## 4 Classification at Infinity and Global Solutions

A classification similar to that given in Chapter 2 can be performed at $+\infty$. This is the topic of Sections 4.1-4.3.

The results of Chapters 2, 3 apply to local solutions, i.e., solutions up to a random time. In Sections 4.4, 4.5, we study the existence and uniqueness of a global solution, i.e., a solution in the sense of Definition 1.28. This is done for the SDEs that have no more than one singular point.

Throughout this chapter, we assume that $\sigma(x) \neq 0$ for all $x \in \mathbb{R}$.

### 4.1 Classification at Infinity: The Results

Throughout this section, we assume that

$$
\begin{equation*}
\frac{1+|b|}{\sigma^{2}} \in L_{\mathrm{loc}}^{1}([a, \infty)) \tag{4.1}
\end{equation*}
$$

for some $a \in \mathbb{R}$.
We will use the functions

$$
\begin{align*}
& \rho(x)=\exp \left(-\int_{a}^{x} \frac{2 b(y)}{\sigma^{2}(y)} d y\right), \quad x \in[a, \infty)  \tag{4.2}\\
& s(x)=-\int_{x}^{\infty} \rho(y) d y, \quad x \in[a, \infty) \tag{4.3}
\end{align*}
$$

and the notation

$$
\begin{aligned}
\bar{T}_{\infty} & =\lim _{n \rightarrow \infty} T_{n} \\
\bar{T}_{a, \infty} & =\bar{T}_{a} \wedge \bar{T}_{\infty}
\end{aligned}
$$

Theorem 4.1. Suppose that

$$
\int_{a}^{\infty} \rho(x) d x=\infty
$$

If $x_{0} \in[a, \infty)$, then there exists a unique solution P defined up to $T_{a}$. We have $T_{a}<\infty$ P-a.s.

If the conditions of Theorem 4.1 are satisfied, we will say that $+\infty$ has type $A$.

Theorem 4.2. Suppose that

$$
\int_{a}^{\infty} \rho(x) d x<\infty, \quad \int_{a}^{\infty} \frac{|s(x)|}{\rho(x) \sigma^{2}(x)} d x=\infty
$$

If $x_{0} \in[a, \infty)$, then there exists a unique solution P defined up to $T_{a}$. If moreover $x_{0}>a$, then $\mathrm{P}\left\{T_{a}=\infty\right\}>0$ and $\lim _{t \rightarrow \infty} X_{t}=+\infty \mathrm{P}$-a.s. on $\left\{T_{a}=\infty\right\}$.

If the conditions of Theorem 4.2 are satisfied, we will say that $+\infty$ has type $B$.

Theorem 4.3. Suppose that

$$
\int_{a}^{\infty} \rho(x) d x<\infty, \quad \int_{a}^{\infty} \frac{|s(x)|}{\rho(x) \sigma^{2}(x)} d x<\infty
$$

If $x_{0} \in(a, \infty)$, then there exists a unique solution P defined up to $\bar{T}_{a, \infty}-$. We have $\mathrm{P}\left\{\bar{T}_{\infty}<\infty\right\}>0$. (In other words, the solution explodes into $+\infty$ with strictly positive probability.)

If the conditions of Theorem 4.3 are satisfied, we will say that $+\infty$ has type $C$.

As a consequence of the above results, we obtain Feller's criterion for explosions (see [16], [29, Ch. 5, Th. 5.29], or [34, § 3.6]).

Corollary 4.4. Suppose that $x_{0} \in(a, \infty)$ and P is a solution defined up to $\bar{T}_{a, \infty}-$. Then it explodes into $+\infty$ with strictly positive probability (i.e., $\mathrm{P}\left\{\bar{T}_{\infty}<\infty\right\}>0$ ) if and only if

$$
\int_{a}^{\infty} \rho(x) d x<\infty, \quad \int_{a}^{\infty} \frac{|s(x)|}{\rho(x) \sigma^{2}(x)} d x<\infty
$$

