
4 Classification at Infinity
and Global Solutions

A classification similar to that given in Chapter 2 can be performed at +∞.
This is the topic of Sections 4.1–4.3.

The results of Chapters 2, 3 apply to local solutions, i.e., solutions up to
a random time. In Sections 4.4, 4.5, we study the existence and uniqueness of
a global solution, i.e., a solution in the sense of Definition 1.28. This is done
for the SDEs that have no more than one singular point.

Throughout this chapter, we assume that σ(x) �= 0 for all x ∈ R.

4.1 Classification at Infinity: The Results

Throughout this section, we assume that

1 + |b|
σ2

∈ L1
loc([a,∞)) (4.1)

for some a ∈ R.
We will use the functions

ρ(x) = exp
(
−

∫ x

a

2b(y)
σ2(y)

dy

)
, x ∈ [a,∞), (4.2)

s(x) = −
∫ ∞

x

ρ(y)dy, x ∈ [a,∞) (4.3)

and the notation

T∞ = lim
n→∞ Tn,

T a,∞ = T a ∧ T∞.

Theorem 4.1. Suppose that
∫ ∞

a

ρ(x)dx = ∞.

If x0 ∈ [a,∞), then there exists a unique solution P defined up to Ta. We
have Ta < ∞ P-a.s.
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If the conditions of Theorem 4.1 are satisfied, we will say that +∞ has
type A.

Theorem 4.2. Suppose that
∫ ∞

a

ρ(x)dx < ∞,

∫ ∞

a

|s(x)|
ρ(x)σ2(x)

dx = ∞.

If x0 ∈ [a,∞), then there exists a unique solution P defined up to Ta. If
moreover x0 > a, then P{Ta = ∞} > 0 and limt→∞ Xt = +∞ P-a.s. on
{Ta = ∞}.

If the conditions of Theorem 4.2 are satisfied, we will say that +∞ has
type B.

Theorem 4.3. Suppose that
∫ ∞

a

ρ(x)dx < ∞,

∫ ∞

a

|s(x)|
ρ(x)σ2(x)

dx < ∞.

If x0 ∈ (a,∞), then there exists a unique solution P defined up to T a,∞−.
We have P{T∞ < ∞} > 0. (In other words, the solution explodes into +∞
with strictly positive probability.)

If the conditions of Theorem 4.3 are satisfied, we will say that +∞ has
type C.

As a consequence of the above results, we obtain Feller’s criterion for
explosions (see [16], [29, Ch. 5, Th. 5.29], or [34, § 3.6]).

Corollary 4.4. Suppose that x0 ∈ (a,∞) and P is a solution defined up
to T a,∞−. Then it explodes into +∞ with strictly positive probability (i.e.,
P{T∞ < ∞} > 0) if and only if

∫ ∞

a

ρ(x)dx < ∞,

∫ ∞

a

|s(x)|
ρ(x)σ2(x)

dx < ∞.

4.2 Classification at Infinity: Informal Description

If +∞ has type A, then a solution cannot explode into +∞. Moreover, a
solution is recurrent in the following sense. If there are no singular points
between the starting point x0 and a point a < x0, then the solution reaches
the level a a.s. An example of a SDE, for which +∞ has type A, is provided
by the equation

dXt = dBt, X0 = x0.

If +∞ has type B, then there is no explosion into +∞ and a solution
tends to +∞ with strictly positive probability. In other words, a solution is
transient. For the SDE
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σ �= 0,

1 + |b|
σ2

∈ L1
loc([a,∞))
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∫ ∞

a

ρ = ∞ A�

∫ ∞
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∫ ∞

a

|s|
ρσ2

= ∞ B�

∫ ∞

a

|s|
ρσ2

< ∞ C�

� �
x

a

s(x)

Type Behaviour

A recurrent

B transient

C explosion

ρ(x) = exp

(
−

∫ x

a

2b(y)

σ2(y)
dy

)
,

s(x) = −
∫ ∞

x

ρ(y)dy

Fig. 4.1. Classification at infinity

dXt = µdt + σdBt, X0 = x0

with µ > 0, +∞ has type B (this follows from Theorem 5.5).
If +∞ has type C, then a solution explodes into +∞ (i.e., it reaches

+∞ within a finite time) with strictly positive probability. A corresponding
example is provided by the equation

dXt = ε|Xt|1+εdt + dBt, X0 = x0

with ε > 0 (this follows from Theorem 5.5).
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Fig. 4.2. Behaviour of solutions for various types of infinity. The graphs show
simulated paths of solutions.
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4.3 Classification at Infinity: The Proofs

Proof of Theorem 4.1. Existence. Consider the function

r(x) =
∫ x

a

ρ(y)dy, x ∈ [a,∞).

