
10

Two-sided estimates

In this chapter we harvest the crop of the earlier chapters. In order to show
the conjunction of the upper and lower estimates, we use key observations
on the Einstein relation, on the elliptic Harnack inequality and on upper and
lower heat kernel estimates.

Corollary 10.1. Assume that (Γ, µ) satisfies (p0) , (V D) and (H), then

(wTC)⇔ (aDρv)⇔ (TC)⇔ (ER)⇔ RLE (E)
(i)⇔ g (F ) , (10.1)

where F ∈ W0 is a consequence in the direction
(i)

=⇒ and an assumption for
(i)⇐= .

Proof All the implications are established in Remark 7.2, except the last
one which is given there for E, i.e., for g (E) and RLE (E). The implication
(ER) =⇒ RLE (E) is trivial. Its reverse is similarly simple; cρv ≤ E follows

as usual, and E < Cρv is RLE (E) itself. It is clear that the
(i)

=⇒ direction
holds and only its reverse needs some additional arguments. Let us assume
that ri = 2i, rn−1 < 2R ≤ rn, Bi = B (x, ri), Ai = Bi\Bi−1 and Vi = V (x, ri).
We have derived in Proposition 7.5 from (p0) , (V D) and (H) that

E (x, 2R) ≤ C

n−1∑

i=0

Vi+1ρ (x, ri, ri+1) .

Now we use a consequence (3.39) of (H):

ρ (x, ri, ri+1) ≤ C max
y∈Ai+1

gBi+1 (x, y)

to obtain



154 10 Two-sided estimates

E (x, 2R) ≤ C
n−1∑

i=0

Vi+1 max
y∈Ai+1

gBi+1 (x, y)

≤ C

n−1∑

i=0

F (x, ri+1) ≤ CF (x, rn)
n−1∑

i=0

2−iβ′

≤ CF (x, 2R) ,

where (7.12) was used to get the second inequality.
On the other hand, from (7.13) we obtain

c
F (x, 2R)
V (x, 2R)

(V (x,R)− V (x,R/2))

≤ min
y∈B(x,R)\B(x,R/2)

gB (x, y)
∑

z∈B(x,R)\B(x,R/2)

µ (z)

≤
∑

z∈B(x,R)\B(x,R/2)

gB (x, z) µ (z) ≤ E (x, 2R) ,

which means that
cF (x, 2R) ≤ E (x, 2R) .

Consequently, F � E, E ∈W0 and (TC) is satisfied which implies (ER) and
all the other equivalent conditions. �

Remark 10.1. Let us remark here that as a side result it follows that RLE (E)
or for F ∈W0, g (F ) implies ρv � F and E � F as well.

We have seen that

(wTC)⇔ (aDρv)⇔ (TC)⇔ (ER)⇔ RLE (E) . (10.2)

Let (∗) denote any of the equivalent conditions. Using this convention, we
can state the main result on weakly homogeneous graphs.

Theorem 10.1. If a weighted graph (Γ, µ) satisfies (p0) and (V D), then the
following statements are equivalent:

1. there is an F ∈W0 such that g (F ) is satisfied;
2. (H) and (wTC) hold;
3. (H) and (TC) hold;
4. (H) and (aDρv) hold;
5. (H) and (ER) hold;
6. (H) and RLE (E) hold;
7. there is an F ∈W0 such that UE (F ) and PLE (F ) are satisfied;
8. there is an F ∈W0 such that PMV (F ) and PSMV (F ) are satisfied.
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The proof of Theorem 10.1 contains two autonomous results. The first
one is UE (F )⇐⇒ PMV (F ), the second one is PLE (F )⇐⇒ PSMV (F ) .

Let us emphasize the importance of the condition (aDρv). It entirely re-
lies on volume and resistance properties, no assumption of stochastic nature
is involved, so the result is in the spirit of Einstein’s observation on heat
propagation. This condition in conjunction with (V D) and (H) provides the
characterization of heat kernel estimates in terms of volume and resistance
properties. Of course, the elliptic Harnack inequality is not easy to verify.
We learn from g (F ) that the main properties ensured by the elliptic Harnack
inequality that the equipotential surfaces of the local Green kernel gB(x,R) are
basically spherical and that the potential growth is regular.