### 4.2 Classification at Infinity: Informal Description

If $+\infty$ has type $\mathbf{A}$, then a solution cannot explode into $+\infty$. Moreover, a solution is recurrent in the following sense. If there are no singular points between the starting point $x_{0}$ and a point $a<x_{0}$, then the solution reaches the level $a$ a.s. An example of a SDE, for which $+\infty$ has type A, is provided by the equation

$$
d X_{t}=d B_{t}, \quad X_{0}=x_{0}
$$

If $+\infty$ has type $\mathbf{B}$, then there is no explosion into $+\infty$ and a solution tends to $+\infty$ with strictly positive probability. In other words, a solution is transient. For the SDE


| Type | Behaviour |
| :---: | :---: |
| A | recurrent |
| B | transient |
| C | explosion |

$$
\begin{aligned}
& \rho(x)=\exp \left(-\int_{a}^{x} \frac{2 b(y)}{\sigma^{2}(y)} d y\right), \\
& s(x)=-\int_{x}^{\infty} \rho(y) d y
\end{aligned}
$$

Fig. 4.1. Classification at infinity

$$
d X_{t}=\mu d t+\sigma d B_{t}, \quad X_{0}=x_{0}
$$

with $\mu>0,+\infty$ has type B (this follows from Theorem 5.5).
If $+\infty$ has type $\mathbf{C}$, then a solution explodes into $+\infty$ (i.e., it reaches $+\infty$ within a finite time) with strictly positive probability. A corresponding example is provided by the equation

$$
d X_{t}=\varepsilon\left|X_{t}\right|^{1+\varepsilon} d t+d B_{t}, \quad X_{0}=x_{0}
$$

with $\varepsilon>0$ (this follows from Theorem 5.5).


Fig. 4.2. Behaviour of solutions for various types of infinity. The graphs show simulated paths of solutions.

### 4.3 Classification at Infinity: The Proofs

Proof of Theorem 4.1. Existence. Consider the function

$$
r(x)=\int_{a}^{x} \rho(y) d y, \quad x \in[a, \infty)
$$

Let $B$ be a $\left(\mathcal{G}_{t}\right)$-Brownian motion started at $r\left(x_{0}\right)$ on a filtered probability space $\left(\Omega, \mathcal{G},\left(\mathcal{G}_{t}\right), \mathrm{Q}\right)$. Let us consider

$$
\begin{aligned}
\varkappa(y) & =\rho\left(r^{-1}(y)\right) \sigma\left(r^{-1}(y)\right), \quad y \in[0, \infty), \\
A_{t} & = \begin{cases}\int_{0}^{t} \varkappa^{-2}\left(B_{s}\right) d s & \text { if } t<T_{0}(B), \\
\infty & \text { if } t \geq T_{0}(B), \\
\tau_{t} & =\inf \left\{s \geq 0: A_{s}>t\right\}, \\
Y_{t} & =B_{\tau_{t}}, \quad t \geq 0 .\end{cases}
\end{aligned}
$$

Arguing in the same way as in the proof of Theorem 2.11, we check that $A_{T_{0}(B)-}=T_{0}(Y)<\infty$ Q-a.s. Set $Z=s^{-1}(Y)$. The estimates used in (2.23) show that, for any $c>x_{0}$,

$$
\begin{equation*}
\mathrm{E}_{\mathrm{Q}} \int_{0}^{T_{a, c}(Z)}\left(1+\left|b\left(Z_{t}\right)\right|+\sigma^{2}\left(Z_{t}\right)\right) d t<\infty \tag{4.4}
\end{equation*}
$$

Furthermore, $T_{a}(Z)=T_{0}(Y)<\infty$ Q-a.s. Letting $c \rightarrow+\infty$ in (4.4), we get

$$
\begin{equation*}
\int_{0}^{T_{a}(Z)}\left(1+\left|b\left(Z_{t}\right)\right|+\sigma^{2}\left(Z_{t}\right)\right) d t<\infty \quad \text { Q-a.s. } \tag{4.5}
\end{equation*}
$$

The proof of existence is now completed in the same way as in Theorem 2.11.
Uniqueness. Uniqueness follows from Lemma B. 6 applied to the stopping times $T_{a, n}$.

