σr of r-shapes, as follows. Each r-shape has 2r− 3 edges,
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r − 2 vertices of degree 3 (the branch points) and r vertices of degree 1 (the
leaves) labelled 0, 1, . . . , r − 1. There is a unique 2-shape given by the tree
consisting of vertex 0 joined by a single edge to vertex 1. We think of this
shape as indicating that vertex 0 is an ancestor of vertex 1. There is a unique
3-shape, consisting of three vertices 0, 1, 2 each joined by an edge to a fourth
vertex. We think of this shape as indicating that 0 is an ancestor of both 1
and 2. In general, for r ≥ 3, to each (r−1)-shape σ, we obtain 2r−5 r-shapes
by choosing one of the 2r−5 edges of σ, adding a vertex on that edge together
with a new edge that joins the added vertex to a new leaf r−1. The resulting
r-shapes represent the different ways in which an additional rth particle can
be added to the family tree of r − 1 particles represented by σ. Thus there is
a unique shape for r = 2 and r = 3, and (2r − 5)!! distinct shapes for r ≥ 4,
where we use the notation (−1)!! = 1, and, for r ≥ 3,

(2r − 5)!! =
r∏

j=3

(2j − 5). (15.22)

When r is clear from the context, we will refer to an r-shape simply as a
shape. For notational convenience, we associate to each shape an arbitrary
labelling of its 2r − 3 edges, with labels 1, . . . , 2r − 3. This arbitrary choice of
edge labels is fixed once and for all; see Fig. 15.1.

Subshape: A subshape of a shape σ ∈ Σr is a tree obtained by contracting a
subset of the edges of σ to a point. This can lead to multiply-labelled vertices,
and contracted edges lose their labels. The subshapes for r = 3 are shown in
Fig. 15.2. In general, there are 22r−3 subshapes of a shape σ ∈ Σr. We denote
subshapes by λ and write λ ≤ σ when λ is a subshape of σ. We denote the
set of edge labels of λ by e(λ).

Skeleton: We write ı̄ = (i1, . . . , ir−1) for a sequence of r − 1 vertices ij (not
necessarily distinct) in a tree T , and define the skeleton B of (T, ı̄) to be the
subtree of T spanning 0, i1, . . . , ir−1. We will distinguish r − 1 and 2r − 3
component vectors by using ·̄ and�·, respectively.
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Fig. 15.1. The shapes for r = 2, 3, 4, and examples of the 7!! = 7 · 5 · 3 = 105
shapes for r = 6. The shapes’ edge labels are arbitrary but fixed.
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0 0 0 0 0 0,1,2

1 2 1

2 1

2

1 2 1,2

0,1 0,2

2 1

1
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1

2

1

3

2 3 1 3 2

Fig. 15.2. The 23 = 8 subshapes for r = 3.

Let βB denote the tree obtained from B by ignoring vertices of degree 2 in
B other than 0, i1, . . . , ir−1 (which may have degree 2 in B), and by assigning
label j to vertex ij for each j. This may lead to multiple labels at a vertex,
as is the case for subshapes.

Given σ ∈ Σr and a subshape λ ≤ σ, we say that βB is isomorphic to
λ if there is an edge preserving bijection from the set of all vertices of βB

to the set of all vertices of λ, which preserves the vertex labels of βB and λ
(including any multiple labels at vertices). Given such an isomorphism, the
edge labels of λ induce labels on the edges of βB and thus on the paths in T
comprising the skeleton B.

Compatibility: Let σ ∈ Σr, �m = (m1, . . . ,m2r−3) for non-negative integers
mj , and �y = (y1, . . . , y2r−3) for yj ∈ Z

d. Given (T, ϕ), fix r − 1 vertices ı̄ in
T . We say that (T, ϕ, ı̄) is compatible with (σ; �y, �m) if the following hold:

1. βB is isomorphic to a subshape λ of σ (in which case the paths of the
skeleton B have an induced labelling).

2. Let lj > 0 denote the length of the skeleton path labelled j, and let lj = 0
for any edge in σ that is not in λ. Then lj = mj for each j = 1, . . . , 2r−3.