10.1 Time comparison (the return route)

In this section we summarize the results which lead to the equivalence of 1...6,
and 6 =⇒ 7 in Theorem 10.1, and we prove the return route from 8 =⇒ 2.
The equivalence of 1 and 6 is established by Theorem 7.1, 7.4 and 10.1, see also
Remark 10.1. The implication 6 =⇒ 7 is given by Theorem 8.2, and 7⇐⇒ 8
is a combination of Theorem 8.2 and 9.1.

Now we prove the return route 8 =⇒ 2 of Theorem 10.1.
Our task is to verify the implications in the diagram below under the

assumption F ∈W0, (p0) and (V D).

PMV1 (F )
PSMV (F )

}
=⇒ PMVδ∗ (F )

PSMV (F )

}
=⇒ (H) (10.3)

PMV1 (F )
PSMV (F )

}
=⇒

DUE (F )
PLE (F )
(H)

⎫
⎬

⎭ =⇒ ρv � F
(H) =⇒ (TC)

(H) (10.4)

The heat kernel estimates are established as we indicated above. Now
we deal with the proof of the elliptic Harnack inequality (H) and the time
comparison principle (TC).

Theorem 10.2. If Γ satisfies (p0) , (V D) and there is an F ∈ W0 for which
PMV (F ) and PSMV (F ) are satisfied, then the elliptic Harnack inequality
holds.

Lemma 10.1. If (Γ, µ) satisfies (p0) , (V D) and PMV1 (F ) for an F ∈ W0,
then for a given ε, δ > 0, 0 < δ∗ ≤ 1

CF
ε

1
β′ δ

2 there are c1 < ... < c4 such that
PMVδ∗ (F ) holds for ε and cis.
Proof We would like to derive PMVδ∗ (F ) for ci from PMV1 (F ) which
holds for some other constants ai. We will apply PMV1 (F ) on the ball B =
B (x, δR) and re-scale the time accordingly. We have PMVδ∗ (F ) on B (x,R)
by
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max
c3F (x,R)≤i≤c4F (x,R)

y∈B

ui ≤ max
a3F (x,δR)≤i≤a4F (x,δR)

y∈B

ui

≤
a2F (x,δR)∑

j=a1F (x,δR)

∑

y∈B

uj (z) µ (z) ≤
c2F (x,R)∑

j=c1F (x,R)

∑

y∈B

uj (z)µ (z)

if the inequalities c1 < ... < c4, a1 < ... < a4

a4F (x, δR) ≥ c4F (x,R)
a3F (x, δR) ≤ c3F (x,R)
a2F (x, δR) ≤ c2F (x,R)
a1F (x, δR) ≥ c1F (x,R)

are satisfied. In addition we require c4 ≤ ε and 1
CF

(c3 − c2)
1

β′ δ
2 ≥ δ∗. We

can see that the following choice satisfies these restrictions. Let p = CF (δ∗)β

and q = cF (δ∗)β′
. Let us choose

c4 = ε, a4 =
2q

p
c4,

c3 < c4, a3 = qc3,

c2 < c3, a2 =
1
2

min {pc2, a3} ,

c1 =
1
2

min
{

a2

q
, c2

}
, a1 = qc1.

Let us observe that c1 can be arbitrarily small since c4 ≤ ε, and if the sub-
solution is not given from an m up to a4F (x, δR), it can be extended simply
by ui+m = P

B(x,R)
i um. �

Proof [of Theorem 10.2] Let us fix a set of constants c1 < c2 < c3 < c4 = ε
as in Lemma 10.1 and apply PSMV (F ) for them. Let us apply Lemma 10.1
for δ∗ to receive PMVδ∗ (F ) on B = B (x,R). As a consequence for D =
B (x, δ∗R), uk (y) = h (y) we obtain

max
D

h ≤ C

µ (D)

∑

y∈D

h (y)µ (y) . (10.5)

Similarly PSMV (F ) yields

min
D

h ≥ c

µ (D)

∑

y∈D

h (y) µ (y) . (10.6)

The combination of (10.5) and (10.6) gives the elliptic Harnack inequality for
the shrinking parameter δ∗. Finally (H) can be shown by using the standard
chaining argument along a finite chain of balls. The finiteness of the number
of balls follows from volume doubling via the bounded covering principle. �
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Theorem 10.3. If (p0) and (V D) hold, and there is an F ∈ W0 for which
PMV (F ) and PSMV (F ) are satisfied, then E � F and (TC) is true.

Proposition 10.1. Assume (p0) and (V D). If PLE (F ) for F ∈ W0 holds,
then

E (x,R) ≥ cF (x,R) .