The property $T_{a}<\infty \mathrm{P}$-a.s. is a consequence of (4.5).
Proof of Theorem 4.2. Existence. Let $B$ be a $\left(\mathcal{G}_{t}\right)$-Brownian motion started at $s\left(x_{0}\right)$ on a filtered probability space $\left(\Omega, \mathcal{G},\left(\mathcal{G}_{t}\right), \mathrm{Q}\right)$. Let us consider

$$
\begin{aligned}
\varkappa(y) & =\rho\left(s^{-1}(y)\right) \sigma\left(s^{-1}(y)\right), \quad y \in[\alpha, 0), \\
A_{t} & =\left\{\begin{array}{ll}
\int_{0}^{t} \varkappa^{-2}\left(B_{s}\right) d s & \text { if } t<T_{\alpha, 0}(B), \\
\infty & \text { if } t \geq T_{\alpha, 0}(B), \\
\tau_{t} & =\inf \left\{s \geq 0: A_{s}>t\right\}, \\
Y_{t} & =B_{\tau_{t}}, \quad t \geq 0,
\end{array},=\right.\text {, }
\end{aligned}
$$

where $\alpha=s(a)$. With the same arguments as in the proof of Theorem 2.11 we check that $A_{T_{\alpha, 0}(B)-}=T_{\alpha, 0}(Y)$ Q-a.s. Furthermore, for any $\varepsilon>0$,

$$
\int_{-\varepsilon}^{0} \frac{|y|}{\varkappa^{2}(y)} d y=\int_{s^{-1}(-\varepsilon)}^{\infty} \frac{|s(x)|}{\rho(x) \sigma^{2}(x)} d x=\infty
$$

By Corollary A.24, $A_{T_{\alpha, 0}(B)-}$ is Q-a.s. infinite on the set $\left\{T_{0}(B)<T_{\alpha}(B)\right\}$. Hence, $T_{0}(Y)=\infty$ Q-a.s. Thus, the process $Z=s^{-1}(Y)$ is correctly defined. The arguments used in (2.23) show that, for any $c>x_{0}$,

$$
\mathrm{E}_{\mathrm{Q}} \int_{0}^{T_{a, c}(Z)}\left(1+\left|b\left(Z_{t}\right)\right|+\sigma^{2}\left(Z_{t}\right)\right) d t<\infty
$$

By letting $c \rightarrow+\infty$, we get, for any $t \geq 0$,

$$
\int_{0}^{t \wedge T_{a}(Z)}\left(1+\left|b\left(Z_{t}\right)\right|+\sigma^{2}\left(Z_{t}\right)\right) d t<\infty \quad \text { Q-a.s. }
$$

The proof of existence is now completed in the same way as in Theorem 2.11.
Uniqueness. The uniqueness of a solution follows from Lemma B. 6 applied to the stopping times $T_{a, n}$.

The properties $\mathrm{P}\left\{T_{a}=\infty\right\}>0$ and $\lim _{t \rightarrow \infty} X_{t}=+\infty$ P-a.s. on $\left\{T_{a}=\infty\right\}$ follow from the properties that $\mathrm{Q}\left\{T_{0}(B)<T_{\alpha}(B)\right\}>0$, and on the set $\left\{T_{0}(B)<T_{\alpha}(B)\right\}$ we have $Y_{t} \xrightarrow[t \rightarrow \infty]{\mathrm{Q} \text {-a.s. }} 0$.

Proof of Theorem 4.3. The proof is similar to the proof of Theorem 2.14.

### 4.4 Global Solutions: The Results

Throughout this section, we consider global solutions, i.e., solutions in the sense of Definition 1.28.

Theorem 4.5. Suppose that SDE (1) has no singular points, i.e.,

$$
\frac{1+|b|}{\sigma^{2}} \in L_{\mathrm{loc}}^{1}(\mathbb{R})
$$

(i) If $-\infty$ and $+\infty$ have types $A$ or $B$, then there exists a unique solution P . For any point $a \in \mathbb{R}$, we have $\mathrm{P}\left\{T_{a}<\infty\right\}>0$.
(ii) If $-\infty$ or $+\infty$ has type $C$, then there exists no solution.