3. The image under ϕ of the skeleton path (oriented away from the root)
labelled j undergoes the displacement yj for each j labelling an edge in
λ, and yj = 0 for any edge j in σ that is not in λ.

For example, given (T, ı̄) of Fig. 15.3, and any embedding ϕ of T , (T, ϕ, ı̄) is
compatible with (σ3; (0, ϕ(i3), ϕ(i2), ϕ(i1) − ϕ(i2), 0), (0, 2, 1, 2, 0)).

The r-point functions: Let r ≥ 2, σ ∈ Σr, �y = (y1, . . . , y2r−3) with each
yi ∈ Z

d, and let �m = (m1, . . . ,m2r−3) with each mi a non-negative integer.
We define

b(r)
n (σ; �y, �m) (15.23)

=
∑

(T,ϕ):|T |=n

P(T, ϕ)
∑

i1,...,ir−1∈T

I[(T, ϕ, ı̄) is compatible with (σ; �y, �m)].

Then we define the r-point function by

b
(r)

z,�ζ
(σ; �y) =

∞∑

n=0

∞∑

m1,...,m2r−3=0

b(r)
n (σ; �y, �m)zn

2r−3∏

j=1

ζ
mj

j . (15.24)
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0

i2

i3

i1

T

0

i2

i3

i1

B

0

23

1

βB

0

23

1

λ

2 3

4

Fig. 15.3. A tree T containing i1, i2, i3, its skeleton B, the reduced skeleton βB ,
and the subshape λ of σ3 (see Fig. 15.1) to which βB is isomorphic.

Exercise 15.3. Show that (15.24) agrees with the definition (15.16) for r = 2.

The next theorem gives the Fourier transform of the r-point functions,
where

f̂(�k) =
∑

y1,...,y2r−3∈Zd

f(�y)ei�k·�y (15.25)

with �k · �y =
∑2r−3

j=1 kj · yj .

Theorem 15.4. For d ≥ 1, r ≥ 2, σ ∈ Σr, kj ∈ [−π, π]d, |z| < 1, |ζj | ≤ 1,

b̂
(r)

z,�ζ
(σ;�k) =

(
b(1)
z

)−2(r−2) 2r−3∏

j=1

b̂
(2)
z,ζj

(kj). (15.26)

Before proving the theorem, we remark that the factor (b(1)
z )−2(r−2) has a

combinatorial interpretation. Namely, it “corrects” for an overcounting of the
branch at each of the r−2 shape vertices of degree 3, as this branch is counted
in

∏2r−3
j=1 b̂

(2)
z,ζj

(kj) once by each of the three two-point functions incident at
that vertex. This factor is equal to 1 at the critical point z = 1, and does not
play a role in the leading critical behaviour.
Proof of Theorem 15.4. The statement of the theorem is a tautology for r = 2,
so we consider r ≥ 3. Let

q̂
(2)
z,ζ(k) = ζD̂(k)b̂(2)

z,ζ(k). (15.27)

By (15.18), b̂
(2)
z,ζ(k) = b

(1)
z [1 + q̂

(2)
z,ζ(k)], so it suffices to show that

b̂
(r)

z,�ζ
(σ;�k) = b(1)

z

2r−3∏

j=1

(
1 + q̂

(2)
z,ζj

(kj)
)

. (15.28)

Expanding the product, the desired identity (15.28) is equivalent to

b̂
(r)

z,�ζ
(σ;�k) = b(1)

z

∑

λ≤σ

∏

j∈e(λ)

q̂
(2)
z,ζj

(kj). (15.29)
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Given a subshape λ ≤ σ, we let b(λ) denote the result of restricting the
summation in (15.24) to mj = 0 (and thus yj = 0) for j �∈ e(λ) and mj > 0
for j ∈ e(λ). Its Fourier transform will be denoted b̂(λ). We leave implicit the
dependence on the variables of �k and �ζ, as these are determined by the edge
labels of λ. Then

b̂
(r)

z,�ζ
(σ;�k) =

∑

λ≤σ

b̂(λ). (15.30)

Thus it suffices to show that

b̂(λ) = b(1)
z

∏

j∈e(λ)

q̂
(2)
z,ζj

(kj). (15.31)

This is clear if λ consists of a single vertex, so it suffices to consider the case
where λ contains at least one edge.

