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Subbranches of Types Al, Bl, Cl

In this chapter, we introduce important notions “subbranches of types Al,
Bl, and Cl”. In the first section, we summarize their properties often without
proof, and the subsequent sections are devoted to the proofs of these proper-
ties. The proofs are routine and technical in nature. For the first reading, we
recommend the reader to read only the first section (and assuming it) to skip
to the next chapter.

9.1 Subbranches of types Al, Bl, Cl

Let lY be a subbranch of a branch X where l is a positive integer and Y
is a subbranch of X. Here Y itself is possibly multiple. We express X =
m0∆0 +m1Θ1 + · · ·+mλΘλ and Y = n0∆0 +n1Θ1 + · · ·+neΘe (e ≤ λ), and
then set

ri :=
mi−1 + mi+1

mi
, (i = 1, 2 . . . , λ − 1), rλ :=

mλ−1

mλ
.

Recall that ri (i = 1, 2, . . . , λ) are positive integers satisfying ri ≥ 2. Next we
recall the deformation atlas DAe−1(lY, k) associated with lY . First we define
a sequence of integers pi (i = 0, 1, . . . , λ + 1) inductively by

{
p0 = 0, p1 = 1
pi+1 = ripi − pi−1 for i = 1, 2, . . . , λ.

Then pλ+1 > pλ > · · · > p1 > p0 = 0 (6.2.4). Let f(z) be a non-vanishing
holomorphic function defined around z = 0, and we set fi = f(wpi−1ηpi) and
f̂i = f(zpi+1ζpi) (see (6.2.7)). Then DAe−1(lY, d) is given by the following
data (see Lemma 7.1.1): for i = 1, 2, . . . , e − 1,

⎧
⎪⎨

⎪⎩

Hi : wmi−1−lni−1ηmi−lni(wni−1ηni + tkfi)l − s = 0
H′

i : zmi+1−lni+1ζmi−lni(zni+1ζni + tkf̂i)l − s = 0
gi : the transition function z = 1/w, ζ = wriη of Ni.
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Then we ask:

Problem When does DAe−1(lY, k) admit a complete propagation?

As we will show later, there are exactly three types of Y for which DAe−1(lY, k)
admits a complete propagation (Theorem 13.1.1). Now we introduce these
three types. Below, the notation lY ≤ X means lni ≤ mi for i = 0, 1, . . . , e.

Definition 9.1.1 Let l be a positive integer and let X be a branch.

Type Al A subbranch Y of X is of type Al if one of the following conditions
holds: (In fact, these conditions are equivalent. See Lemma 9.2.3.)
(A.1) lY ≤ X and ne−1

ne
≥ re.

(A.2) lY ≤ X and lY is dominant tame.
(A.3) lY ≤ X and Y is dominant tame.

Type Bl A subbranch Y of X is of type Bl if lY ≤ X, me = l, and ne = 1
Type Cl A subbranch Y of X is of type Cl if one of the following conditions

holds: (In fact, these conditions are equivalent. See Lemma 9.4.2.)
(C.1) lY ≤ X, ne divides ne−1, and ne−1

ne
< re, and u divides l where

u := (me−1 − lne−1) − (re − 1)(me − lne). (As in (C.3) “Note”,
u > 0.)

(C.2) lY ≤ X, ne = rene − ne−1, and u divides l where u is in (C.1).
(C.3) lY ≤ X, ne = rene − ne−1, and me − me+1 divides l.

(Note: λ ≥ e+1 holds for type Cl. See Corollary 9.4.4. Also note that
by Lemma 9.1.5 below, me − me+1 is equal to u in (C.1); so u > 0.)

We provide respective examples of types Al, Bl, Cl:

Example Al l = 2, m = (12, 9, 6, 3) and n = (3, 2, 1).
Example Bl l = 2, m = (12, 7, 2, 1) and n = (3, 2, 1).
Example Cl l = 5, m = (30, 25, 20, 15, 10, 5) and n = (3, 3, 3, 3).

(In Example Cl, me − lne = 0 and so u = 5.)

Note: Take l = 7, m = (57, 16, 7, 5, 3, 1), and n = (7, 2, 1). Then Y satisfies
the conditions of type Cl except that u divides l. Indeed u = 2, and so u does
not divide l = 7. Consequently Y is not of type Cl.

Recall that a subbranch Y = n0∆0+n1Θ1+ · · ·+neΘe (e ≤ λ) of a branch
X = m0∆0 + m1Θ1 + · · · + mλΘλ is proportional if m0

n0
= m1

n1
= · · · = me

ne
.

Lemma 9.1.2 Any subbranch Y of type Cl is “not” proportional.

Proof. In fact, when e = λ, from a condition in (C.1), we have nλ−1
nλ

<

rλ = mλ−1
mλ

and so mλ−1
nλ−1

> mλ
nλ

; this confirms the non-proportionality of
Y . When e < λ, we show the non-proportionality of Y by contradiction; if
Y is proportional, then (me−1,me) = (cne−1, cne) for some rational number
c. By (C.3), ne = rene − ne−1, and hence cne = recne − cne−1, that is,
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me = reme − me−1. Thus we have

me + me−1

me
= re.

However, from the definition of a branch,

me−1 + me+1

me
= re,

and the comparison of the above two equations gives me+1 = me. This is a
contradiction. Therefore any subbranch of type Cl is not proportional. ��

On the other hand, types Al and Bl may be proportional. For instance if
X = lY ;

m = (ln0, ln1, . . . , lnλ), n = (n0, n1, . . . , nλ),

then Y is of proportional type Al; for a special case nλ = 1 and mλ = l, this
is of proportional type Bl at the same time. A subbranch both of type Al and
Bl is simply referred to as of type ABl.

Lemma 9.1.3 Suppose that Y is a dominant subbranch of a branch X. Then
Y is of type ABl if and only if Y is of proportional type Bl.

Proof. =⇒: Trivial.
⇐=: By proportionality, m0

n0
= m1

n1
= · · · = me

ne
. Since me = l and ne = 1

(type Bl), these common fractions are equal to l. Namely
(
m0,m1, . . . ,me

)
= l

(
n0, n1, . . . , ne (= 1)

)
. (9.1.1)

Next we insist that e = λ; assuming e < λ, we derive a contradiction. Note
that (9.1.1) with the equations mi+1 = rimi − mi−1 (i = 1, 2, . . . , λ − 1)
implies that l divides all mi (i = 0, 1, . . . , λ). We “define” ne+1, ne+2, . . . , nλ by
ni := mi

l
(i = e + 1, e + 2, . . . , λ). Then (m0,m1, . . . ,mλ) = l(n0, n1, . . . , nλ).

In particular the sequence n = (n0, n1, . . . , ne) is contained in a dominant
sequence n′ = (n0, n1, . . . , nλ), and so Y is not dominant (a contradiction!).
Thus e = λ and

(
m0,m1, . . . ,mλ

)
= l

(
n0, n1, . . . , nλ (= 1)

)
.

