
Introduction

The basis of the theory of diffusion processes was formed by Kolmogorov [30]
(the Chapman–Kolmogorov equation, forward and backward partial differ-
ential equations). This theory was further developed in a series of papers by
Feller (see, for example, [16], [17]).

Both Kolmogorov and Feller considered diffusion processes from the point
of view of their finite-dimensional distributions. Itô [24], [25] proposed an
approach to the “pathwise” construction of diffusion processes. He introduced
the notion of a stochastic differential equation (abbreviated below as SDE ).
At about the same time and independently of Itô, SDEs were considered by
Gikhman [18], [19]. Stroock and Varadhan [44], [45] introduced the notion of
a martingale problem that is closely connected with the notion of a SDE.

Many investigations were devoted to the problems of existence, unique-
ness, and properties of solutions of SDEs. Sufficient conditions for existence
and uniqueness were obtained by Girsanov [21], Itô [25], Krylov [31], [32],
Skorokhod [42], Stroock and Varadhan [44], Zvonkin [49], and others. The
evolution of the theory has shown that it is reasonable to introduce dif-
ferent types of solutions (weak and strong solutions) and different types of
uniqueness (uniqueness in law and pathwise uniqueness); see Liptser and
Shiryaev [33], Yamada and Watanabe [48], Zvonkin and Krylov [50]. More
information on SDEs and their applications can be found in the books [20],
[23], [28, Ch. 18], [29, Ch. 5], [33, Ch. IV], [36], [38, Ch. IX], [39, Ch. V], [45].

For one-dimensional homogeneous SDEs, i.e., the SDEs of the form

dXt = b(Xt)dt + σ(Xt)dBt, X0 = x0, (1)

one of the weakest sufficient conditions for weak existence and uniqueness in
law was obtained by Engelbert and Schmidt [12]–[15]. (In the case, where
b = 0, there exist even necessary and sufficient conditions; see the paper [12]
by Engelbert and Schmidt and the paper [1] by Assing and Senf.) Engelbert
and Schmidt proved that if σ(x) �= 0 for any x ∈ R and

1 + |b|
σ2

∈ L1
loc(R), (2)

then there exists a unique solution of (1). (More precisely, there exists a
unique solution defined up to the time of explosion.)
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Condition (2) is rather weak. Nevertheless, SDEs that do not satisfy this
condition often arise in theory and in practice. Such are, for instance, the
SDE for a geometric Brownian motion

dXt = µXtdt + σXtdBt, X0 = x0

(the Black-Scholes model !) and the SDE for a δ-dimensional Bessel process
(δ > 1):

dXt =
δ − 1
2Xt

dt + dBt, X0 = x0.

In practice, SDEs that do not satisfy (2) arise, for example, in the following
situation. Suppose that we model some process as a solution of (1). Assume
that this process is positive by its nature (for instance, this is the price of a
stock or the size of a population). Then a SDE used to model such a process
should not satisfy condition (2). The reason is as follows. If condition (2) is
satisfied, then, for any a ∈ R, the solution reaches the level a with strictly
positive probability. (This follows from the results of Engelbert and Schmidt.)

The SDEs that do not satisfy condition (2) are called in this monograph
singular SDEs. The study of these equations is the subject of the monograph.
We investigate three main problems:

(i) Does there exist a solution of (1)?
(ii) Is it unique?
(iii) What is the qualitative behaviour of a solution?
In order to investigate singular SDEs, we introduce the following defini-

tion. A point d ∈ R is called a singular point for SDE (1) if

1 + |b|
σ2

/∈ L1
loc(d).

We always assume that σ(x) �= 0 for any x ∈ R. This is motivated by the
desire to exclude solutions which have sojourn time in any single point. (In-
deed, it is easy to verify that if σ �= 0 at a point z ∈ R, then any solution
of (1) spends no time at z. This, in turn, implies that any solution of (1) also
solves the SDE with the same drift and the diffusion coefficient σ−σ(z)I{z}.
“Conversely”, if σ = 0 at a point z ∈ R and a solution of (1) spends no time
at z, then, for any η ∈ R, it also solves the SDE with the same drift and the
diffusion coefficient σ + ηI{z}.)