We use π to denote a subshape for which the root has degree 1, and write
q̂(π) = (zp1)−1b̂(π). The factor (zp1)−1 serves to cancel the factor zp1 = ze−1

associated to the root in b̂(π). Given a subshape λ having at least one edge,
let π1, . . . , πl be the branches emerging from its root. As in (15.18), using now
that the lth derivative of P obeys zP (l)(b(1)

z ) = b
(1)
z ,

b̂(λ) =
∞∑

j=l

zpjj(j − 1) · · · (j − l + 1)
(
b(1)
z

)j−l l∏

a=1

q̂(πa)

= b(1)
z

l∏

a=1

q̂(πa). (15.32)

Let π̄ denote the subshape obtained from π by contracting the edge inci-
dent to the root. We claim that

q̂(π) = q̂
(2)
z,ζ(k)

1

b
(1)
z

b̂(π̄), (15.33)

where ζ and k bear the subscript of the label of the edge incident on the root
of π. From this, the desired result (15.31) then follows by substituting (15.33)
into (15.32) recursively.

To prove (15.33), we condition on whether the length of the tree’s skele-
ton path, corresponding to the edge of π incident on the root, is equal to or
greater than 1. This leads, by conditioning as in (15.18), to

q̂(π) = ζD̂(k)b̂(π̄) + ζD̂(k)b(1)
z q̂(π). (15.34)

Solving and using (15.17) and (15.27), we obtain

q̂(π) =
ζD̂(k)

1 − ζD̂(k)b(1)
z

b̂(π̄) = q̂
(2)
z,ζ(k)

1

b
(1)
z

b̂(π̄), (15.35)

which is (15.33).



180 15 Branching Random Walk

15.3 Weakly Self-Avoiding Lattice Trees

The weakly self-avoiding walk has played an important role in the develop-
ment of the theory of self-avoiding walks. There has been no parallel situation
for lattice trees, perhaps because it is less obvious how to define weakly self-
avoiding lattice trees. In this section we give a natural definition of weakly
self-avoiding lattice trees and prove that it corresponds to usual lattice trees
in the limit of infinite self-avoidance strength. Throughout the section, we
follow the presentation of [30]. Presumably weakly self-avoiding lattice trees
are in the same universality class as usual lattice trees, no matter how weak
the self-avoidance.

Let P(T, ϕ) be given by (15.7)–(15.8). Given β ≥ 0, let

Zβ
n =

∑

(T,ϕ):|T |=n

P(T, ϕ) exp
[
− 1

2β
∑

i,j∈T :i�=j I[ϕ(i) = ϕ(j)]
]
, (15.36)

and, for |T | = n, define

Q
β
n(T, ϕ) =

1

Zβ
n

P(T, ϕ) exp
[
− 1

2β
∑

i,j∈T :i�=j I[ϕ(i) = ϕ(j)]
]
. (15.37)

The measure Q
β
n on the set of n-vertex branching random walk configurations

rewards self-avoidance by giving a penalty e−β to each self-intersection. For
β = 0, Q

0
n is just branching random walk conditional on |T | = n. The next

theorem shows that the weakly self-avoiding lattice trees interpolate between
branching random walk and lattice trees, in the sense that Q

∞
n corresponds

in an appropriate sense to the uniform measure on the set of n-vertex lattice
trees containing the origin.

In the statement of the theorem t
(1)
n denotes the number of n-vertex lattice

trees containing the origin, as in Sect. 7.1. Given an injective ϕ and a lattice
tree L, we abuse notation by writing ϕ(T ) = L if ϕ(T ) consists of the vertices
in L and the edges in T are mapped to the bonds in L.

Theorem 15.5. For d ≥ 1 and n ≥ 1,

lim
β→∞

Q
β
n(T, ϕ) = 0 (15.38)

if ϕ is not injective. On the other hand, given an n-vertex lattice tree L con-
taining the origin,

lim
β→∞

∑

(T,ϕ):ϕ(T )=L

Q
β
n(T, ϕ) =

1

t
(1)
n

. (15.39)

Proof. The first statement of the theorem, for non-injective ϕ, follows imme-
diately from the definition of Q

β
n.
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For the second statement of the theorem, let Tn denote the set of n-vertex
lattice trees containing the origin. This has cardinality t

(1)
n . We will prove that

∑

(T,ϕ):ϕ(T )=L

P(T, ϕ) = (2d)−(n−1)e−n (15.40)

for every L ∈ Tn. The important point for the proof is that the right hand
side is the same for all L ∈ Tn, and its particular value plays no role. In fact,
given (15.40), we then have

Z∞
n =

∑

L∈Tn

∑

(T,ϕ):ϕ(T )=L

P(T, ϕ) = t(1)n (2d)−(n−1)e−n, (15.41)

which gives the desired result that

∑

(T,ϕ):ϕ(T )=L

Q
∞
n (T, ϕ) =

1
Z∞

n

∑

(T,ϕ):ϕ(T )=L

P(T, ϕ) =
1

t
(1)
n

. (15.42)

To prove (15.40), we first note that by (15.7) and (15.8),

∑

(T,ϕ):ϕ(T )=L

P(T, ϕ) = (2d)−(n−1)e−n
∑

(T,ϕ):ϕ(T )=L

∏

i∈T

1
ξi!

, (15.43)

where ξi is the number of offspring of vertex i. It suffices to show that

∑

(T,ϕ):ϕ(T )=L

∏

i∈T

1
ξi!

= 1. (15.44)

Let b0 be the degree of 0 in L, and given nonzero x ∈ L, let bx be the degree
of x in L minus 1 (the forward degree of x). Then the set {bx : x ∈ L} (with
repetitions) must be equal to the set of ξi (with repetitions) for any T that can
be mapped to L. Defining ν(L) to be the cardinality of {(T, ϕ) : ϕ(T ) = L},
(15.44) is therefore equivalent to

ν(L) =
∏

x∈L

bx!. (15.45)

We prove (15.45) by induction on the number N of generations of L. By
this, we mean the length of the longest self-avoiding path in L, starting from
the origin. The identity (15.45) clearly holds if N = 0. Our induction hypoth-
esis is that (15.45) holds if there are N − 1 or fewer generations. Suppose L
has N generations, and let L1, . . . , Lb0 denote the lattice trees resulting from
deleting from L the origin and all bonds incident on the origin. We regard
each La as rooted at the neighbour of the origin in the corresponding deleted
bond. It suffices to show that ν(L) = b0!

∏b0
a=1 ν(La), since each La has fewer

than N generations.
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To prove this, we note that each pair (T, ϕ) with ϕ(T ) = L induces a set of
(Ta, ϕa) such that ϕa(Ta) = La. This correspondence is b0! to 1, since (T, ϕ)
is determined by the set of (Ta, ϕa), up to permutation of the branches of T

at its root. See Exercise 15.6. This proves ν(L) = b0!
∏b0

a=1 ν(La).

Exercise 15.6. Let L be the 2-dimensional lattice tree consisting of bonds
{0, e2}, {0,−e2}, {0, e1}, {e1, 2e1}, {e1, e1 + e2}, where e1 = (1, 0) and
e2 = (0, 1). Let T1 be the single vertex 01 and T2 be the single vertex 02, with
ϕ1(01) = e2 and ϕ2(02) = −e2. Let T3 be the tree consisting of the root 0 and
its two offspring 00 and 01, with ϕ3(0) = e1, ϕ3(00) = 2e1, ϕ3(01) = e1 + e2.
Write down the six distinct (T, ϕ) that correspond to the collection (Ta, ϕa)
(a = 1, 2, 3) as in the last paragraph of the proof of Theorem 15.5.