Theorem 4.6. Suppose that zero is the unique singular point for (1). Let $x_{0}>0$.
(i) If $+\infty$ has type $C$, then there exists no solution.
(ii) If zero has type $(i, j)$ with $i=0,1,4,5,6, j=0,1$ (we exclude the case $i=j=0$ ), then there exists no solution.
(iii) If zero has type $(i, j)$ with $i=2,3, j=0,1,-\infty$ has type $A$ or $B$, and $+\infty$ has type $A$ or $B$, then there exists a unique solution P . We have $\mathrm{P}\left\{T_{0}<\infty\right\}>0$ and $X \leq 0$ on $\llbracket T_{0}, \infty \llbracket \mathrm{P}$-a.s.
(iv) If zero has type $(i, j)$ with $i=2,3, j=0,1$ and $-\infty$ has type $C$, then there exists no solution.
( $\mathbf{v}$ ) If zero has type $(i, j)$ with $i=0,1,4,5,6, j=2$ and $+\infty$ has type $A$ or $B$, then there exists a unique solution P . It is positive and $\mathrm{P}\left\{T_{0}<\infty\right\}>0$.
(vi) If zero has type $(i, j)$ with $i=2,3, j=2,-\infty$ has type $A$ or $B$, and $+\infty$ has type $A$ or $B$, then there exist different solutions.
(vii) If zero has type $(i, j)$ with $i=2,3, j=2$, $-\infty$ has type $C$, and $+\infty$ has type $A$ or $B$, then there exists a unique solution P . It is positive and $\mathrm{P}\left\{T_{0}<\infty\right\}>0$.
(viii) If zero has type $(i, j)$ with $j=3,4,5$ and $+\infty$ has type $A$ or $B$, then there exists a unique solution. It is strictly positive.
(ix) If zero has type $(i, j)$ with $j=6$, then there exists no solution.

Theorem 4.7. Suppose that zero is the unique singular point for (1). Let $x_{0}=0$.
(i) If zero has type $(i, j)$ with $i=0,1,4,5,6, j=0,1,4,5,6$ (we exclude the case $i=j=0$ ), then there exists no solution.
(ii) If zero has type $(i, j)$ with $i=0,1,4,5,6, j=2,3$ and $+\infty$ has type $A$ or $B$, then there exists a unique solution. It is positive.
(iii) If zero has type $(i, j)$ with $i=0,1,4,5,6, j=2,3$ and $+\infty$ has type $C$, then there exists no solution.
(iv) If zero has type ( $i, j$ ) with $i=2,3, j=0,1,4,5,6$ and $-\infty$ has type $A$ or $B$, then there exists a unique solution. It is negative.
( v ) If zero has type $(i, j)$ with $i=2,3, j=0,1,4,5,6$ and $-\infty$ has type $C$, then there exists no solution.
(vi) If zero has type $(i, j)$ with $i=2,3, j=2,3,-\infty$ has type $A$ or $B$, and $+\infty$ has type $A$ or $B$, then there exist different solutions.
(vii) If zero has type $(i, j)$ with $i=2,3, j=2,3,-\infty$ has type $A$ or $B$, and $+\infty$ has type $C$, then there exists a unique solution. It is negative.
(viii) If zero has type $(i, j)$ with $i=2,3, j=2,3,-\infty$ has type $C$, and $+\infty$ has type $A$ or $B$, then there exists a unique solution. It is positive.
(ix) If zero has type $(i, j)$ with $i=2,3, j=2,3,-\infty$ has type $C$, and $+\infty$ has type $C$, then there exists no solution.

Remark. Theorems 4.6, 4.7 reveal an interesting effect. It may happen that a branch point does not disturb the uniqueness of a global solution. (As we have seen in Chapter 3, a branch point always disturbs the uniqueness of a local solution.) The explanation of this effect is as follows. Suppose, for example, that zero is a branch point, $-\infty$ has type $C,+\infty$ has type A or B , and $x_{0} \geq 0$. If a solution becomes strictly negative with strictly positive

Table 4.1. Existence and uniqueness in the case with no singular points. As an example, line 2 corresponds to the situation, where $-\infty$ has type C and there are no restrictions on the type of $+\infty$. The table shows that in this case there exists no solution because there is an explosion into $-\infty$.

| Type <br> of $-\infty$ | Type <br> of $+\infty$ | Exis- <br> tence | Uniq- <br> ness | Comments |
| :---: | :---: | :---: | :---: | :--- |
| A B | A B | + | + | solution can reach any point |
| C |  | - | + | explosion into $-\infty$ |
|  | C | - | + | explosion into $+\infty$ |

probability, then it explodes into $-\infty$ with strictly positive probability, and hence, it is not a global solution. Thus, any global solution should be positive. But there exists a unique positive solution.