The first question that arises in connection with this definition is: Why are
these points indeed “singular”? The answer is given in Section 2.1, where we
explain the qualitative difference between the singular points and the regular
points in terms of the behaviour of solutions.

Using the above terminology, we can say that a SDE is singular if and only
if the set of its singular points is nonempty. It is worth noting that in practice
one often comes across SDEs that have only one singular point (usually, it
is zero). Thus, the most important subclass of singular points is formed by
the isolated singular points. (We call d ∈ R an isolated singular point if d is
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singular and there exists a deleted neighbourhood of d that consists of regular
points.)

In this monograph, we perform a complete qualitative classification of
the isolated singular points. The classification shows whether a solution can
leave an isolated singular point, whether it can reach this point, whether
it can be extended after having reached this point, and so on. According
to this classification, an isolated singular point can have one of 48 possible
types. The type of a point is easily computed through the coefficients b and
σ. The constructed classification may be viewed as a counterpart (for SDEs)
of Feller’s classification of boundary behaviour of continuous strong Markov
processes.

The monograph is arranged as follows.
Chapter 1 is an overview of basic definitions and facts related to SDEs,

more precisely, to the problems of the existence and the uniqueness of solu-
tions. In particular, we describe the relationship between different types of
existence and uniqueness (see Figure 1.1 on p. 8) and cite some classical con-
ditions that guarantee existence and uniqueness. This chapter also includes
several important examples of SDEs. Moreover, we characterize all the pos-
sible combinations of existence and uniqueness (see Table 1.1 on p. 18).

In Chapter 2, we introduce the notion of a singular point and give the
arguments why these points are indeed “singular”. Then we study the ex-
istence, the uniqueness, and the qualitative behaviour of a solution in the
right-hand neighbourhood of an isolated singular point. This leads to the
one-sided classification of isolated singular points. According to this classifi-
cation, an isolated singular point can have one of 7 possible right types (see
Figure 2.2 on p. 39).

In Chapter 3, we investigate the existence, the uniqueness, and the qual-
itative behaviour of a solution in the two-sided neighbourhood of an isolated
singular point. We consider the effects brought by the combination of right
and left types. Since there exist 7 possible right types and 7 possible left
types, there are 49 feasible combinations. One of these combinations corre-
sponds to a regular point, and therefore, an isolated singular point can have
one of 48 possible types. It turns out that the isolated singular points of only
4 types can disturb the uniqueness of a solution. We call them the branch
points and characterize all the strong Markov solutions in the neighbourhood
of such a point.

In Chapter 4, we investigate the behaviour of a solution “in the neigh-
bourhood of +∞”. This leads to the classification at infinity. According to
this classification, +∞ can have one of 3 possible types (see Figure 4.1 on
p. 83). The classification shows, in particular, whether a solution can explode
into +∞. Thus, the well known Feller’s test for explosions is a consequence
of this classification.

All the results of Chapters 2 and 3 apply to local solutions, i.e., solutions
up to a random time (this concept is introduced in Chapter 1). In the second
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part of Chapter 4, we use the obtained results to study the existence, the
uniqueness, and the qualitative behaviour of global solutions, i.e., solutions
in the classical sense. This is done for the SDEs that have no more than one
singular point (see Tables 4.1–4.3 on pp. 88, 89).

In Chapter 5, we consider the power equations, i.e., the equations of the
form

dXt = µ|Xt|αdt + ν|Xt|βdBt

and propose a simple procedure to determine the type of zero and the type
of infinity for these SDEs (see Figure 5.1 on p. 94 and Figure 5.2 on p. 98).
Moreover, we study which types of zero and which types of infinity are pos-
sible for the SDEs with a constant-sign drift (see Table 5.1 on p. 101 and
Table 5.2 on p. 103).

The known results from the stochastic calculus used in the proofs are con-
tained in Appendix A, while the auxiliary lemmas are given in Appendix B.

The monograph includes 7 figures with simulated paths of solutions of
singular SDEs.