This shows that Y is of type ABl. ��

From this lemma, type ABl coincides with proportional type Bl; so the
arithmetic property of the latter is the same as that of type Al — dominant
tame. Thus as long as we are concerned with the arithmetic property of type
Bl, it is enough to investigate that of non-proportional one. We remark that
when we later construct deformations from subbranches of types Al, Bl, and
Cl, a subbranch of proportional type Bl (i.e. type ABl) produces two different
deformations according to the application of the respective constructions for
types Al and Bl.
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We point out that a subbranch Y both of type Bl and Cl also exists;
l = 2, m = (4, 3, 2, 1) and n = (1, 1, 1) is such an example. As we will see
later, a subbranch Y both of type Bl and Cl produces the same deformation
regardless of the application of the respective constructions for type Bl and
Cl, and thus there is no reason to distinguish them; we adopt the following
convention.

Convention 9.1.4 To avoid overlapping of type Cl with type Bl, we exclude
the case me = l and ne = 1 from type Cl.

Now we give several comments on (C.1), (C.2), and (C.3) in the definition
of type Cl.

Lemma 9.1.5 The integer u := (me−1 − lne−1)− (re −1)(me − lne) in (C.1)
is equal to me − me+1 in (C.3). (Note: since me > me+1, we have u = me −
me+1 > 0.)

Proof. In fact, we may write

u = (me−1 − reme) + me + l(rene − ne−1 − ne)
= (me−1 − reme) + me

= me − me+1.

where the second and third equalities respectively follows from ne = rene −
ne−1 (a condition in (C.2)) and me−1 + me+1

me
= re. ��

By the above lemma, u = me − me+1 > 0. We remark that “lY ≤ X, ne

divides ne−1, and ne−1
ne

< re” (cf. (C.1)) implies u > 0 (Proposition 9.4.8).

However, if we drop “ne−1
ne

< re”, then u > 0 fails; for example,

l = 1, m = (6, 5, 4, 3, 2, 1) and n = (5, 3, 1). Then ne divides ne−1, but
ne−1
ne

= 3 > re = 2. In this case u = −1. (Actually n is of type A1.)

l = 1, m = (4, 3, 2, 1) and n = (3, 2, 1). Then ne divides ne−1, but ne−1
ne

=
2 = re = 2. In this case u = 0. (Actually n is of type A1.)

Secondly we point out that the condition (C.1) (or all other conditions) of
type Cl implies that

(C′) lY ≤ X, ne divides ne−1, and ne−1
ne

< re, and me − me+1 divides l.

But the converse is not true; namely (C.1) is not equivalent to (C′). In fact,
under the condition (C’), me − me+1 does not necessarily equal u in (C.1).
(cf. Lemma 9.1.5.) For instance, l = 1, m = (13, 4, 3, 2, 1) and n = (2, 1),
which satisfies all conditions of (C’). However me − me+1 = 1, while u = 2.
In particular, me − me+1 divides l, while u does not, and thus this example
is not of type Cl.
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Remark 9.1.6 For type Cl, from the condition that ne divides ne−1 and Y
is a subbranch, it is easy to deduce that ne divides ni (i = 0, 1, . . . , e − 1).
Namely, when ne ≥ 2, a subbranch Y of type Cl itself is multiple. See the
proof of Lemma 8.1.4.

It is worth pointing out the following property (type B�
l means non-proportional

type Bl):
Type Al lY is dominant tame

Type B�
l lY is dominant wild (Proposition 9.3.2)

Type Cl lY is wild (Proposition 9.4.11)

As we explained above, proportional type Bl (i.e. type ABl) is dominant tame.
We also note that type B�

l (non-proportional type Bl) and type Cl are wild,
but in contrast with type B�

l , type Cl is in general not dominant, e.g.

l = 1, m = (6, 5, 4, 3, 2, 1) and n = (1, 1, 1).

This is not dominant; n is contained in a dominant sequence n′ = (1, 1, 1, 1, 1, 1).
(Interesting enough, n′ is not of type Cl but of type Bl where l = 1.) A more
complicated example is the following:

l = 10, m = (40, 26, 12, 10, 8, 6, 4, 2) and n = (3, 2, 1).
(In this case u = 2.)

This example is also of type Cl but not dominant; n is contained in n′ :=
(3, 2, 1, 1) (type Bl where l = 10). Another curious example is: l = 2, m =
(6, 5, 4, 3, 2, 1) and n = (2, 2). Then n is of type Cl contained in n′ = (2, 2, 2),
which is again of type Cl. See also Remark 20.2.4, p357 for this example.

Remark 9.1.7 If ne−1 < ne, then Y is none of types Al, Bl and Cl. (1) Y is
not type Al: In fact, ne−1 < ne implies ne−1

ne
< 1, and so ne−1

ne
< re because

re ≥ 2. Thus Y does not fulfill (A.1). (2) Noting that 1 ≤ ne−1 < ne, we have
1 < ne, and so Y is not of type Bl. (3) As ne−1 < ne, the integer ne does not
divide ne−1, and hence Y is not of type Cl.

Let Y = n0∆0 + n1Θ1 + · · ·+ neΘe be a subbranch of a branch X = m0∆0 +
m1Θ1 + · · · + mλΘλ. If Y is of type Cl, then λ ≥ e + 1 by Corollary 9.4.4
below. On the other hand, this is not necessarily true for types Al and Bl. It
may occur that λ = e; for example,

Example Al l = 1, m = (9, 6, 3) and n = (3, 2, 1).
Example Bl l = 3, m = (9, 6, 3) and n = (1, 1, 1).

Now setting

a := me−1 − lne−1, b := me − lne, c := ne−1, d := ne,
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we restate the definitions of types Al, Bl, and Cl as follows:

Type Al A subbranch Y is of type Al if lY ≤ X and c
d
≥ re.

Type Bl A subbranch Y is of type Bl if lY ≤ X, b = 0 and d = 1.
Type Cl A subbranch Y is of type Cl if one of the following conditions

holds:
(C.1) lY ≤ X, d divides c, and c

d
< re, and u divides l where u :=

a − (re − 1)b.
(C.2) lY ≤ X, d = red − c, and u divides l where u := a − (re − 1)b.

We next summarize signs for some quantities concerning with types Al, B�
l

and Cl, where type B�
l means non-proportional type Bl.

Type Al a ≥ 0 b ≥ 0 c > 0 d > 0

Type B�
l a > 0 b = 0 c > 0 d = 1

Type Cl a > 0 b ≥ 0 c > 0 d > 0

Here note that for any type, c = ne−1 > 0 and d = ne > 0, and for type Bl,
d = 1. In general a ≥ 0 and b ≥ 0 hold; the strict inequality a > 0 is valid for
types B�

l and Cl, which will be proved in Proposition 9.3.2 and Proposition
9.4.11 respectively. On the other hand, b > 0 is not true for type Bl because
b = me − lne = l − l = 0. We also remark that for type Al, a = 0 if and only
if b = 0. Moreover a = 0 (equivalently b = 0) occurs precisely when X = lY
and in this case, Y is proportional (Corollary 9.2.8).

Next we provide the table for the signs of quantities a − reb, red − c and
u := a−(re−1)b; this table are useful for our later construction of deformations
associated with subbranches of types Al, Bl, and Cl. In the table, type B�

l

means non-proportional type Bl, and for type Al, if e = λ, then we formally
set me+1 := 0. For a subbranch Y of type Cl such that lY is not dominant,
we formally set ne+1 := rene − ne−1; then me+1 ≥ lne+1 by non-dominance,
and hence lne+1 − me+1 ≤ 0.