### 4.5 Global Solutions: The Proofs

Proof of Theorem 4.5. (i) This statement is proved similarly to Theorems 4.1, 4.2.
(ii) Without loss of generality, we may assume that $+\infty$ has type $C$. Suppose that there exists a solution P. Fix $a<x_{0}$. Let Q be the solution defined up to $\bar{T}_{a, \infty}-$ (it is provided by Theorem 4.3). Then $\mathrm{Q}\left\{\bar{T}_{\infty}<\infty\right\}>0$. Hence, there exist $t>0$ and $c>a$ such that $\mathrm{Q}\left\{\bar{T}_{\infty}<t \wedge T_{c}\right\}=\theta>0$. Then, for any $n>c$, we have $\mathrm{Q}\left\{T_{n}<t \wedge T_{c}\right\} \geq \theta$. The set $\left\{T_{n}<t \wedge T_{c}\right\}$ belongs to $\mathcal{F}_{T_{c, n}}$, and $\mathrm{Q} \mid \mathcal{F}_{T_{c, n}}$ is a solution up to $T_{c, n}$. It follows from the uniqueness of a solution that, for any $n>c, \operatorname{P}\left\{T_{n}<t \wedge T_{c}\right\} \geq \theta$. But this is a contradiction.

Proof of Theorem 4.6. (i) The proof is similar to the proof of Theorem 4.5 (ii).
(ii) Suppose that there exists a solution P. Fix $a>x_{0}$. Then $\mathrm{P} \mid \mathcal{F}_{T_{0, a}}$ is a solution up to $T_{0, a}$. It follows from the results of Section 2.3 that $\mathrm{P}\left\{T_{0, a}<\infty\right.$ and $\left.X_{T_{0, a}}=0\right\}>0$. Hence, $\mathrm{P}\left\{T_{0}<\infty\right\}>0$. But this contradicts Theorem 3.2.
(iii) Existence. The results of Section 2.3 ensure that there exists a solution $\mathrm{R}_{0}$ with $X_{0}=0$ defined up to $T_{-1}$. Employing similar arguments as in the proofs of Theorems 2.12 and 2.16 (ii), we construct a solution $\mathrm{R}_{-1}$ with $X_{0}=-1$ defined up to $\infty$. Let $\mathrm{R}_{-1}^{\prime}$ be the image of $\mathrm{R}_{-1}$ under the map $\omega \mapsto \omega+1$. We consider $\mathrm{R}_{-1}^{\prime}$ as a measure on $C_{0}\left(\mathbb{R}_{+}\right)$. Set $\widetilde{\mathrm{R}}_{0}=\mathrm{R}_{0} \circ \Phi_{T_{-1}}^{-1}$ ( $\Phi$ is defined by (B.1)). Let $Q_{0}$ be the image of $\widetilde{R}_{0} \times R_{-1}^{\prime}$ under the map

Table 4.2. Existence and uniqueness in the case, where zero is the unique singular point. The starting point is greater than zero.

| Left <br> type <br> of zero | Right <br> type <br> of zero | Type <br> of $-\infty$ | Type <br> of $+\infty$ | Exis- <br> tence | Uniq- <br> ness | Comments |
| :---: | :---: | :---: | :---: | :---: | :---: | :--- |
|  |  |  | C | - | + | explosion into $+\infty$ |
| 01456 | 01 |  |  | - | + | killing at zero |
| 23 | 01 | A B | A B | + | + | passing through zero |
| 23 | 01 | C |  | - | + | explosion into $-\infty$ |
| 01456 | 2 |  | A B | + | + | reflection at zero |
| 23 | 2 | A B | A B | + | - | branching at zero |
| 23 | 2 | C | A B | + | + | reflection at zero |
|  | 345 |  | A B | + | + | solution is strictly positive |
|  | 6 |  |  | - | + | killing at zero |

Table 4.3. Existence and uniqueness in the case, where zero is the unique singular point. The starting point is equal to zero.

| Left <br> type <br> of zero | Right <br> type <br> of zero | Type <br> of $-\infty$ | Type <br> of $+\infty$ | Exis- <br> tence | Uniq- <br> ness | Comments |
| :--- | :---: | :---: | :---: | :---: | :---: | :--- |
| 01456 | 01456 |  |  | - | + | killing at zero |
| 01456 | 23 |  | A B | + | + | solution is positive |
| 01456 | 23 |  | C | - | + | explosion into $+\infty$ |
| 23 | 01456 | A B |  | + | + | solution is negative |
| 23 | 01456 | C |  | - | + | explosion into $-\infty$ |
| 23 | 23 | A B | A B | + | - | branching at zero |
| 23 | 23 | A B | C | + | + | solution is negative |
| 23 | 23 | C | A B | + | + | solution is positive |
| 23 | 23 | C | C | - | + | explosion into $-\infty$ or $+\infty$ |

$$
C\left(\mathbb{R}_{+}\right) \times C_{0}\left(\mathbb{R}_{+}\right) \ni\left(\omega_{1}, \omega_{2}\right) \longmapsto G\left(\omega_{1}, \omega_{2}, T_{-1}\left(\omega_{1}\right)\right) \in C\left(\mathbb{R}_{+}\right)
$$

Using Lemma B.9, one can verify that $\mathrm{Q}_{0}$ is a solution of (1) with $X_{0}=0$.
Arguing in the same way as in the proofs of Theorems 4.1, 4.2, we deduce that there exists a solution Q with $X_{0}=x_{0}$ defined up to $T_{0}$. For this solution, $\mathrm{Q}\left\{T_{0}<\infty\right\}>0$. Set $\widetilde{\mathrm{Q}}=\mathrm{Q} \circ \Phi_{T_{0}}^{-1}(\Phi$ is defined by (B.1)). Let P be the image of $\widetilde{Q} \times Q_{0}$ under the map

$$
C\left(\mathbb{R}_{+}\right) \times C_{0}\left(\mathbb{R}_{+}\right) \ni\left(\omega_{1}, \omega_{2}\right) \longmapsto G\left(\omega_{1}, \omega_{2}, T_{0}\left(\omega_{1}\right)\right) \in C\left(\mathbb{R}_{+}\right)
$$

Using Lemma B.9, one can verify that P is a solution of (1).
Uniqueness. The uniqueness of a solution follows from Theorem 3.3 (ii) and Lemma B. 6 applied to the stopping times $T_{-n, n}$.

The properties $\mathrm{P}\left\{T_{0}<\infty\right\}>0$ and $X \leq 0$ on $\llbracket T_{0}, \infty \llbracket \mathrm{P}$-a.s. follow from the construction of the solution.
(iv) Suppose that there exists a solution P . For any $a>x_{0}, \mathrm{P} \mid \mathcal{F}_{T_{0, a}}$ is a solution up to $T_{0, a}$. Applying the results of Section 2.3, we conclude that $\mathrm{P}\left\{T_{0}<\infty\right\}>0$. Set $\mathrm{P}^{\prime}=\mathrm{P}\left(\cdot \mid T_{0}<\infty\right), \mathrm{P}_{0}=\mathrm{P}^{\prime} \circ \Theta_{T_{0}}^{-1}$, where $\Theta$ is defined by (B.2). By Lemma B.7, $\mathrm{P}_{0}$ is a solution of (1) with $X_{0}=0$. Thus, $\mathrm{P}_{0} \mid \mathcal{F}_{T_{-1,1}}$ is a solution with $X_{0}=0$ up to $T_{-1,1}$. Applying Theorem 3.3 (i), we deduce that $X \leq 0$ on $\llbracket 0, T_{-1} \rrbracket \mathrm{P}_{0}$-a.s. Moreover, $\mathrm{P}_{0}\left\{\forall t \geq T_{0}, X_{t}=0\right\}=0$ (see the proof of Theorem 3.2). Therefore, there exists $c<0$ such that $\mathrm{P}_{0}\left\{T_{c}<\infty\right\}>$ c. Consider $\mathrm{P}_{0}^{\prime}=\mathrm{P}_{0}\left(\cdot \mid T_{c}<\infty\right), \mathrm{P}_{c}^{\prime}=\mathrm{P}_{0}^{\prime} \circ \Theta_{T_{c}}^{-1}$. By Lemma B.7, $\mathrm{P}_{c}^{\prime}$ is a solution of (1) with $X_{0}=c$. But this contradicts point (i) of this theorem.
(v) Existence. Using similar arguments as in the proof of Theorem 2.12, we conclude that there exists a positive solution P.