Let B be a (Gt)-Brownian motion started at r(x0) on a filtered probability
space

(
Ω,G, (Gt),Q

)
. Let us consider

κ(y) = ρ(r−1(y))σ(r−1(y)), y ∈ [0,∞),

At =






∫ t

0

κ
−2(Bs)ds if t < T0(B),

∞ if t ≥ T0(B),

τt = inf{s ≥ 0 : As > t},
Yt = Bτt , t ≥ 0.

Arguing in the same way as in the proof of Theorem 2.11, we check that
AT0(B)− = T0(Y ) < ∞ Q-a.s. Set Z = s−1(Y ). The estimates used in (2.23)
show that, for any c > x0,

EQ

∫ Ta,c(Z)

0

(
1 + |b(Zt)| + σ2(Zt)

)
dt < ∞. (4.4)

Furthermore, Ta(Z) = T0(Y ) < ∞ Q-a.s. Letting c → +∞ in (4.4), we get

∫ Ta(Z)

0

(
1 + |b(Zt)| + σ2(Zt)

)
dt < ∞ Q-a.s. (4.5)

The proof of existence is now completed in the same way as in Theorem 2.11.
Uniqueness. Uniqueness follows from Lemma B.6 applied to the stopping

times Ta,n.
The property Ta < ∞ P-a.s. is a consequence of (4.5). �

Proof of Theorem 4.2. Existence. Let B be a (Gt)-Brownian motion started
at s(x0) on a filtered probability space

(
Ω,G, (Gt),Q

)
. Let us consider

κ(y) = ρ(s−1(y))σ(s−1(y)), y ∈ [α, 0),

At =






∫ t

0

κ
−2(Bs)ds if t < Tα,0(B),

∞ if t ≥ Tα,0(B),

τt = inf{s ≥ 0 : As > t},
Yt = Bτt , t ≥ 0,
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where α = s(a). With the same arguments as in the proof of Theorem 2.11
we check that ATα,0(B)− = Tα,0(Y ) Q-a.s. Furthermore, for any ε > 0,

∫ 0

−ε

|y|
κ2(y)

dy =
∫ ∞

s−1(−ε)

|s(x)|
ρ(x)σ2(x)

dx = ∞.

By Corollary A.24, ATα,0(B)− is Q-a.s. infinite on the set {T0(B) < Tα(B)}.
Hence, T0(Y ) = ∞ Q-a.s. Thus, the process Z = s−1(Y ) is correctly defined.
The arguments used in (2.23) show that, for any c > x0,

EQ

∫ Ta,c(Z)

0

(
1 + |b(Zt)| + σ2(Zt)

)
dt < ∞.

By letting c → +∞, we get, for any t ≥ 0,

∫ t∧Ta(Z)

0

(
1 + |b(Zt)| + σ2(Zt)

)
dt < ∞ Q-a.s.

The proof of existence is now completed in the same way as in Theorem 2.11.
Uniqueness. The uniqueness of a solution follows from Lemma B.6 applied

to the stopping times Ta,n.
The properties P{Ta = ∞} > 0 and limt→∞ Xt = +∞ P-a.s. on

{Ta = ∞} follow from the properties that Q{T0(B) < Tα(B)} > 0, and on
the set {T0(B) < Tα(B)} we have Yt

Q-a.s.−−−→
t→∞ 0. �

Proof of Theorem 4.3. The proof is similar to the proof of Theorem 2.14. �

4.4 Global Solutions: The Results

Throughout this section, we consider global solutions, i.e., solutions in the
sense of Definition 1.28.

Theorem 4.5. Suppose that SDE (1) has no singular points, i.e.,

1 + |b|
σ2

∈ L1
loc(R).

(i) If −∞ and +∞ have types A or B, then there exists a unique solu-
tion P. For any point a ∈ R, we have P{Ta < ∞} > 0.

(ii) If −∞ or +∞ has type C, then there exists no solution.

Theorem 4.6. Suppose that zero is the unique singular point for (1). Let
x0 > 0.

(i) If +∞ has type C, then there exists no solution.
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(ii) If zero has type (i, j) with i = 0, 1, 4, 5, 6, j = 0, 1 (we exclude the
case i = j = 0), then there exists no solution.

(iii) If zero has type (i, j) with i = 2, 3, j = 0, 1, −∞ has type A or B,
and +∞ has type A or B, then there exists a unique solution P. We have
P{T0 < ∞} > 0 and X ≤ 0 on [[T0,∞[[ P-a.s.

(iv) If zero has type (i, j) with i = 2, 3, j = 0, 1 and −∞ has type C, then
there exists no solution.

(v) If zero has type (i, j) with i = 0, 1, 4, 5, 6, j = 2 and +∞ has type A
or B, then there exists a unique solution P. It is positive and P{T0 < ∞} > 0.

(vi) If zero has type (i, j) with i = 2, 3, j = 2, −∞ has type A or B, and
+∞ has type A or B, then there exist different solutions.

(vii) If zero has type (i, j) with i = 2, 3, j = 2, −∞ has type C, and
+∞ has type A or B, then there exists a unique solution P. It is positive and
P{T0 < ∞} > 0.

(viii) If zero has type (i, j) with j = 3, 4, 5 and +∞ has type A or B, then
there exists a unique solution. It is strictly positive.

(ix) If zero has type (i, j) with j = 6, then there exists no solution.

Theorem 4.7. Suppose that zero is the unique singular point for (1). Let
x0 = 0.

(i) If zero has type (i, j) with i = 0, 1, 4, 5, 6, j = 0, 1, 4, 5, 6 (we exclude
the case i = j = 0), then there exists no solution.

(ii) If zero has type (i, j) with i = 0, 1, 4, 5, 6, j = 2, 3 and +∞ has type A
or B, then there exists a unique solution. It is positive.

(iii) If zero has type (i, j) with i = 0, 1, 4, 5, 6, j = 2, 3 and +∞ has
type C, then there exists no solution.

(iv) If zero has type (i, j) with i = 2, 3, j = 0, 1, 4, 5, 6 and −∞ has type A
or B, then there exists a unique solution. It is negative.

(v) If zero has type (i, j) with i = 2, 3, j = 0, 1, 4, 5, 6 and −∞ has type C,
then there exists no solution.

(vi) If zero has type (i, j) with i = 2, 3, j = 2, 3, −∞ has type A or B,
and +∞ has type A or B, then there exist different solutions.

(vii) If zero has type (i, j) with i = 2, 3, j = 2, 3, −∞ has type A or B,
and +∞ has type C, then there exists a unique solution. It is negative.

(viii) If zero has type (i, j) with i = 2, 3, j = 2, 3, −∞ has type C, and
+∞ has type A or B, then there exists a unique solution. It is positive.

(ix) If zero has type (i, j) with i = 2, 3, j = 2, 3, −∞ has type C, and
+∞ has type C, then there exists no solution.

Remark. Theorems 4.6, 4.7 reveal an interesting effect. It may happen that
a branch point does not disturb the uniqueness of a global solution. (As we
have seen in Chapter 3, a branch point always disturbs the uniqueness of
a local solution.) The explanation of this effect is as follows. Suppose, for
example, that zero is a branch point, −∞ has type C, +∞ has type A or
B, and x0 ≥ 0. If a solution becomes strictly negative with strictly positive
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Table 4.1. Existence and uniqueness in the case with no singular points. As an
example, line 2 corresponds to the situation, where −∞ has type C and there are
no restrictions on the type of +∞. The table shows that in this case there exists
no solution because there is an explosion into −∞.

Type
of −∞

Type
of +∞

Exis-
tence

Uniq-
ness

Comments

A B A B + + solution can reach any point

C − + explosion into −∞
C − + explosion into +∞

probability, then it explodes into −∞ with strictly positive probability, and
hence, it is not a global solution. Thus, any global solution should be positive.
But there exists a unique positive solution.

4.5 Global Solutions: The Proofs

Proof of Theorem 4.5. (i) This statement is proved similarly to Theorems 4.1,
4.2.

(ii) Without loss of generality, we may assume that +∞ has type C.
Suppose that there exists a solution P. Fix a < x0. Let Q be the solution
defined up to T a,∞− (it is provided by Theorem 4.3). Then Q{T∞ < ∞} > 0.
Hence, there exist t > 0 and c > a such that Q{T∞ < t∧Tc} = θ > 0. Then,
for any n > c, we have Q{Tn < t∧ Tc} ≥ θ. The set {Tn < t∧ Tc} belongs to
FTc,n , and Q|FTc,n is a solution up to Tc,n. It follows from the uniqueness of a
solution that, for any n > c, P{Tn < t∧Tc} ≥ θ. But this is a contradiction. �

Proof of Theorem 4.6. (i) The proof is similar to the proof of Theorem 4.5 (ii).
(ii) Suppose that there exists a solution P. Fix a > x0. Then P|FT0,a

is a solution up to T0,a. It follows from the results of Section 2.3 that
P{T0,a < ∞ and XT0,a = 0} > 0. Hence, P{T0 < ∞} > 0. But this contra-
dicts Theorem 3.2.

(iii) Existence. The results of Section 2.3 ensure that there exists a so-
lution R0 with X0 = 0 defined up to T−1. Employing similar arguments as
in the proofs of Theorems 2.12 and 2.16 (ii), we construct a solution R−1

with X0 = −1 defined up to ∞. Let R′
−1 be the image of R−1 under the map

ω �→ ω + 1. We consider R′−1 as a measure on C0(R+). Set R̃0 = R0 ◦ Φ−1
T−1

(Φ is defined by (B.1)). Let Q0 be the image of R̃0 × R′
−1 under the map
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Table 4.2. Existence and uniqueness in the case, where zero is the unique singular
point. The starting point is greater than zero.

Left
type
of zero

Right
type
of zero

Type
of −∞

Type
of +∞

Exis-
tence

Uniq-
ness

Comments

C − + explosion into +∞
0 1 4 5 6 0 1 − + killing at zero

2 3 0 1 A B A B + + passing through zero

2 3 0 1 C − + explosion into −∞
0 1 4 5 6 2 A B + + reflection at zero

2 3 2 A B A B + − branching at zero

2 3 2 C A B + + reflection at zero

3 4 5 A B + + solution is strictly positive

6 − + killing at zero

Table 4.3. Existence and uniqueness in the case, where zero is the unique singular
point. The starting point is equal to zero.

Left
type
of zero

Right
type
of zero

Type
of −∞

Type
of +∞

Exis-
tence

Uniq-
ness

Comments

0 1 4 5 6 0 1 4 5 6 − + killing at zero

0 1 4 5 6 2 3 A B + + solution is positive

0 1 4 5 6 2 3 C − + explosion into +∞
2 3 0 1 4 5 6 A B + + solution is negative

2 3 0 1 4 5 6 C − + explosion into −∞
2 3 2 3 A B A B + − branching at zero

2 3 2 3 A B C + + solution is negative

2 3 2 3 C A B + + solution is positive

2 3 2 3 C C − + explosion into −∞ or +∞
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C(R+) × C0(R+) � (ω1, ω2) �−→ G(ω1, ω2, T−1(ω1)) ∈ C(R+).

Using Lemma B.9, one can verify that Q0 is a solution of (1) with X0 = 0.
Arguing in the same way as in the proofs of Theorems 4.1, 4.2, we deduce

that there exists a solution Q with X0 = x0 defined up to T0. For this solution,
Q{T0 < ∞} > 0. Set Q̃ = Q◦Φ−1

T0
(Φ is defined by (B.1)). Let P be the image

of Q̃× Q0 under the map

C(R+) × C0(R+) � (ω1, ω2) �−→ G(ω1, ω2, T0(ω1)) ∈ C(R+).

Using Lemma B.9, one can verify that P is a solution of (1).
Uniqueness. The uniqueness of a solution follows from Theorem 3.3 (ii)

and Lemma B.6 applied to the stopping times T−n,n.
The properties P{T0 < ∞} > 0 and X ≤ 0 on [[T0,∞[[ P-a.s. follow from

the construction of the solution.
(iv) Suppose that there exists a solution P. For any a > x0, P|FT0,a is

a solution up to T0,a. Applying the results of Section 2.3, we conclude that
P{T0 < ∞} > 0. Set P′ = P( · | T0 < ∞), P0 = P′ ◦ Θ−1

T0
, where Θ is defined

by (B.2). By Lemma B.7, P0 is a solution of (1) with X0 = 0. Thus, P0|FT−1,1

is a solution with X0 = 0 up to T−1,1. Applying Theorem 3.3 (i), we deduce
that X ≤ 0 on [[0, T−1]] P0-a.s. Moreover, P0{∀t ≥ T0, Xt = 0} = 0 (see the
proof of Theorem 3.2). Therefore, there exists c < 0 such that P0{Tc < ∞} >
c. Consider P′

0 = P0( · | Tc < ∞), P′
c = P′

0 ◦ Θ−1
Tc

. By Lemma B.7, P′
c is a

solution of (1) with X0 = c. But this contradicts point (i) of this theorem.
(v) Existence. Using similar arguments as in the proof of Theorem 2.12,

we conclude that there exists a positive solution P.
Uniqueness. Suppose that there exists another solution P′. Then, for any

n > x0, P′|FTn is a solution up to Tn. It follows from the results of Section 2.3
that P′|FTn is positive. Due to Theorem 2.12, P′|FTn = P|FTn . Lemma B.6
yields that P′ = P.

The property P{T0 < ∞} > 0 follows from Theorem 2.12.
(vi) Similar arguments as in the proof of Theorem 2.12 allow us to deduce

that there exists a positive solution P.
Arguing in the same way as in the proof of point (iii) above, we construct

a solution P′ such that P′{T0 < ∞} > 0 and X ≤ 0 on [[T0,∞[[ P′-a.s.
Moreover, P′{∀t ≥ T0, Xt = 0} = 0 (see the proof of Theorem 3.2). Hence,
P′ is not positive, and therefore, P and P′ are two different solutions.

(vii) Existence. Using similar arguments as in the proof of Theorem 2.12,
we deduce that there exists a positive solution P.

Uniqueness. Suppose that there exists another solution P′. Assume first
that it is not positive. Then there exists c < 0 such that P{Tc < ∞} > 0. Set
P′ = P( · | Tc < ∞), Pc = P′ ◦ Θ−1

Tc
. By Lemma B.7, Pc is a solution of (1)

with X0 = c. But this contradicts point (i) of this theorem.
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Assume now that P′ is positive. By Theorem 2.12, for any n > x0,
P′|FTn = P|FTn . Lemma B.6 yields that P′ = P.

The property P{T0 < ∞} > 0 follows from Theorem 2.12.
(viii) Existence. Using the same arguments as in the proofs of Theo-

rems 2.15–2.17, we deduce that there exists a strictly positive solution P.
Uniqueness. Suppose that there exists another solution P′. It follows

from the results of Section 2.3 that, for any n > x0, P′|FTn = P|FTn . By
Lemma B.6, P′ = P.

(ix) This statement follows from Theorem 2.14. �

Proof of Theorem 4.7. (i) This statement follows from Theorem 3.2.
(ii) This statement is proved in the same way as Theorem 4.6 (v).
(iii) Suppose that there exists a solution P. It follows from the results

of Section 2.3 that P is positive. Moreover, P{∀t ≥ 0, Xt = 0} = 0 (see the
proof of Theorem 3.2). Hence, there exists a > 0 such that P{Ta < ∞} > 0.
Set P′ = P( · | Ta < ∞), Pa = P′ ◦ Θ−1

Ta
. By Lemma B.7, Pa is a solution

of (1) with X0 = a. But this contradicts Theorem 4.6 (i).
(vi) Using similar arguments as in Section 2.5, one can construct both a

positive solution and a negative solution.
(vii) This statement is proved in the same way as Theorem 4.6 (vii).
(ix) The proof of this statement is similar to the proof of point (iii). �
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