Table 9.1.8
Type Al a − reb ≤ −me+1 < 0 red − c ≤ 0 u ≤ b − me+1

Type B�
l a − reb > 0 red − c > 0 u > 0

Type Cl

a − reb > 0 if lY is dominant

a − reb = lne+1 − me+1 ≤ 0
if lY is not dominant

red − c = d > 0 u = me − me+1 > 0

(The inequalities in the above table will be shown in Proposition 9.2.5, Propo-
sition 9.3.2, and Proposition 9.4.11 for types Al, B�

l , and Cl respectively.)
The following table for type Cl, to be proved in Lemma 9.4.10, will be

used later in the construction of deformations.



9.1 Subbranches of types Al, Bl, Cl 159

Table 9.1.9

Type Cl
u > b if lY is dominant
u ≤ b if lY is not dominant

For a subbranch Y = n0∆0 +n1Θ1 + · · ·+meΘe of a branch X = m0∆0 +
m1Θ1 + · · · + mλΘλ, recall that Θi is a (−2)-curve if the self-intersection
number Θi · Θi = −2; a chain of (−2)-curve is a set of (−2)-curves of the
form Θa + Θa+1 + · · · + Θb where a ≤ b. If Y is of type Cl, then in most
cases the complement of Y in X contains a chain of (−2)-curves, where by
the “complement of Y in X”, we mean Θe+1 +Θe+2 + · · ·+Θλ (note λ ≥ e+1
for type Cl by Corollary 9.4.4). To explain this result, we set u := (me−1 −
lne−1)− (re − 1)(me − lne), and then u divides l by the definition of type Cl,
and so we write l = Nu where N is a positive integer. Next we set b := me−lne

and d := ne, and if u ≤ b, considering the division of b by u, we let v be the
integer such that b−vu ≥ 0 and b− (v +1)u < 0. According to whether u > b
or u ≤ b, we have the following information about chains of (−2)-curves in the
complement of Y in X. (Note: ri = 2 is equivalent to Θi being a (−2)-curve.)

Table 9.1.10 (Type Cl) Refer Proposition 9.4.12 for the proof.

b = 0 re+1 = re+2 = · · · = rλ = 2, λ = e + Nd − 1

b ≥ 1, u > b re+1 = re+2 = · · · = rλ−1 = 2, λ = e + Nd

b ≥ 1, u ≤ b,

u does not divide v
re+1 = re+2 = · · · = rλ−1 = 2, λ = e + Nd + v

b ≥ 1, u ≤ b,

u divides v
re+1 = re+2 = · · · = rλ = 2, λ = e + Nd + v − 1

Example 9.1.11 (Exceptional example) In the above table, for the case
b ≥ 1 and u > b, if λ = e + 1, then the complement of Y in X may not
contain a chain of (−2)-curves at all; l = 2, m = (5, 3, 1) and n = (1, 1) is
such an example of type Cl, in which case u = 2 and so N = 1 in l = Nu,
and consequently λ = e + 1 = e + Nd = 2. Then rλ (= 3) �= 2 and hence the
complement Θλ of Y in X is not a (−2)-curve.

The following criterion for Y to be of type C1 is useful.

Lemma 9.1.12 When l = 1, a dominant subbranch Y is of type Cl if and only
if the following conditions are fulfilled: (1) ne divides ne−1, and ne−1

ne
< re,

(2) me−1 − ne−1 = 1, and (3) me = ne.

Proof. =⇒: Suppose that Y is of type C1. Then by definition, (1) is satisfied.
To show (2) and (3), we set u := (me−1 − lne−1) − (re − 1)(me − lne), and
then u divides l by the definition of type Cl. In the present case, l = 1 and so
u = ±1. As u = me − me+1 > 0 for type Cl (Lemma 9.1.5), we have u = 1.
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Now for simplicity, we set a := me−1 − ne−1 and b := me − ne. Of course
b ≥ 0. Since Y (= lY ) is dominant and of type Cl, we have a − reb ≥ 1 by
Table 9.1.8. Thus

b ≥ 0, a − reb ≥ 1. (9.1.2)

Our goal is to show that (2) a = 1 and (3) b = 0. Note that since l = 1,

u = (me−1 − ne−1) − (re − 1)(me − ne) = a − (re − 1)b = (a − reb) + b.

On the other hand, as we saw above, u = 1 and thus (a− reb)+ b = 1. Taking
(9.1.2) into consideration, this equation holds exactly when a − reb = 1 and
b = 0, that is, a = 1 and b = 0. Hence (2) and (3) hold.

⇐=: Taking into account (1), we only have to show that u = a − (re − 1)b
divides l = 1. But a = 1 (2) and b = 0 (3), and so u = 1, which obviously
divides l. Therefore the condition (C.1) of type Cl is satisfied; so Y is of
type Cl. ��

Remark 9.1.13 Recall that a subbranch Y is of ripple type if ne−1 = ne =
me (see (8.1.3), p146); then Y is dominant by Lemma 8.1.5. Clearly the three
conditions of the above lemma are fulfilled and thus Y is of type C1. However,
the converse is not true; even if the conditions (1), (2) and (3) of Lemma
9.1.12 are fulfilled, it does not imply that Y is of ripple type. The following
examples are of type C1 but not of ripple type because ne−1 �= ne.

(1) l = 1, m = (15, 11, 7, 3, 2, 1) and n = (12, 9, 6, 3).

(2) l = 1, m = (22, 17, 12, 7, 2, 1) and n = (18, 14, 10, 6, 2).

A recipe to produce subbranches of type Cl

We close this section by giving a recipe to produce examples of subbranches of
type Cl. Given m = (m0,m1, . . . ,mλ), take two positive integers ne := 1 and
ne−1 := re − 1 where re = me−1 + me+1

me
. Then clearly ne = rene −ne−1, and

hence the first condition in (C.3) of Definition 9.1.1 is fulfilled. Thus Y is of
type Cl precisely when me−me+1 divides l. For example, (1) me−me+1 = 1 or
(2) me−me+1 = 2 and l is even. If this is the case, we define ne−2, ne−3, . . . , nλ

inductively by ni−1 := rini − ni+1 for i = e − 1, e − 2, . . . , 1. This yields a
sequence n = (n0, n1, . . . , ne) of type Cl.

9.2 Demonstration of properties of type Al

In this section, we demonstrate the properties of type Al. We begin by recalling
the definition of dominance. Let Y = n0∆0+n1Θ1+· · ·+meΘe be a subbranch
of a branch X = m0∆0 + m1Θ1 + · · · + mλΘλ. We set ne+1 := rene − ne−1

formally, where re := me−1 + me+1
me

. Then Y is said to be dominant if either
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(i) ne+1 ≤ 0 or (ii) ne+1 > me+1 holds. According to (i) or (ii), Y is called
tame or wild respectively. The condition (i) is rewritten as ne−1

ne
≥ re, and so

we have

Lemma 9.2.1 A subbranch Y is dominant tame if and only if ne−1
ne

≥ re

holds.

We then note

Lemma 9.2.2 Let lY be a subbranch of a branch X = m0∆0 +m1Θ1 + · · ·+
mλΘλ. Then the following statements hold:

(1) Y is dominant =⇒ lY is dominant.
(2) Y is dominant tame ⇐⇒ lY is dominant tame.