Uniqueness. Suppose that there exists another solution $\mathrm{P}^{\prime}$. Then, for any $n>x_{0}, \mathrm{P}^{\prime} \mid \mathcal{F}_{T_{n}}$ is a solution up to $T_{n}$. It follows from the results of Section 2.3 that $\mathrm{P}^{\prime} \mid \mathcal{F}_{T_{n}}$ is positive. Due to Theorem 2.12, $\mathrm{P}^{\prime}\left|\mathcal{F}_{T_{n}}=\mathrm{P}\right| \mathcal{F}_{T_{n}}$. Lemma B. 6 yields that $\mathrm{P}^{\prime}=\mathrm{P}$.

The property $\mathrm{P}\left\{T_{0}<\infty\right\}>0$ follows from Theorem 2.12.
(vi) Similar arguments as in the proof of Theorem 2.12 allow us to deduce that there exists a positive solution $P$.

Arguing in the same way as in the proof of point (iii) above, we construct a solution $\mathrm{P}^{\prime}$ such that $\mathrm{P}^{\prime}\left\{T_{0}<\infty\right\}>0$ and $X \leq 0$ on $\llbracket T_{0}, \infty \llbracket \mathrm{P}^{\prime}$-a.s. Moreover, $\mathrm{P}^{\prime}\left\{\forall t \geq T_{0}, X_{t}=0\right\}=0$ (see the proof of Theorem 3.2). Hence, $\mathrm{P}^{\prime}$ is not positive, and therefore, P and $\mathrm{P}^{\prime}$ are two different solutions.
(vii) Existence. Using similar arguments as in the proof of Theorem 2.12, we deduce that there exists a positive solution P .

Uniqueness. Suppose that there exists another solution $\mathrm{P}^{\prime}$. Assume first that it is not positive. Then there exists $c<0$ such that $\mathrm{P}\left\{T_{c}<\infty\right\}>0$. Set $\mathrm{P}^{\prime}=\mathrm{P}\left(\cdot \mid T_{c}<\infty\right), \mathrm{P}_{c}=\mathrm{P}^{\prime} \circ \Theta_{T_{c}}^{-1}$. By Lemma B.7, $\mathrm{P}_{c}$ is a solution of (1) with $X_{0}=c$. But this contradicts point (i) of this theorem.

Assume now that $\mathrm{P}^{\prime}$ is positive. By Theorem 2.12, for any $n>x_{0}$, $\mathrm{P}^{\prime}\left|\mathcal{F}_{T_{n}}=\mathrm{P}\right| \mathcal{F}_{T_{n}}$. Lemma B. 6 yields that $\mathrm{P}^{\prime}=\mathrm{P}$.

The property $\mathrm{P}\left\{T_{0}<\infty\right\}>0$ follows from Theorem 2.12.
(viii) Existence. Using the same arguments as in the proofs of Theorems 2.15-2.17, we deduce that there exists a strictly positive solution P.

Uniqueness. Suppose that there exists another solution $\mathrm{P}^{\prime}$. It follows from the results of Section 2.3 that, for any $n>x_{0}, \mathrm{P}^{\prime}\left|\mathcal{F}_{T_{n}}=\mathrm{P}\right| \mathcal{F}_{T_{n}}$. By Lemma B.6, $\mathrm{P}^{\prime}=\mathrm{P}$.
(ix) This statement follows from Theorem 2.14.

Proof of Theorem 4.7. (i) This statement follows from Theorem 3.2.
(ii) This statement is proved in the same way as Theorem 4.6 (v).
(iii) Suppose that there exists a solution $P$. It follows from the results of Section 2.3 that P is positive. Moreover, $\mathrm{P}\left\{\forall t \geq 0, X_{t}=0\right\}=0$ (see the proof of Theorem 3.2). Hence, there exists $a>0$ such that $\mathrm{P}\left\{T_{a}<\infty\right\}>0$. Set $\mathrm{P}^{\prime}=\mathrm{P}\left(\cdot \mid T_{a}<\infty\right), \mathrm{P}_{a}=\mathrm{P}^{\prime} \circ \Theta_{T_{a}}^{-1}$. By Lemma B.7, $\mathrm{P}_{a}$ is a solution of (1) with $X_{0}=a$. But this contradicts Theorem 4.6 (i).
(vi) Using similar arguments as in Section 2.5, one can construct both a positive solution and a negative solution.
(vii) This statement is proved in the same way as Theorem 4.6 (vii).
(ix) The proof of this statement is similar to the proof of point (iii).