Proof It follows from PLE (F ) that there are c, C, 1 > δ > δ′ > 0, 1 > ε >
ε′ > 0 such that for all x ∈ Γ,R > 1, A = B(x, 2R) and n : ε′F (x,R) < n <
εF (x,R), r = δ′R, y ∈ B = B (x, r)

P̃A
n (x, y) = PA

n (x, y) + PA
n+1(x, y) ≥ cµ(y)

V (x,R)
.

It follows for F = εF (x,R) and F ′ = ε′F (x,R) that

E(x, 2R) =
∞∑

k=0

∑

y∈B(x,2R)

PA
k (x, y) ≥

∞∑

k=0

∑

y∈B

1
2
P̃A

k (x, y)

≥
F∑

k=F ′

∑

y∈B

1
2
P̃A

k (x, y) ≥ c
V (x, r)
V (x,R)

F (x,R) ≥ cF (x,R).

�

Proposition 10.2. If DUE (F ) holds for an F ∈W0, then

ρ (x, 2R) v (x, 2R) ≤ CF (x, 2R) .

The first step towards the upper estimate of ρv is to show an upper esti-
mate for λ−1.

Proposition 10.3. If (p0),DUE (F ), (V D) hold and F ∈W0, then

λ(x,R) ≥ cF−1(x,R). (10.7)
Proof Assume that C1 > 1, n = F (x,C1R), y, z ∈ B = B(x,R). Let us
use Lemma 8.8 and DUE (F ) to obtain

P2n(y, z) ≤ C
µ(z)

(V (y, f(y, 2n))V (z, f(z, 2n)))1/2
.

From (V D) and F ∈W0 it follows for w = y or z d(x,w) ≤ R < C1R = f(x, n)
that

V (x,C1R)
V (w,C1R)

≤ C,

which by using (p0) yields that for all n,

Pn(y, z) ≤ C
µ(z)

V (x, f(x, n))
.
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If φ is the left eigenvector (measure) belonging to the smallest eigenvalue λ
of I − PB and normalized to (φ1) = 1, then

(1− λ)2n = φPB
2n1 =

∑

y,z∈B(x,R)

φ(z)PB
2n(z, y) ≤

∑

y∈B(x,R)

Cµ(y)
minz∈B(x,R) V (z, f(z, 2n))

≤ C max
z∈B(x,R)

(
R

f (z, 2n)

)α

= C max
z∈B(x,R)

(
1
C1

f (x, 2n)
f (z, 2n)

)α

≤ C

(
1
C1

Cf

)α

≤ 1
2

if C1 = 2C1/αCf . Using the inequality and 1−ξ ≥ 1
2 log 1

ξ for ξ ∈ [12 , 1], where
ξ = 1− λ(x,R), we have

λ(x,R) ≥ log 2
2n
≥ cF (x,C1R)−1 > cF (x,R)−1.

�
Proof [of Proposition 10.2] Let us recall from (3.9) that

λ (x, 2R) ρ (x,R, 2R) V (x,R) ≤ 1

in general and the application of (V D) and (10.7) immediately yields the
statement. �

Proposition 10.4. Assume (p0). If PLE (F ) for an F ∈W0 holds, then there
is a c > 0 such that for all R > 0, x ∈ Γ

ρ (x,R, 2R) v (x,R, 2R) ≥ cF (x, 2R)
Proof The inequality (3.16) establishes that

ρ (x,R, 2R) v (x,R, 2R) ≥ min
z∈∂B(x, 3

2 R)
E (z,R/2) .

From Proposition 10.1 we know that

min
z∈∂B(x, 3

2 R)
E (z,R/2) ≥ c min

z∈∂B(x, 3
2 R)

F (z,R/2) ,

and from F ∈W0, it follows that

ρ (x,R, 2R) v (x,R, 2R) ≥ min
z∈∂B(x, 3

2 R)
F (z,R/2) ≥ cF (x, 2R) .

�
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Proof [of Theorem 10.3] From Proposition 10.2 we have that ρv < CF
which together with Proposition 10.4, yields that

ρ (x,R, 2R) v (x,R, 2R) � F (x, 2R) .