Proof. We write Y = n0∆0 +n1Θ1 + · · ·+neΘe. First we show (1) by contra-
diction. Suppose that lY is not dominant. Then there exists an integer ke+1

(0 < ke+1 ≤ me+1) satisfying

lne−1 + ke+1

lne
= re. (9.2.1)

Thus lne−1 + ke+1 = lnere. It follows that l divides ke+1. We write ke+1 =
lne+1 where ne+1 is a positive integer, and then (9.2.1) is

lne−1 + lne+1

lne
= re.

Thus ne−1 + ne+1
ne

= re. This implies that Y is not dominant, because the
sequence n = (n0, n1, . . . , ne) is contained in a longer sequence (n0, n1, . . . ,
ne+1). This contradicts that Y is dominant. Hence lY is dominant, and so (1)
is confirmed.

Next we show (2). Remember that a subbranch is dominant tame if and
only if ne−1

ne
≥ re (Lemma 9.2.1). Obviously ne−1

ne
≥ re is equivalent to

lne−1

lne
≥ re, and so we confirm the equivalence in (2). ��

We remark that in (1) of the above lemma, the converse is not true in
general. For instance, l = 4, m = (6, 5, 4, 3, 2, 1) and n = (1, 1, 1). Then ln =
(4, 4, 4) is dominant wild, whereas n is not dominant; indeed, n is contained
in a dominant sequence (1, 1, 1, 1, 1, 1).

Next we show the equivalence of conditions of type Al.

Lemma 9.2.3 The following conditions are equivalent:

(A1) lY ≤ X and ne−1
ne

≥ re.
(A2) lY ≤ X and lY is dominant tame.
(A3) lY ≤ X and Y is dominant tame.

Proof. The equivalence of (A1) and (A.2) follows from Lemma 9.2.2, while
that of (A.2) and (A.3) follows from Lemma 9.2.2 (2). ��
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Next we derive a formula needed for later use.

Lemma 9.2.4 Let lY be a subbranch (note: Y is not assumed to be of
type Al). Set a := me−1 − lne−1 and b := me − lne. Then

a − reb = −me+1 − l(ne−1 − rene).

In fact,

a − reb = (me−1 − lne−1) − re(me − lne)
= me−1 − reme − lne−1 + relne

= −me+1 − lne−1 + relne,

where the last equality follows from me−1 + me+1
me

= re.

Proposition 9.2.5 Let Y be a subbranch of type Al, and set

a := me−1 − lne−1, b := me − lne, c := ne−1 and d := ne.

Then the following inequalities hold:

(1) a − reb ≤ −me+1 (2) red − c ≤ 0 (3) u ≤ b − me+1, where
u := a − (re − 1)b.

Proof. (1): If Y is of type Al, then ne−1
ne

≥ re, i.e.

ne−1 − rene ≥ 0. (9.2.2)

By Lemma 9.2.4, a − reb = −me+1 − l(ne−1 − rene), and so from (9.2.2), we
derive a − reb ≤ −me+1. This proves (1).
(2): As d = ne and c = ne−1, (2) is nothing but (9.2.2).
(3): By (1), a − reb ≤ −me+1, and hence together with b ≥ 0, we have

u = b + (a − reb) ≤ b − me+1.

This proves (3). ��

We gather several basic lemmas for subbranches (not necessarily of type
Al):

Lemma 9.2.6 Let lY be a subbranch with the multiplicities ln = (ln0, ln1, . . . ,
lne). Let Z be the dominant subbranch containing lY , and write its multiplic-
ities as

k = (ln1, ln2, . . . , lne, ke+1, ke+2, . . . , kf ).

Then l divides ki for i = e + 1, e + 2, . . . , f . (In particular, “defining” ni

(i = e+1, e+2, . . . , f) by ni := ki
l

, then Z = lY ′ where Y ′ = n0∆0 +n1Θ1 +
· · · + nfΘf .)
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Proof. Since Z is a subbranch, we have

lne−1 + ke+1

lne
= re, (9.2.3)

lne + ke+2

ke+1
= re+1, (9.2.4)

ki−1 + ki+1

lki
= ri, i = e + 2, e + 3, . . . , f − 1. (9.2.5)

By (9.2.3), we have ne−1+ ke+1

l
= rene, and hence l divides ke+1. Set ne+1 :=

ke+1

l
, i.e. ke+1 = lne+1 which we substitute into (9.2.4): ne + ke+2

l
= rene+1.

Hence l divides ke+2. Repeating this argument, we see that l divides ki for
i = e + 1, e + 2, . . . , f . ��

Lemma 9.2.7 Suppose that X = m0∆0 + m1Θ1 + · · · + mλΘλ is a branch.
Let lY be a subbranch with the multiplicities ln = (ln0, ln1, . . . , lne), and let
Z be the dominant subbranch containing lY (note: Z = lY ′ for some Y ′ by
Lemma 9.2.6). Set a := me−1 − lne−1 and b := me − lne. Then the following
statements hold:

(I) If a = 0, then Z = X (and so Z is “trivially” dominant tame.)
(II) If Y is dominant tame, then the following equivalences hold:

a = 0 ⇐⇒ b = 0 ⇐⇒ X = lY.

(Note: If lY is dominant but not tame, then (II) is not valid. For example,
l = 4, m = (6, 5, 4, 3, 2, 1) and n = (1, 1, 1). Then a = 0 but b �= 0.)

Proof. (I): By Lemma 9.2.6, we may express Z = lY ′ where Y ′ = n0∆0 +
n1Θ1 + · · · + nfΘf (e ≤ f). It is enough to show that mi = lni for i =
0, 1, . . . , f ; in fact, once this is shown, we have Z = m0∆0+m1Θ1+· · ·+mfΘf ,
and Z of this form is dominant precisely when f = λ, i.e. Z = X. Now we show
that mi = lni firstly for i = 0, 1, . . . , e. From the definition of a subbranch,

lne−2 + lne

lne−1
=

me−2 + me

me−1
(= re−1).

In particular if a = 0, i.e. me−1 = lne−1, then

lne−2 + lne = me−2 + me. (9.2.6)

Taking into account lne−2 ≤ me−2 and lne ≤ me, (9.2.6) implies that lne−2 =
me−2 and lne = me. Next, again from the definition of a subbranch,

lne−3 + lne−1

lne−2
=

me−3 + me−1

me−2
(= re−2).
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From lne−2 = me−2 (we showed this just above), we have

lne−3 + lne−1 = me−3 + me−1. (9.2.7)

Taking into account lne−3 ≤ me−3 and lne−1 ≤ me−1, (9.2.7) implies that
lne−3 = me−3 and lne−1 = me−1. Repeating this argument, we deduce mi =
lni for i = 0, 1, . . . , e. Similarly, we can show that mi = lni for i = e + 1, e +
2, . . . , f . Therefore mi = lni holds for i = 0, 1, . . . , f . This proves (I).
(II): The equivalence “a = 0 ⇐⇒ b = 0” is already shown in Lemma 6.3.1,
p107. To show the equivalence “a = 0 ⇐⇒ X = lY ”, we note that if Y is
dominant tame, then lY is also dominant tame by Lemma 9.2.3; thus the
dominant subbranch Z containing lY is lY itself; Z = lY . We now show
“a = 0 ⇐⇒ X = lY ”.

=⇒: If a = 0, then X = Z by the assertion (I). Since Z = lY , we have
X = lY .

⇐=: Trivial. This completes the proof of the assertion (II). ��

As a corollary, we have the following result.

Corollary 9.2.8 Let Y be a subbranch of type Al, and set a := me−1− lne−1

and b := me− lne. Then the following equivalences hold: a = 0 ⇐⇒ b = 0 ⇐⇒
X = lY .

Proof. By Lemma 9.2.3, if Y is of type Al, then Y is dominant tame, and so
the assertion follows from the above lemma. ��

9.3 Demonstration of properties of type Bl

We begin with the following lemma for subbranches not necessarily of type Bl.

Lemma 9.3.1 Let l be a positive integer and let Y = n0∆0+n1Θ1+· · ·+neΘe

be a subbranch of a branch X = m0∆0 + m1Θ1 + · · ·+ mλΘλ such that lY is
a dominant wild subbranch of X. Set a := me−1 − lne−1, b := me − lne, c :=
ne−1, d := ne and u := a − (re − 1)b. Then the following inequalities hold:

(1) a, c, d > 0, (2) b ≥ 0, (3) a− reb > 0, (4) red− c > 0, (5) u > 0.

Proof. We first verify (1) and (2). Since lY is a subbranch of X, we have
me−1 ≥ lne−1 and me ≥ lne, and so a, b ≥ 0. Since Y is a subbranch of X,
we have ne−1, ne > 0, and so c, d > 0. Hence to prove (1) and (2), it remains
to show a > 0, which is carried out by contradiction. Suppose that a = 0,
namely me−1 = lne−1. Then

re >
lne−1 + me+1

lne
because lY is wild

=
me−1 + me+1

lne
by me−1 = lne−1
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≥ me−1 + me+1

me
by me ≥ lne

= re,

and thus re > re, giving a contradiction. This proves a > 0. To show (3), we
first note that

a − reb := (me−1 − lne−1) − re(me − lne)
= (me−1 − reme) − lne + relne,

where me−1 − reme = −me+1 by me−1 + me+1
me

= re, and therefore

a − reb = −me+1 − lne + relne.

Since lY is wild, we have re >
lne−1 + me+1

lne
, and so

a − reb = −me+1 − lne−1 + relne

> −me+1 − lne−1 +
lne−1 + me+1

lne
lne

= 0.

Thus a − reb > 0, and (3) is proved. Similarly, (4) is shown as follows:

red − c = rene − ne−1 >
lne−1 + me+1

lne
ne − ne−1 =

me+1

l
> 0.

Finally, it is immediate to show (5). Indeed, a − reb > 0 by (3) and b ≥ 0 by
(2), and so we have u = a− (re −1)b = (a− reb)+ b > 0. Thus (5) is proved.��

Recall that a subbranch Y = n0∆0 + n1Θ1 + · · · + neΘe of a branch
X = m0∆0 + m1Θ1 + · · · + mλΘλ is proportional if m0

n0
= m1

n1
= · · · = me

ne
.

By Lemma 9.1.3, a dominant subbranch Y is both of type Al and of type
Bl (i.e. type ABl) if and only if Y is of proportional type Bl; explicitly this
is the case

m = (ln0, ln1, . . . , lnλ), n = (n0, n1, . . . , nλ), and nλ = 1.

The arithmetic property of proportional type Bl is the same as that of type
Al, namely dominant tame. Next we investigate the arithmetic property of
non-proportional type Bl; remember that a subbranch Y = n0∆0 + n1Θ1 +
· · · + neΘe is of type Bl provided that me = l and ne = 1.

Proposition 9.3.2 Let X = m0∆0 + m1Θ1 + · · · + mλΘλ be a branch, and
suppose that Y = n0∆0+n1Θ1+· · ·+meΘe is a subbranch of non-proportional
type Bl of X. Set a := me−1 − lne−1, b := me − lne, c := ne−1, d := ne (= 1)
and u := a − (re − 1)b. Then

(1) lY is dominant wild, and
(2) a > 0, a − reb > 0, red − c > 0, u > 0.



166 9 Subbranches of Types Al, Bl, Cl

Proof. The proof of (1) consists of two steps:
Step 1 We demonstrate that lY is dominant by contradiction. Suppose that
lY is not dominant. Then there exists an integer ke+1 (0 < ke+1 ≤ me+1)
satisfying

lne−1 + ke+1

lne
= re, (9.3.1)

and so
lne−1 + ke+1

lne
=

me−1 + me+1

me
(= re).

Since me = lne (= l) by the definition of type Bl, we have

lne−1 + ke+1 = me−1 + me+1.

As lne−1 ≤ me−1 and ke+1 ≤ me+1, this holds exactly when

lne−1 = me−1, ke+1 = me+1. (9.3.2)

Note that from (9.3.1), we have ne−1 + ke+1

l
= rene. So l divides ke+1, and in

particular, l ≤ ke+1. Namely me ≤ me+1 by me = l (the definition of type Bl)
and me+1 = ke+1 (9.3.2). This yields a contradiction because the sequence
m0,m1, . . . ,mλ is strictly decreasing. Therefore lY is dominant.

Step 2 We next show that lY is wild, that is, lne−1 + me+1

lne
< re as follows:

lne−1 + me+1

lne
<

me−1 + me+1

lne
by lne−1 < me−1

=
me−1 + me+1

me
by me = lne (= l)

= re. (9.3.3)

Thus lY is dominant wild, and so (1) is confirmed. The assertion (2) follows
immediately from Lemma 9.3.1 because lY is dominant wild. (Note: In (9.3.3),
“lne−1 < me−1” is not valid for proportional type Bl, as lne−1 = me−1.) ��

9.4 Demonstration of properties of type Cl

Let Y = n0∆0 + n1Θ1 + · · ·+ neΘe be a subbranch of a branch X = m0∆0 +
m1Θ1 + · · · + mλΘλ, where we set

ri :=
mi−1 + mi+1

mi
, (i = 1, 2 . . . , λ − 1), rλ :=

mλ−1

mλ
.

For a while, we do not assume that Y is of type Cl; Y is an arbitrary subbranch.
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Lemma 9.4.1 Set u := (me−1 − lne−1) − (re − 1)(me − lne). Then

u = me − me+1 + l(rene − ne−1 − ne).

(In particular, if ne = rene − ne−1, then u = me − me+1.)

Proof. In fact,

u = (me−1 − lne−1) − (re − 1)(me − lne)

= me + me−1 − reme + l(rene − ne−1 − ne)

= me − me+1 + l(rene − ne−1 − ne),

where in the last equality we used reme = me−1 + me+1. ��

Next we show the equivalence of three conditions of type Cl.

Lemma 9.4.2 The following conditions are equivalent:

(C.1) lY ≤ X, ne divides ne−1, and ne−1
ne

< re, and u divides l where
u := (me−1 − lne−1) − (re − 1)(me − lne).

(C.2) lY ≤ X, ne = rene − ne−1, and u divides l where u is in (C.1).
(C.3) lY ≤ X, ne = rene − ne−1, and me − me+1 divides l, where by

convention, me+1 = 0 if λ = e.

(Note: By Lemma 9.4.1, me − me+1 equals u in (C.1) and (C.2). In (C.3),
actually me+1 = 0 does not occur as we will see in Corollary 9.4.4 below.)

Proof. We first show that (C.2) is equivalent to (C.1).
(C.2) =⇒ (C.1): This is easy. If ne = rene − ne−1, then ne divides ne−1, and
ne−1
ne

= re − 1 < re, hence (C.1) holds.

(C.2) ⇐= (C.1): Under the assumption that ne divides ne−1 and ne−1
ne

< re,

it suffices to prove that ne = rene−ne−1, that is, re− ne−1
ne

= 1 holds; setting

q := re − ne−1
ne

, we show q = 1. We first note that (i) q is an integer because

ne divides ne−1, and (ii) q is positive because ne−1
ne

< re. Therefore q is a
positive integer. We then prove q = 1 by contradiction. Suppose that

q ≥ 2. (9.4.1)

We note

u = (me − me+1) + l(rene − ne−1 − ne) by Lemma 9.4.1

= (me − me+1) + lne

(

re −
ne−1

ne
− 1

)

= (me − me+1) + lne(q − 1).
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Here me −me+1 > 0 because the sequence m0,m1, . . . ,mλ strictly decreases.
On the other hand, ne ≥ 1 and q − 1 ≥ 1 (9.4.1). Hence

u = (me − me+1) + lne(q − 1) > l.

But u divides l by assumption, and so l ≥ u. This is a contradiction. Therefore
q = 1, and the claim is confirmed.

Finally, we show that (C.2) is equivalent to (C.3). This is evident. Indeed,
u = (me − me+1) + l(rene − ne−1 − ne) by Lemma 9.4.1, and hence if ne =
rene − ne−1, then u = me − me+1. ��

Recall that a subbranch Y is of type Cl provided that Y satisfies one of
the equivalent conditions of Lemma 9.4.2.

Corollary 9.4.3 Let Y = n0∆0 + n1Θ1 + · · · + neΘe be a subbranch of a
branch X = m0∆0 + m1Θ1 + · · ·+ mλΘλ. Set b := me − lne and d := ne, and
then

(1) me = ld + b, and
(2) if furthermore Y is of type Cl, then me+1 = ld + b − u.

Proof. From d = ne and b = me − lne, we have me = ld + b, and so (1) is
confirmed. Next we show (2). If Y is of type Cl, we have u = me − me+1

(Lemma 9.1.5). Substituting (1) me = ld + b into u = me − me+1, we obtain
u = ld + b − me+1. This confirms (2). ��

We also note the following.

Corollary 9.4.4 Let Y = n0∆0 + n1Θ1 + · · · + neΘe be a subbranch of a
branch X = m0∆0 + m1Θ1 + · · · + mλΘλ. If Y is of type Cl, then e + 1 ≤ λ.

Proof. We show this by contradiction. Suppose that me+1(:=reme−me−1)=0.
We first claim that me divides both l and me − lne. In fact, since me −me+1

divides l by the definition (C.3) of type Cl and me+1 = 0 by assumption, we
see that me divides l; clearly this also assures that me divides me − lne. Next
setting b := me − lne, we write l = l′me and b = b′me where l′ (resp. b′) is a
positive (resp. nonnegative) integer. Then

b′ =
b

me
=

me − lne

me
=

me − l′mene

me
= 1 − l′ne.

Namely
b′ = 1 − l′ne. (9.4.2)

From l′ ≥ 1 and ne ≥ 1, we have b′ ≤ 0. Since b′ is nonnegative, we obtain
b′ = 0 (and so b = 0), and then by (9.4.2), l′ = ne = 1. Here note that b = 0
implies that me = lne, and thus together with ne = 1, we have me = l. This
means that Y is not only of type Cl but also of type Bl. But this contradicts
Convention 9.1.4 (we excluded this case from type Cl). ��
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We collect several lemmas needed for later discussion.

Lemma 9.4.5 Let lY be a subbranch with the multiplicities ln = (ln0, ln1, . . . ,
lne). Let Z be the dominant subbranch containing lY , and write its multiplic-
ities as

k = (ln1, ln2, . . . , lne, ke+1, ke+2, . . . , kf ).

Then

(I) l divides ki (i = e+1, e+2, . . . , f). (So “defining” ni (i = e+1, e+2, . . . , f)
by ni := ki

l
, then Z = lY ′ and k = ln′ where Y ′ := n0∆0 + n1Θ1 + · · ·+

nfΘf and n′ := (n0, n1, . . . , nf ).)
(II) if ne divides ne−1, then ne also divides ni (i = e + 1, e + 2, . . . , f), and

moreover ne ≤ ne+1 ≤ ne+2 ≤ · · · ≤ nf .

Proof. (I) is nothing but Lemma 9.2.6. We show (II); we first prove that ne

divides ne+1. Since Z = ln0∆0 + ln1Θ1 + · · · + lnfΘf is a subbranch, we
have lni+1 = rilni − lni−1, so ni+1 = rini − ni−1 for i = 1, 2, . . . , f . In
particular ne+1 = rene − ne−1. Hence ne divides ne+1 (note: by assumption,
ne divides ne−1), and consequently ne ≤ ne+1. Next since ne divides ne+1,
from ne+2 = re+1ne+1 − ne, it follows that ne also divides ne+2. Furthermore

ne+2 = re+1ne+1 − ne

≥ 2ne+1 − ne by re+1 ≥ 2
= ne+1 + (ne+1 − ne)
≥ ne+1 by ne+1 ≥ ne. (9.4.3)

Namely, ne+1 ≤ ne+2. Then using the fact (as shown above) that ne divides
both ne+1 and ne+2, it follows from ne+3 = re+2ne+2 − ne+1 that ne divides
ne+3. Also we can show ne+2 ≤ ne+3 as in (9.4.3). Repeat this argument, and
then (II) is shown. ��

Lemma 9.4.6 Let Y be a subbranch of type Cl. Then Y and lY are (not
necessarily dominant) wild.

Proof. We first verify the wildness of lY . We separate into two cases according
to whether lY is dominant or not.

Case 1 lY is dominant: Since Y is of type Cl,
ne−1
ne

< re and so lne−1

lne
< re,

which means that lY is wild.

Case 2 lY is not dominant: Let Z be the dominant subbranch containing
lY . Then by Lemma 9.4.5 (I), the multiplicities of Z are of the form:

k = (ln1, ln2, . . . , lnf ).

Since Y is of type Cl, ne divides ne−1 and so by Lemma 9.4.5 (II), we have

ne ≤ ne+1 ≤ ne+2 ≤ · · · ≤ nf .
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In particular nf−1
nf

≤ 1. Since rf ≥ 2, we have nf−1
nf

< rf , and so lnf−1

lnf
< rf

This implies that Z is wild, and consequently (by definition) lY is wild. Sim-
ilarly we can show the wildness of Y . ��

For subsequent discussion, we need some result on Y not necessarily of
type Cl.

Lemma 9.4.7 Let lY be a subbranch which is not dominant. Set

a := me−1 − lne−1, b := me − lne and u := a − (re − 1)b.

If ne divides ne−1, then

(I) a − reb = lne+1 − me+1 where ne+1 := rene − ne−1. (In particular, from
lne+1 ≤ me+1, we have a − reb ≤ 0).

(II) u > 0 and a > 0.

Proof. The statement (I) is derived as follows:

a − reb = me−1 − lne−1 − re(me − lne)
= (me−1 − reme) − lne−1 + relne

= (−me+1) − lne−1 +
lne−1 + lne+1

lne
lne

= −me+1 + lne+1,

where in the third equality we used me−1 − reme = −me+1 and re =
lne−1 + lne+1

lne
(note that by assumption, lY is not dominant and so 0 <

lne+1 ≤ me+1).
Next we show (II). We first prove u > 0. By assumption, ne divides ne−1

and thus by Lemma 9.4.5, we have

ne+1 ≥ ne. (9.4.4)

Then

u = b + (a − reb)
= (me − lne) + (lne+1 − me+1) by (I)
= (me − me+1) + l(ne+1 − ne)
> 0 by me > me+1 and (9.4.4).

This proves u > 0. Finally, we show a > 0. We divide into two cases according
to whether b = 0 or b > 0.
Case b = 0: In this case we have u = a − (re − 1)b = a. Thus a > 0 because
u > 0 as shown above.
Case b > 0: Noting that a ≥ 0, we assume that a = 0 and deduce a contra-
diction. If a = 0, then we have u = a − (re − 1)b = −(re − 1)b. Since re ≥ 2,
together with b > 0, we obtain u < 0. This contradicts u > 0, and we conclude
that a > 0. ��
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Proposition 9.4.8 Let lY be a subbranch such that (i) ne divides ne−1 and
(ii) ne−1

ne
< re. Then u > 0 where u := (me−1 − lne−1) − (re − 1)(me − lne).

Proof. According to whether lY is dominant or not, we separate into two

cases. If lY is dominant, then from the assumption (ii), we have lne−1

lne
< re

which means that lY is (dominant) wild and hence by Lemma 9.3.1, we have
u > 0. (Notice that in this case we do not need the assumption (i).) Next if lY
is not dominant, together with (i), we conclude that u > 0 by Lemma 9.4.7
(II). (Notice that in this case we do not need (ii).) ��

Remark 9.4.9 As is clear from the proof, u > 0 holds under a weaker as-
sumption: (1) lY is dominant wild or (2) ne divides ne−1.

The above proposition will be often used later (e.g. for the proofs of Lemma
13.3.5, p242 and Lemma 13.4.5, p247). For u := a − (re − 1)b where a :=
me−1 − lne−1 and b := me − lne, the following inequalities are also valid.

Lemma 9.4.10 Let Y be a subbranch of type Cl. Then
{

u > b if lY is dominant
u ≤ b if lY is not dominant.

Proof. If lY is dominant, then (noting that type Cl is wild by Lemma 9.4.6),
we have a − reb > 0 by Lemma 9.3.1, and so u = b + (a − reb) > b.

If lY is not dominant, then a − reb ≤ 0 by Lemma 9.4.7 (I), and thus
u = b + (a − reb) ≤ b. ��

We provide examples for the respective cases of the above lemma.

Example (u > b)
l = 1, m = (6, 5, 4, 3, 2, 1) and n = (4, 4, 4).
Then Y is of type Cl and lY is dominant; in this case u = 1 > b = 0.

Example (u ≤ b)
l = 1, m = (6, 5, 4, 3, 2, 1) and n = (1, 1, 1).
Then Y is of type Cl and lY is not dominant; in this case u = 1 < b = 3.

Now we summarize the properties of type Cl obtained thus far.

Proposition 9.4.11 Let Y = n0∆0 + n1Θ1 + · · ·+ neΘe be a subbranch of a
branch X = m0∆0 + m1Θ1 + · · · + mλΘλ. Set

a := me−1 − lne−1, b := me − lne, c := ne−1, d := ne and
u := a − (re − 1)b.

Suppose that Y is of type Cl. Then the following statements hold:

(1) Y and lY are (not necessarily dominant) wild (Lemma 9.4.6).
(2) a > 0 (Lemma 9.4.7 (II)).
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(3) a − reb > 0 if lY is dominant (Lemma1 9.3.1), and
a − reb = lne+1 − me+1 ≤ 0 if lY is not dominant (Lemma 9.4.7 (I)).

(4) red − c = d > 0 (the definition (C.2) or (C.3) of type Cl).
(5) u = me − me+1 > 0 (Lemma 9.1.5).
(6) u > b if lY is dominant, and u ≤ b if lY is not dominant (Lemma

9.4.10).
(7) e + 1 ≤ λ (Corollary 9.4.4).

Let Y = n0∆0 + n1Θ1 + · · · + meΘe be a subbranch of of a branch
X = m0∆0 + m1Θ1 + · · · + mλΘλ; recall that Θi is a (−2)-curve if the
self-intersection number Θi · Θi = −2, and a chain of (−2)-curve is a set of
(−2)-curves of the form Θa + Θa+1 + · · · + Θb where a ≤ b. (It is valuable
to keep in mind that the existence of a chain of (−2)-curves often implies the
existence of various deformations.)

We shall show that if Y is of type Cl, then in most cases, the complement of
a subbranch Y of X contains a chain of (−2)-curves where the “complement”
is Θe+1 +Θe+2 + · · ·+Θλ (note that e+1 ≤ λ for type Cl as shown in Corol-
lary 9.4.4). cf. Example 9.1.11 for an exceptional case where the complement
contains no (−2)-curves.

Now we give the information on chains of (−2)-curves in the complement
of Y in X. Below we note that ri = 2 is equivalent to Θi being a (−2)-curve.

Proposition 9.4.12 Let Y = n0∆0 + n1Θ1 + · · · + neΘe be a subbranch of
type Cl. Set

a := me−1 − lne−1, b := me − lne, c := ne−1, d := ne and
u := a − (re − 1)b,

and (noting that u divides l by the definition of type Cl), write l = Nu where
N is a positive integer, and if u ≤ b, then (considering the division of b by
u ), let v be the positive integer such that b − vu ≥ 0 and b − (v + 1)u < 0.
Then the following holds:

(I) if b = 0, then λ = e + Nd − 1 and
re+1 = re+2 = · · · = rλ = 2, mλ−1 = 2u, and mλ = 2,

(II) if b ≥ 1 and u > b, then λ = e + Nd and
re+1 = re+2 = · · · = rλ−1 = 2, mλ−1 = b + u, and mλ = b,
(Note: rλ := mλ−1

mλ
= b + u

b
is an integer and so in this case, b divides

u.)
(III) if b ≥ 1, u ≤ b, and u does not divide b, then λ = e + Nd + v and

re+1 = re+2 = · · · = rλ−1 = 2, mλ−1 = b − (v − 1)u, and mλ =
b − vu.

(IV) if b ≥ 1, u ≤ b, and u divides b (so b = vu), then λ = e + Nd + v − 1
and re+1 = re+2 = · · · = rλ = 2, mλ−1 = 2u, and mλ = u.

1 If Y is of type Cl, then lY is wild by (1), and so we can apply Lemma 9.3.1 for
dominant wild Y .
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Remark 9.4.13 Note that u > b if lY is dominant, and u ≤ b otherwise.
See Proposition 9.4.11 (6).

Proof. (I): By Corollary 9.4.3 applied for b = 0, we have

me = ld, me+1 = ld − u, where d := ne. (9.4.5)

Since a sequence (me,me+1, . . . ,mλ) is inductively determined from me and
me+1 by the division algorithm, this sequence is uniquely characterized by the
following properties:

(a) me > me+1 > · · · > mλ > 0,
(b) me+i−1 + me+i+1

me+i
, (i = 0, 1, . . . , λ − e − 1) is an integer, and mλ divides

mλ−1.

Therefore (9.4.5) implies that me+i = ld − iu (i = 0, 1, . . . , λ − e − 1), an
arithmetic progression. Note that

me+(Nd) = ld − (Nd)u = ld − ld by l = Nu

= 0,

whereas me+(Nd−1) = u. Thus we conclude that λ = e + (Nd − 1) and

(me,me+1, . . . ,mλ) = (ld, ld − u, ld − 2u, . . . , 2u, u),

from which we deduce re+1 = re+2 = · · · = rλ = 2. This proves the assertion
(I).

(II) b ≥ 1 and u > b: The proof is essentially the same as that for (I). By
Corollary 9.4.3, we have

me = ld + b, me+1 = ld + b − u. (9.4.6)

As in (I), this implies that me+i = ld + b − iu, an arithmetic progression.
When i = Nd − 1, we have

me+(Nd−1) = ld + b − (Nd − 1)u
= ld + b − ld + u by l = Nu

= b + u,

and likewise me+(Nd) = b. On the other hand, we have me+(Nd+1) = b−u < 0
(note u > b by assumption), and thus λ = e + Nd. Therefore

me+i =

{
ld + b − iu, i = 0, 1, . . . , Nd − 1
b, i = Nd,

(9.4.7)

and re+1 = re+2 = · · · = rλ−1 = 2.
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(III) b ≥ 1, u ≤ b, and u does not divide b: The proof is similar to that of
(II); by Corollary 9.4.3, we have

me = ld + b, me+1 = ld + b − u, (9.4.8)

which implies that me+i = ld + b − iu, an arithmetic progression. Let v be
the positive integer such that b − vu ≥ 0 and b − (v + 1)u < 0. Then for
i = Nd + v − 1, we have

me+(Nd+v−1) = ld + b − (Nd + v − 1)u
= ld + b − ld − vu + u by l = Nu

= b − vu + u,

and likewise me+(Nd+v) = b − vu. Similarly we obtain me+(Nd+v+1) = b −
(v + 1)u. As we took the positive integer v in such a way that b− vu ≥ 0 and
b − (v + 1)u < 0, we have me+(Nd+v) = b − vu > 0 and me+(Nd+v+1) < 0;
hence λ = e + (Nd + v). We thus conclude that

me+i =

{
ld + b − iu, i = 0, 1, . . . , Nd + v − 1
b − vu, i = Nd + v,

from which we derive re+1 = re+2 = · · · = rλ−1 = 2. This proves the assertion.

(IV) b ≥ 1, u ≤ b, and u divides b (i.e. b = vu): Using the computation
of (III), we have me+(Nd+v) = b − vu = 0 in the present case, and thus
λ = e + (Nd + v − 1), and mλ−1 = 2u and mλ = u. The remaining statement
follows from the same argument as in (III). ��

Supplement

In the proof of Proposition 9.4.12, we only used the fact “u divides ld”. The
reader may wonder that in the definition of type Cl, we can replace “u divides
l” by a weaker condition “u divides ld”. Unfortunately this is not true, because
in that case the deformation atlas associated with lY does not necessarily
admit a complete propagation. This is confirmed by the following example,
which illustrates the essential role of the condition “u divides l” in type Cl.

Example 9.4.14 Let X = 32∆0+24Θ1+16Θ2+8Θ3. We take Y = 2∆0+2Θ1

and l = 12. Then lY satisfies the condition of type Cl except “u divides l”;
indeed u = 8 and d (:= ne) = 2, hence u does not divide l but divides ld = 24.

We show that the deformation atlas associated with lY does not admit a
complete propagation. First note that

H1 : w8(w2η2 + t2)12 − s = 0.

(The exponent 2 of t2 is necessary for making a first propagation possible.
See the second equality of (9.4.9) below.) We take g1 : z = 1/w, ζ = w2η −
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√
−1tw, where we note that there is no other choice of g1 which transforms

H1 to a hypersurface. Since

w8(w2η2 + t2)12 = w8

[
1

w2 (w2η)2 + t2
]12

,

the map g1 transforms the polynomial w8(w2η2 + t2)12 to

1
z8

[

z2

(

ζ + t
√
−1

1
z

)2

+ t2

]12

=
1
z8

[ (
z2ζ2 + 2

√
−1tzζ − t2

)
+ t2

]12

=
1
z8

[
z2ζ2 + 2

√
−1tzζ

]12

= z4[ zζ2 + 2
√
−1tζ ]12. (9.4.9)

Thus the following data gives a first propagation.
⎧
⎪⎨

⎪⎩

H1 : w8(w2η2 + t2)12 − s = 0
H′

1 : z4(zζ2 + 2
√
−1tζ)12 − s = 0

g1 : z = 1/w, ζ = w2η −
√
−1tw.

Similarly, we can construct a second propagation as follows: Noting that

H2 : η4 (w2η + 2
√
−1tw)12 − s = 0,

we take g2 : z = 1/w, ζ = w2η + 2
√
−1tw. (Note: there is no other choice of

g2 which transforms H2 to a hypersurface. See the second equality of (9.4.10)
below.) Since

η4(w2η + 2
√
−1tw)12 =

1
w8 (w2η)4

[
(w2η) + 2

√
−1tw

]12

,

the map g2 transforms a polynomial η4 (w2η + 2
√
−1tw )12 to

z8

(

ζ − 2
√
−1t

1
z

)4[(

ζ − 2
√
−1t

1
z

)

+2
√
−1t

1
z

]12

= z8

(

ζ − 2
√
−1t

1
z

)4

ζ12

= z4ζ12(zζ − 2
√
−1t)4.
(9.4.10)

Hence the following data gives a second propagation:
⎧
⎪⎨

⎪⎩

H2 : η4(w2η + 2
√
−1tw )12 − s = 0

H′
2 : z4ζ12(zζ − 2

√
−1t)4 − s = 0

g2 : z = 1/w, ζ = w2η + 2
√
−1w.

It remains to construct a third propagation. However this is impossible, which
is seen as follows. Note that H3 : w12η4(wη−2

√
−1t)4−s = 0, and a standard
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form of a deformation g3 of z = 1/w, ζ = w2η is given by z = 1/w, ζ =
w2η + f(t)w where f(t) is a holomorphic function in t. For brevity, we only
consider the case f(t) = αtk where α ∈ C and k is a positive integer (the
discussion below is valid for general f(t)). We claim that for any α and k, the
map g3 cannot transform

H3 : w12η4(wη − 2
√
−1t)4 − s = 0

to a hypersurface. In fact, since

w12η4(wη − 2
√
−1t)4 = w4(w2η)4

(
1
w

(w2η) − 2
√
−1t

)4

,

the map g3 transforms H3 to

1
z4

(

ζ − αtk
1
z

)4 (
zζ − αtk − 2

√
−1t

)4 − s = 0.

Clearly for any choice of α ∈ C and a positive integer k, the left hand side,
after expansion, contains a fractional term. So a further propagation is im-
possible, and consequently the deformation atlas associated with lY does not
admit a complete propagation. (For a non-standard form of g3 containing
higher or lower order terms, the argument is essentially the same though the
computation becomes complicated. cf. Example 5.5.12, p96.)