Since F ∈W0, we have that ρv ∈W0. From Proposition 7.1 and from (aDρv)
the Einstein relation follows:

E (x, 2R) � ρ (x,R, 2R) v (x,R, 2R) � F (x, 2R) (10.8)

since (H) is ensured by PMV (F ) + PSMV (F ). Since F ∈W0 and E � F ,
it follows that E ∈ W0 which includes (TC) and, of course, (wTC) too, and
the proof of 8 =⇒ 2 in Theorem 10.1 is completed. �

10.2 Off-diagonal lower estimate

Now we are ready to show the off-diagonal lower estimate LE (F ) :

p̃n (x, y) ≥ c

V (x, f (x, n))
exp

(
−C

[
F (x, d)

n

] 1
β′−1

)
,

where d = d (x, y) , F ∈W1. The proof of the off-diagonal lower estimate uses
the modified Aronson’s chaining argument. We have shown that

(V D) + (TC) + (H) =⇒ DUE (E) , (10.9)
(
E
)

=⇒ DLE (E) ,

furthermore for F ∈W0 ,

(V D) + DUE (F ) + DLE (F ) + (H) =⇒ NDLE (F ) . (10.10)

The lower estimate will follow if we show for F ∈W1 that

(V D) + NDLE (F ) =⇒ LE (F ) . (10.11)

It results from (10.9− 10.11) that our final conclusion is

(V D) + (TC) + (H) =⇒ LE (E)

if β′ > 1 for E.

Theorem 10.4. Assume that (Γ, µ) satisfies (p0). Then for an F ∈W1

(V D) + NDLE (F ) =⇒ LE (F ) ,

and if E ∈W1

(V D) + (TC) + (H) =⇒ LE (E) . (10.12)
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Let us recall that
PnPm = Pn+m. (10.13)

We need a replacement of this property for the operator P̃n which is stated
below in Lemma 10.5.

Lemma 10.2. Assume that (p0) holds on (Γ, µ), then for all integers n ≥ l ≥
1 such that

n ≡ l (mod 2), (10.14)

we have for all x, y ∈ Γ

Pl(x, y) ≤ Cn−lPn(x, y) , (10.15)

with a constant C = C(p0).
Proof Due to the semigroup property (5.22), we have

Pk+2(x, y) =
∑

z∈Γ

Pk(x, z)P2(z, y) ≥ Pk(x, y)P2(y, y).

Using (p0), we obtain

P2(y, y) =
∑

z∼y

P (y, z)P (z, y) ≥ p0

∑

z∼y

P (y, z) = p0,

whence Pk+2(x, y) ≥ p0Pk(x, y). Iterating this inequality, we obtain (10.15)
with C = p

−1/2
0 . �

Lemma 10.3. Assume that (Γ, µ) satisfies (p0). Then for all integers n ≥ l≥
1 and all x, y ∈ Γ ,

P̃l(x, y) ≤ Cn−lP̃n(x, y), (10.16)

where C = C(p0).
Proof This is an immediate consequence of Lemma 10.2 because both
Pl(x, y) and Pl+1(x, y) can be estimated from above via either Pn(x, y) or
Pn+1(x, y), depending on the parity of n and l. �

Remark 10.2. Note that no parity condition is required here in contrast to the
condition (10.14) of Lemma 10.2.

Lemma 10.4. Assume that (Γ, µ) satisfies (p0). Then for all n,m ∈ N and
x, y ∈ Γ , we have the following inequality

P̃nP̃m(x, y) ≤ CP̃n+m+1(x, y), (10.17)

where C = C(p0).
Proof Observe that, by (10.13),

P̃nP̃m = (Pn + Pn+1)(Pm + Pm+1) = Pn+m + 2Pn+m+1 + Pn+m+2.

By Lemma 10.2, Pn+m(x, y) ≤ CPn+m+2, whence

P̃nP̃m (x, y) ≤ C(Pn+m+1 + Pn+m+2) = CP̃n+m+1.

�
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Lemma 10.5. Assume that (Γ, µ) satisfies (p0). Then for all x, y ∈ Γ and
k,m, n ∈ N such that n ≥ km + k − 1, we have the following inequality

(
P̃m

)k

(x, y) ≤ Cn−kmP̃n(x, y). (10.18)

Proof By induction, (10.17) implies

(
P̃m

)k

(x, y) ≤ Ck−1P̃km+k−1(x, y).

From inequality (10.16) with l = km + k − 1, we obtain

P̃km+k−1(x, y) ≤ Cn−km−(k−1)P̃n(x, y),

whence (10.18) follows. �
Proof [of Theorem 10.4] The proof starts with separation of three cases
according to different regions for d = d (x, y).

1. d(x, y) ≤ δf (x, n),
2. δf (x, n) < d(x, y) ≤ δ′n,
3. δ′n < d(x, y) ≤ n.

In Case 1 l = n by definition and cpCn
0 is a trivial bound. In Case 3

n

l
≥ QF

(
x,

d

l

)
≥ c
(n

l

)2

which results in l > cn and again the lower estimate is smaller than exp (−Cn)
which can be received from (p0).

Case 2
The proof uses varying radii for a chain of balls.
Assume that δf (x, n) < d (x, y) < δ′n. Consider a shortest path π between

x and y, write d = d (x, y),

m =
⌊

n

l (n,R,A)

⌋
− 1, (10.19)

R = f (x, n), S = f (y, n), A = B (x, d + R) ∪B (y, d + S). Let o1 = x and

r1 = �δc0f (o1,m)� ,

and choose o2 ∈ π : d (o1, o2) = r1 − 1 and recursively

ri+1 = �δc0f (oi+1,m)� (10.20)

and oi+1 ∈ π : d (oi, oi+1) = ri+1 − 1 and d (y, oi+1) < d (y, oi). Write Bi =
B (oi, ri). The iteration ends with the first j for which y ∈ Bj . From F ∈W0

and zi+1 ∈ Bi it follows that



162 10 Two-sided estimates

c1 ≤
f (zi,m)

f (zi+1,m)
≤ C2, (10.21)

and the from triangle inequality it is evident that

d (zi, zi+1) ≤ 2ri + ri+1 ≤
(

2 +
1
c1

)
δc0f (zi,m) . (10.22)

Here we specify c0 = (2 + 1/c1)
−1. Let us recall the definition of l = l (n, d,A):

n

l
≥ max

z∈A
CE

(
z,

d

l

)
, (10.23)

and taking the inverse, we obtain

min
z∈A

f

(
z,

1
C

n

l

)
≥ d

l
. (10.24)

Let us choose C > CF

(
1
δ

)β in (10.23) (using F ∈W1) such that

f

(
oi,

1
C

n

l

)
≤ δc0f

(
oi,

n

l

)
= ri.

By the definition of j,

d >

j−1∑

i=1

ri ≥ (j − 1)
d

l
,

consequently, j − 1 ≤ l

(
P̃m

)j

(x, y) ≥
∑

z1∈B0

...
∑

zj−1∈Bj−2

P̃m (x, z1) P̃m (z1, z2) ...P̃m (zj−1, y) .

Now we use NDLE to obtain
(
P̃m

)j

(x, y) ≥
∑

z1∈B0

...
∑

zj−1∈Bj−2

cµ (z1)
V (x, f (x,m))

...
cµ (y)

V (zj−1, f (zj−1,m))

≥ cj−1 V (o1, r1)
V (x, f (x,m))

...
V (oj−1, rj−1)

V (zj−2, f (zj−2,m))
µ (y)

V (zj−1, f (zj−1,m))

≥ cj−1 µ (y)
V (x, f (x,m))

V (o1, r1)
V (z2, f (z2,m))

..
V (oj−2, rj−2)

V (zj−1, f (zj−1,m))
.

If we use (10.20) , (10.21) and (V D) it follows that



10.2 Off-diagonal lower estimate 163

(
P̃m

)j

(x, y) ≥ cj−1µ (y)
V (x, f (x,m))

V (o1, r1)

V
(
z2,

1
δc0c1

r1

) ..
V (oj−2, rj−2)

V
(
zj−1,

1
δc0c1

rj−2

)

≥ cj−1µ (y)
V (x, f (x,m))

(c′)j−2

≥ cµ (y)
V (x, f (x, n))

exp [−C (j − 1)]

≥ cµ (y)
V (x, f (x, n))

exp [−Cl] (10.25)

Finally from Lemma 10.5 we know that there is a c > 0 such that

P̃n ≥ cn−lm
(
P̃m

)l

if n ≥ lm + l− 1. Let us note that from (10.19) it follows that n− lm + l ≤ 3l
which results in

P̃n ≥ cn−lm
(
P̃m

)l

≥ c′
c3l

V (x, f (x, n))
exp (−Cl)

≥ c

V (x, f (x, n))
exp

[
−C

(
F (x, d (x, y))

n

) 1
β′−1

]
.

This completes the proof of the lower estimate. �




