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Sampling Theorems for the Heisenberg Group

In this chapter we characterize the sampling spaces of the Heisenberg group
by use of the Plancherel transform. We are aware of two previous authors,
Dooley and Pesenson, dealing with sampling theorems on nonabelian groups,
for two rather different settings [37, 98, 99, 100]. What these two approaches
have in common with each other (and with the one developed here) is the
fact that they deal with the problem of reconstructing elements of a fixed
leftinvariant subspace of L2(G) from sampled values.

The difference between the approaches of Dooley and Pesenson initiate
from different notions of bandlimitation. Dooley [37] considers groups of the
form G = R

k
� H , with H compact. His concept of bandlimitedness is

representation-theoretic, that is, defined as a condition on the support of the
subspace on the Plancherel transform side. The condition was inspired by the
Mackey picture. Recall that by Mackey’s theory the dual has the form

Ĝ =
⋃

O(γ)∈Rk/H

{O(γ)} × Ĥγ .

Now, given a leftinvariant subspace H ⊂ L2(G) with associated projection
field (PO(γ),σ)O(γ),σ, the space H is declared bandlimited if there exists a

bounded set B ⊂ R̂k such that PO(γ),σ = 0 for almost all γ �∈ B.
By contrast, Pesenson [98, 99, 100] studies stratified Lie groups G, and

his notion of bandlimitedness is of a geometric rather than a representation-
theoretic nature. It involves a (leftinvariant) sub-Laplacian L on G, which is
a particular selfadjoint differential operator on G. This time, a leftinvariant
space H ⊂ L2(G) is called bandlimited if the projection onto H was given by
a spectral projection of L corresponding to a bounded interval in R.

In both cases, the sampling theorems state that the elements of the spaces
under consideration are uniquely determined by their sampled values. Put
differently, the restriction maps were shown to be injective, but no other
functional-analytic property of the restriction map was studied. Accordingly,
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170 6 Sampling Theorems for the Heisenberg Group

the reconstruction procedures, if they were at all given, were not shown to be
stable with respect to the L2-norm.

The approach presented here is rather different in this respect: We start
from our notion of sampling space, which is tied to the existence of a sam-
pling expansion with convergence in the norm, and our goal is to characterize
the subspaces that admit this type of expansions; i.e., to solve T5. We only
consider one particular group, the Heisenberg group, but we will be able to
give a complete characterization of sampling spaces in terms of conditions
on the associated projection fields. These conditions, in turn, can be read as
bandlimitation requirements.

It is instructive to compare Dooley’s notion of bandlimited subspaces with
our notion of sampling spaces. It is easy to check by Theorem 3.39(c) that
the semidirect product group G = R

k
� H is type I if H is compact. Picking

any bounded measurable set B ⊂ R̂k, we can consider the twosided invariant
subspace H ⊂ L2(G), supported by

B̃ = {IndG
Gγ

(γ × σ) : γ ∈ B, σ ∈ Ĥγ} ⊂ Ĝ ,

which is bandlimited in the sense of [37]. We will show that if H is a sampling
space in the sense of 2.51, then H is finite.

By Theorem 2.56, H is generated by an L2-convolution idempotent. The-
orem 4.22 then implies that

∫
B̃

dim(Hπ)dνG(π) < ∞ .

Before we continue the computation, observe that the representation space
of IndG

Gγ
(γ × σ) has Hilbert space dimension min(∞, [G : Gγ ]) · dim(Hσ).

Theorem 3.40 by Kleppner and Lipsman allows to compute

∞ >

∫
B̃

dim(Hπ)dνG(π)

=
∫

B

∫
Ĥγ

min(∞, [G : Gγ ]) · dim(Hσ)dνHγ (σ)dλ(γ) (6.1)

≥
∫

B

∫
Ĥγ

dim(Hσ)dνHγ (σ)dλ(γ) (6.2)

The finiteness of (6.1) entails that almost all Gγ have finite index, which means
that almost all orbits are finite. In addition, the finiteness of (6.2) requires
that for almost all γ the inner integral is finite. Then Corollary 4.25 yields for
these γ that Hγ is discrete (and compact of course), hence finite. But now the
orbits and the fixed groups are finite for almost all γ, i.e., H is finite. Hence
we see that Dooley’s concept and ours are identical only for finite extensions
of R

k.
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6.1 The Heisenberg Group and Its Lattices

Let us quickly recall the main properties of the Heisenberg group, outlined in
Section 4.5. As a set H = R

3, with group law

(p, q, t) ∗ (p′, q′, t′) = (p + p′, q + q′, t + t′ + (pq′ − qp′)/2) .

It is a unimodular group, with the usual Lebesgue measure on as Haar mea-
sure.

The center of H is given by Z(H) = {(0, 0, t) : t ∈ R}. We denote the
group of topological automorphisms of H by Aut(H). Recall the definition of
the Schrödinger representations, acting via

[�h(p, q, t)f ] (x) = e2πihte2πiqxeπihpqf(x + hp) .

The Schrödinger representations do not exhaust the dual of H, which in ad-
dition contains the characters of the abelian factor group H/Z(H). However,
for the decomposition of the regular representation of H, we may concentrate
on the Schrödinger representations. More precisely, the set (�h)h∈R′ is a νH-
conull subset of Ĥ, and Plancherel measure is given by |h|dh, where dh denotes
Lebesgue measure [45, Section 7.6].

To close our survey of the Heisenberg group, we cite a result classifying the
lattices of H. We associate to such a lattice Γ two numbers d(Γ ) ∈ N

′, r(Γ ) ∈
R

+ which contain sufficient information for our purposes. The two parameters
provide a measure of the density of Γ in H. We first single out a particular
family of lattices, which turns out to be exhaustive (up to automorphisms of
H).

Definition 6.1. For any positive integer d let Γd be the subgroup generated
by (1, 0, 0), (0, d, 0), (0, 0, 1). Γd is a lattice, with

Γd =
{

(m, dk, � +
1
2
dmk) : m, k, � ∈ Z

}
.

It is convenient to introduce the reduced lattice Γ r
d which is the subset

Γ r
d = {(m, dk, dmk/2) : m, k ∈ Z} .

Note that Γ r
d is not a lattice, not even a subgroup.

Let us next give a classification of lattices. It has been attributed (in more
generality) to Maltsev. Since we were not able to locate the original source,
we sketch a short proof for the sake of completeness.

Theorem 6.2. Let Γ be a lattice of H. Then there exists a strictly positive in-
teger d and α ∈ Aut(H) with α(Γd) = Γ . The integer d is uniquely determined
by these properties.
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Proof. By [30, Theorem 5.1.6], there exist a basis P̃ , Q̃, Z̃ of h with Z̃ ∈ Z(H),
and Γ = ZZ̃ ∗ZP̃ ∗ZQ̃. Now [P̃ , Q̃] = P̃ Q̃P̃−1Q̃−1 ∈ Γ ∩Z(H) = ZZ̃ implies
[P̃ , Q̃] = dZ̃ for some d ∈ Z, w.l.o.g. d ≥ 0 (otherwise exchange Q̃, P̃ ). In
fact, d > 0 since h is not abelian. It is immediately checked that the linear
isomorphism defined by

(1, 0, 0) �→ P̃ , (0, d, 0) �→ Q̃ , (0, 0, 1) �→ Z̃

is in Aut(H). That d is unique is due to the fact that each automorphism α
mapping Γd to Γd′ maps Z onto ±Z: Indeed, from Proposition 6.17 (a) below
follows that α leaves the Haar measure of H invariant, and this implies that
covol(Γd) = covol(Γd′). On the other hand, covol(Γd) = d, hence d = d′.

We denote by d(Γ ) the unique integer d from the theorem. For the defini-
tion of r(Γ ) we take the unique positive real satisfying Γ ∩ Z(H) = r(Γ )ZZ.

6.2 Main Results

Now we can state the main results of this chapter. In this section, H always
denotes a closed, leftinvariant subspace of L2(H), and Γ < H a lattice. Recall
from Theorem 2.56 that we may assume H = L2(G)∗S, where S is a selfadjoint
convolution idempotent, and that H is a sampling space iff λH(Γ )S is a tight
frame of H.

Definition 6.3. We associate to a leftinvariant subspace H ⊂ L2(H) with
associated projection field (P̂h)h∈R′ the multiplicity function mH : R

′ → N0 ∪
{∞} of the associated subrepresentation. This function is given by mH(h) =
rank(P̂h). The support of mH is denoted by Σ(H). H is called bandlimited
is Σ(H) is bounded in R.

Similarly, if a representation π is equivalent to a subrepresentation of λH,
say to the restriction of λH to H, we let mπ = mH and Σ(π) = Σ(H). This
is obviously well-defined.

The main theorem characterizes the subspaces admitting tight frames.

Theorem 6.4. (i) There exists a tight frame of the form λH(Γ )Φ with suit-
able Φ ∈ H iff the multiplicity function m associated to H satisfies almost
everywhere

m(h) · |h| + m

(
h − 1

r(Γ )

)
·
∣∣∣∣h − 1

r(Γ )

∣∣∣∣ ≤ 1
d(Γ )r(Γ )

. (6.3)

In particular, Σ(H) ⊂
[
− 1

d(Γ )r(Γ ) ,
1

d(Γ )r(Γ )

]
(up to a set of measure zero).

(ii) There does not exist an orthonormal basis of the form λH(Γ )Φ for H.
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Remark 6.5. Note that if d(Γ ) > 1 and m(h) > 0 and m
(
h − 1

r(Γ )

)
> 0,

inequality (6.3) entails the inequality

|h| +
∣∣∣∣h − 1

r(Γ )

∣∣∣∣ ≤ 1
2r(Γ )

which is impossible to satisfy. Hence in the case d(Γ ) > 1 relation (6.3) sim-
plifies to

m(h) · |h| ≤ 1
d(Γ )r(Γ )

. (6.4)

Corollary 6.6. Assume that mH is essentially bounded. There exists a tight
frame of the form λH(Γ )Φ, (with a suitable lattice Γ and suitable Φ ∈ H) iff
H is bandlimited.

The following is a rephrasing for discretization of continuous wavelet trans-
forms.

Corollary 6.7. Let (π,Hπ) be a representation of H with admissible vector.
There exists a tight frame of the form π(Γ )η, (with suitable lattice Γ and
suitable η ∈ Hπ) if Σ(π) and mπ are bounded.

That bounded multiplicity cannot be dispensed with in the previous corol-
lary is shown by the next result:

Corollary 6.8. There exists a bandlimited leftinvariant subspace H = L2(G)∗
S, with a selfadjoint convolution idempotent S ∈ L2(H), admitting no tight
frame of the form λH(Γ )Φ.

With regard to the existence of sampling subspaces, we have:

Corollary 6.9. Not every space admitting a tight frame of the form λH(Γ )S
is a sampling subspace for Γ . However, for such a space H there exists Φ ∈ H
such that f �→ f ∗Φ∗ is an isometry on H, mapping H onto a sampling space.
There does not exist a sampling space H with the interpolation property.

The proofs for these results will be given in Section 6.5 below. The following
remarks discuss similarities and differences to the case of the reals.

Remark 6.10. 1. The main similarity lies in the notion of bandwidth, and
the fact that it can be interpreted as inversely proportional to the density
of the lattice. Note that over H the bandwidth restriction is much more
rigid: The set Σ(H) is contained in a fixed interval, whereas the analog of
that set in the real case can be shifted arbitrarily and still give a sampling
subspace; compare Theorem 2.71.

2. Corollaries 6.8 and 6.9 provide an interesting contrast between the sam-
pling theories of H and R. None of the counterexamples given in the
corollaries has an analog in the real setting. In particular, in the Heisen-
berg group case the question whether a given space is a sampling space
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is much more subtle than deciding whether it has a frame. For the first
problem, a close inspection of the projection operator field (P̂h)h∈R′ is
necessary (using the criteria in Proposition 6.11 below), for the second,
only the ranks of these operators are needed. By contrast, 2.71 (a) ⇔ (a’)
shows that for the reals the two properties are equivalent. This is not so
surprising after all: Projection fields on

∫ ⊕
R̂

Cdω are obviously uniquely
determined by their supports.

3. While Theorem 6.4 shows that the Plancherel transform can be used to
characterize sampling spaces and frames, it is not clear how it can be
generalized to a larger class of locally compact groups. Indeed, as far as
we are aware, among the entities entering the central relation (6.3), only
the multiplicity function m has an abstract interpretation. Also, the tech-
niques proving Theorem 6.4 are rather specific to the Heisenberg group,
combining known results concerning Weyl-Heisenberg with the Plancherel
transform of H (see the arguments in the next section), which is a further
illustration how the

4. We use lattices as sampling sets simply because they are easily accessible.
In particular, we do not exploit the representation theory of the lattices at
all. Recall that the tight frame condition is nothing but an admissibility
condition for the restriction of λH. However, the lattices in H are not type
I, hence a better understanding of the non-type I setting will be needed.

6.3 Reduction to Weyl-Heisenberg Systems∗

In this section we start the discussion of normalized tight frames for left-
invariant subspaces. On the Plancherel transform side, the space H under
consideration decomposes into a direct integral. In this section, we reduce the
complexity of the problem in two ways: We get rid of the direct integral on
the one hand, and the central variable of the lattice on the other, and are
faced with the problem of constructing certain normalized tight frames in the
fibres, arising from the action of the reduced lattice. The latter problem is
equivalent to the construction of Weyl-Heisenberg (super-)frames.

Proposition 6.11. Let Γ = Γd. Let Φ ∈ H be such that λG(Γ )Φ is a normal-
ized tight frame of H. Then, for almost every h ∈ Σ(H), the reduced lattice
satisfies the following condition:
(
|h|1/2�h(γ)Φ̂(h)

)
γ∈Γ r

d

is a normalized tight frame of B2(L2(R))◦P̂h . (6.5)

Conversely, if both (6.5) (for almost every h) and the support condition

∀m ∈ Z \ {0} : Σ(H) ∩ m + Σ(H) has measure zero (6.6)

hold, then λG(Γ )Φ is a normalized tight frame of H.
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Proof. Assume first that |Σ(f) ∩ m + Σ(f)| = 0. We calculate

∑
γ∈Γ

|〈f, λH(γ)Φ〉|2 =
∑
γ∈Γ

∣∣∣∣∣
∫

Σ(f)

〈f̂(h), �h(γ)Φ̂(h)〉|h|dh

∣∣∣∣∣
2

=
∑

γ∈Γ r
d

∑
�∈Z

∣∣∣∣∣
∫

Σ(f)

e−2πih�〈f̂(h), �h(γ)Φ̂(h)〉|h|dh

∣∣∣∣∣
2

=
∑

γ∈Γ r
d

∫
Σ(f)

∣∣∣〈f̂(h), �h(γ)Φ̂(h)〉
∣∣∣2 |h|2dh

=
∫

Σ(f)

∑
γ∈Γ r

d

∣∣∣〈f̂(h), �h(γ)|h|1/2Φ̂(h)〉
∣∣∣2 |h|dh .

Here we used the assumption on Σ(f) to apply the Plancherel Theorem for
Fourier series on Σ(f) and thereby discard the summation over �. On the
other hand, the tight frame condition together with the Plancherel formula
for H implies that

∑
γ∈Γ

|〈f, λ(γ)s〉|2 =
∫

Σ(f)

‖f̂(h)‖2|h|dh ,

and thus∫
Σ(f)

∑
γ∈Γ r

d

∣∣∣〈f̂(h), �h(γ)|h|1/2Φ̂(h)〉
∣∣∣2 |h|dh =

∫
Σ(f)

‖f̂(h)‖2|h|dh . (6.7)

Replacing f by g with ĝ(h) = 111B(h)f̂(h), we see that we may replace Σ(f)
in (6.7) by any Borel subset B. Hence the integrands must be equal almost
everywhere: ∑

γ∈Γ r
d

∣∣∣〈f̂(h), �h(γ)|h|1/2Φ̂(h)〉
∣∣∣2 = ‖f̂(h)‖2 . (6.8)

By covering Σ(H) with sets of the form Σ(f) fulfilling the initial support
condition we see that (6.8) holds for every f ∈ H and almost every h ∈ R

′.
However, it remains to show that the relation holds for all h in a common
conull subset, independent of f . For this purpose we pick a countable dense
Q-subspace A ⊂ L2(H). Then there exists a conull subset C ⊂ R

′ such that,
for all h ∈ C, {f̂(h) : f ∈ A} is dense in B2(L2(R)) ◦ P̂h, and in addition (6.8)
holds for all f ∈ A and h ∈ C. Now, for every h ∈ C, the coefficient map

ĝ(h) �→
(
〈ĝ(h), �h(γ)|h|1/2Φ̂(h)〉

)
γ∈Γ r

d

is a closed linear operator, by Proposition 2.53 (d), coinciding with an isometry
on a dense subset, hence it is an isometry.

Finally, we note that the argument can be reversed to prove the sufficiency
of condition (6.5) under the additional assumption (6.6).
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6.4 Weyl-Heisenberg Frames∗

For any g ∈ L2(R), the operation of the reduced lattice Γ r
d on g via �h gives

the system

(�h(m, dk, dmk/2)g)(x) = eπihmdke2πikxg(x + hm) ,

hence �h(Γ r
d )g and the Weyl-Heisenberg system G(d, h, g), as defined in Sec-

tion 5.5, only differ up to phase factors. Clearly these phase factors do not
influence any normalized tight frame or ONB properties of the system, hence
we may and will switch freely between the Weyl-Heisenberg system and the
orbit of the reduced lattice.

We cite the following existence result:

Theorem 6.12. A normalized tight Weyl-Heisenberg frame G(d, h, g) of L2(R)
exists iff |h|d ≤ 1. For any such frame we have ‖g‖22 = |h|d.

Proof. The “only-if”-part is [58, Corollary 7.5.1]. The “if”-part follows from
[58, Theorem 6.4.1], applied to a suitably chosen characteristic function. The
norm equality is due to [58, Corollary 7.3.2].

In dealing with subspaces of Hilbert-Schmidt spaces, we have to consider
a more general setting: We will be interested in normalized tight frames of(
L2(R)

)r consisting of vectors of the type

gk,m = (e2πidkxgj(x + hjm))j=1,...,r = (gj
k,m)j=1,...,r (6.9)

where g = (gj)j=1,...,r ∈
(
L2(R)

)r is suitably chosen, and h = (hj)j ∈ R
r is a

vector of nonzero real numbers. This problem has already been considered by
other authors, see [21] and the references therein. The following two lemmata
extend the results on L2(R) to the more general situation. The first one is
quite obvious and does not reflect the special structure of Weyl-Heisenberg
frames. We already used a similar argument for the proof of 2.23. A similar
result for arbitrary frames is given in [21].

Lemma 6.13. Let h = (h1, . . . , hr) ∈ R
r and g = (gj)j=1,...,r ∈

(
L2(R)

)r.
Then (gk,m)k,m∈Z, defined as in equation (6.9), is a normalized tight frame of(
L2(R)

)r iff

(i) for j = 1, . . . , r, G(hj , d, gj) is a normalized tight frame of L2(R); and
(ii) for i �= j, and for all f1, f2 ∈ L2(R),

〈(
〈f1, gj

m,n〉
)
m,n

,
(
〈f2, gi

m,n〉
)

m,n

〉
�2(Z×Z)

= 0 . (6.10)

i.e., the coefficient operators belonging to G(hj , d, gj) and G(hi, d, gi) have
orthogonal ranges in �2(Z × Z).
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Proof. Consider the subspace Hj ⊂
(
L2(R)

)r whose elements are nonzero at
most on the jth component. The necessity of property (i) follows immediately
from Proposition 2.53(a), applied to the Hj . Property (ii) is necessary because
the (pairwise orthogonal) Hj need to have orthogonal images in �2(Z × Z).
The converse is clear.

Necessary and sufficient conditions for the existence of such frames are
given in the next proposition.

Proposition 6.14. Let (hj)j=1,...,r, d ∈ N
′ be given.

(a) There exists a normalized tight frame of
(
L2(R)

)r of the form (6.9) iff
d

∑r
j=1 |hj | ≤ 1.

(b) Assume that hj = h, for all j = 1, . . . , r, and g = (gj)j=1,...,r is such that
(6.9) is a normalized tight frame. Then gi⊥gj, for i �= j.

Proof. For the necessity in part (a), observe that Lemma 6.13 together with
Theorem 6.12 yields that ‖gj‖2 = |hj |d, and thus ‖g‖2 = d

∑r
j=1 |hj |. Now

Proposition 2.53 (c) entails the desired inequality.
The proof for sufficiency is a slight modification of a construction given

by Balan [21, Example 13]. Define ci =
∑i

j=1 |hj |, and let gi =
√

d111[ci−1,ci].
Given f = (f i) ∈

(
L2(R)

)r, we compute

〈f, gk,m〉 =
r∑

i=1

〈f i, gi
k,m〉

=
r∑

i=1

√
d

∫ ci

ci−1

e−2πimdxf i(x + hik)dx

=
√

d

∫ 1/d

0

e−2πimdxHk(x)dx ,

where

Hk(x) =
{

f i(x − hik) x ∈ [ci−1, ci]
0 elsewhere .

Fixing k, we compute

∑
m∈Z

|〈f, gk,m〉|2 =
∑
m∈Z

d

∣∣∣∣∣
∫ 1/d

0

e−2πimdxHk(x)dx

∣∣∣∣∣
2

=
∫ 1/d

0

|Hk(x)|2dx

=
∑

i=1,...,r

∫ ci

ci−1

|f i(x − hik)|2dx .

Since the hiZ-translates of [ci−1, ci] tile R, summing over k yields the desired
normequality. This closes the proof of (a).
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For the proof of (b), pick f1, f2 ∈ L∞(R) with supports in [0, |h|]. Then
we calculate

∑
m,k∈Z

〈f1, gj
m,k〉〈f2, gi

m,k∈Z
〉 =

=
∑
m∈Z

∫
R

(∑
k∈Z

〈f1gj
m,0, e

2πidk·〉e2πidkx

)
f2(x)gi(x + hm)dx

=
∑
m∈Z

d−1

∫ |h|

0

f1(x)f2(x)gj(x + hm)gi(x + hm)dx

= d−1

∫ |h|

0

(∑
m∈Z

gj(x + hm)gi(x + hm)

)
f1(x)f2(x)dx

Here the Fourier series
∑
k∈Z

〈f1gj
m,0, e

2πidk·〉e2πdkx = d−1f1(x)gj(x + hm)

is valid on [0, |h|], at least in the L2-sense, because of |h| ≤ d−1, the latter
being a consequence of Theorem 6.12. Now, for arbitrary f1, f2, the scalar
product we started with has to be zero, whence we obtain for almost every
x ∈ [0, |h|], ∑

m∈Z

gi(x + hm)gj(x + hm) = 0 .

Integrating over [0, |h|] and applying Fubini’s theorem yields 〈gi, gj〉 = 0.

Remark 6.15. Note that the vectors (gi)i=1,...,r constructed in the proof of
part (a) depend measurably on h, i.e., if we let (gi

h) be the vector of functions
constructed from h, then (x,h) �→ (gi

h(x))i=1,...,r is a measurable mapping.

6.5 Proofs of the Main Results∗

The general proof strategy consists in explicit calculation for the Γd and then
transferring the results to arbitrary lattices by the action of Aut(H). For this
purpose we need a more detailed description of Aut(H) and its action on
the Plancherel transform side. Most of the results are standard, and we only
sketch the proofs.

Proposition 6.16. (a) For r > 0 let αr(p, q, t) := (
√

rp,
√

rq, rt). Then αr ∈
Aut(H). In addition, αinv : (p, q, t) �→ (q, p,−t) defines an involutory
automorphism of H.

(b) Each α ∈ Aut(H) can be written uniquely as α = αrα
i
invα′, where r ∈ R

′,
i ∈ {0, 1} and α′ leaves the center of H pointwise fixed.
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(c) Suppose that α(Γd) = Γ for some d, α, and let α = αsα
i
invα′ be the

decomposition from part (b). Then r(Γ ) = s.

Proof. For parts (a), (b) see [46, Theorem 1.22]. Part (c) follows directly from
the definition of r(Γ ) and the fact that α′ and αinv map every discrete sub-
group of Z(H) onto itself.

Next let us consider the action on the Fourier transform side.

Proposition 6.17. (a) Define ∆ : Aut(H) → R
+ by

∆(α) =
µH(α(B))

µH(B)
,

where B is a measurable set of positive Haar measure. ∆ does not depend
on the choice of B, and it is a continuous group homomorphism. For
α = αrα

i
invα′ as in 6.16(b), ∆(α) = r2.

(b) For α ∈ Aut(H), let Dα : L2(H) → L2(H) be defined as (Dαf)(x) :=
∆(α)1/2f(α(x)). This defines a unitary operator.

(c) Let H ⊂ L2(G) be a closed, leftinvariant subspace with multiplicity func-
tion m. Then H̃ = Dα(H) is closed and leftinvariant as well. Let m̃ denote
the multiplicity function related to H̃. If α = αrα

i
invα′ then m̃ satisfies

m̃(h) = m((−1)ir−1h) (almost everywhere) . (6.11)

(d) Let Γ be a lattice, α ∈ Aut(H) such that α(Γd) = Γ . Let H ⊂ L2(H) be
a closed, leftinvariant subspace. Then λH(Γ )Φ is a normalized tight frame
(an ONB) for H iff λH(Γd)(DαΦ) is a normalized tight frame (an ONB)
for Dα(H).

Proof. Parts (a) and (b) are standard results concerning the action of auto-
morphisms on locally compact groups, see [64]. The explicit formula for ∆(α)
follows from the fact that every automorphism leaving the center invariant fac-
tors into an inner and a symplectic automorphism [46, Theorem 1.22]; both
do not affect the Haar measure.

For part (c), we first note that by the Stone-von Neumann theorem [46,
Theorem 1.50], any automorphism α′ keeping the center pointwise fixed acts
trivially on the dual of H. Hence,

(Dα′f)∧ (h) = Uα′,h ◦ f̂(h) ◦ U∗
α′,h ,

where Uα′,h is a unitary operator on L2(R). Hence the action of α′ does
not affect the multiplicity function, and from now on, we only consider α =
αrα

i
inv. In this case, letting

(Drf)(x) = r1/2f(rx) ,

we obtain by straightforward computation that
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(Dαf)∧ (h) = r−1 · Dr ◦ f̂((−1)ir−1h) ◦ D∗
r . (6.12)

This immediately implies (6.11).
To prove (d), observe that the unitarity of Dα implies that Dα (λH(Γ )) is

a normalized tight frame of Dα(H), and check the equality

Dα(λH(x)S) = λH(α−1(x))(DαS) .

Proof of Theorem 6.4. We first prove the theorem for the case Γ = Γd.
Writing

Φ̂(h) =
∑
i∈Ih

ϕh
i ⊗ ηh

i ,

we find by Proposition 6.11, that for almost every h, (�h(γ) ◦ |h|1/2Φ̂(h))γ∈Γ

has to be a normalized tight frame of L2(R) ◦ P̂h, or equivalently, that the
vector (ϕh

i )i=1,...,m(h) generates a frame of
(
L2(R)

)m(h), for h = (h, . . . , h).
Then 6.13 (a) implies that G(h, d, |h|1/2ϕh

i ) is a normalized tight frame of
L2(R). In particular, Theorem 6.12 entails

‖ϕh
i ‖2 = d , (6.13)

as well as Σ(H) ⊂
[
− 1

d , 1
d

]
. If d > 1, the support condition (6.6) in Proposition

6.11 is fulfilled. Hence Proposition 6.14 (a), applied to h = (h, . . . , h), shows
that (6.4) is necessary and sufficient for the existence of a normalized tight
frame for H. (Note that by Remark 6.15, 6.14 (a) provides a measurable vector
field.)

The case d = 1 requires a somewhat more involved argument. Assume
that λH(Γ )Φ is a normalized tight frame, and let f ∈ H. Condition (6.5) from
Proposition 6.11 yields

‖f‖2 =
∫ 1

0

∑
γ∈Γ r

d

∣∣∣〈f̂(h), �h(γ)Φ̂(h)〉
∣∣∣2 |h|2

+
∣∣∣〈f̂(h − 1), �h−1(γ)Φ̂(h − 1)〉

∣∣∣2 |h − 1|2dh . (6.14)

On the other hand,

‖f‖2 =
∑

γ∈Γ r
d

∑
�∈Z

∣∣∣∣
∫ 1

0

e−2πih�
(
〈f̂(h), �h(γ)Φ̂(h)〉|h|+

+〈f̂(h − 1), �h−1(γ)Φ̂(h − 1)〉|h − 1|
)

dh

∣∣∣∣
2

=
∫ 1

0


 ∑

γ∈Γ r
d

|〈f̂(h), �h(γ)Φ̂(h)〉|h|

+ 〈f̂(h − 1), �h−1(γ)Φ̂(h − 1)〉|h − 1| |2

 dh . (6.15)
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As in the proof of Proposition 6.11, the fact that the two equations hold for
all f ∈ H allows to equate the integrands of (6.14) and (6.15). But this implies
the orthogonality of the coefficient families:
〈(

〈f̂(h), �h(γ)Φ̂(h)〉
)

γ∈Γ r
d

,
(
〈f̂(h − 1), �h−1(γ)Φ̂(h − 1)〉

)
γ∈Γ r

d

〉
�2(Γ r

d )

= 0 .

Plugging this fact, together with condition (6.5) from Proposition 6.11, into
Proposition 6.13, we finally obtain that the system

(
�h−1(γ)|h − 1|1/2ϕh−1

1 , . . . , �h−1(γ)|h − 1|1/2ϕh−1
m(h−1), �h(γ)|h|1/2ϕh

1 ,

, . . . , �h(γ)|h|1/2ϕh
m(h)

)
γ∈Γ r

d

has to be a normalized tight frame of
(
L2(R)

)m(h)+m(h−1). An application of
Proposition 6.14 (a) with h = (h − 1, . . . , h − 1, h, . . . , h) yields that such a
frame exists iff m(h)|h|+m(h−1)|h−1| ≤ 1. This shows the necessity of (6.3).
The sufficiency is obtained by running the proof backward; the measurability
of the constructed operator field is again ensured by Remark 6.15.

For the proof of (ii) we need to show, by 2.53(c), that ‖Φ‖ < 1, for every
Φ for which λH(Γ )Φ is a normalized tight frame. Recalling that

|h|‖Φ̂(h)‖2B2
= |h|m(h)d ,

and using the fact that the inequality m(h)|h|d+m(h−1)|h−1|d ≤ 1 is strict
almost everywhere (say, for h irrational) we can estimate

‖Φ‖2 =
∫ 1

−1

‖Φ̂(h)‖2B2
|h|dh

=
∫ 1

0

m(h)|h|d + m(h − 1)|h − 1|d dh

< 1 .

This closes the proof for Γ = Γd. For Γ = α(Γd), write α = αr(Γ )α
i
invα′ as in

Proposition 6.16 (c). By 6.17 (d), we may consider Γd and H̃ = Dα(H) instead
of Γ and H. Part (ii) immediately follows from this observation. For part (i),
we find by Proposition 6.17(c) that the associated multiplicity function m̃

fulfills m̃(h) = m((−1)ir(Γ )−1h). Hence, (6.3) for Γd, H̃ becomes

m((−1)ir(Γ )−1h)|h|+m((−1)ir(Γ )−1(h−1))|h−1| ≤ 1
d

(almost everywhere)

which after dividing both sides by r(Γ ) and passing to the variable h̃ =
(−1)ir(Γ )−1h is the desired inequality (6.3). �
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Proof of Corollary 6.6. The assumptions imply that m(h)|h| ≤ c, for all
h ∈ R

′, and c a constant. Hence picking s ≥ 2c
d and defining Γ = αs(Γd)

ensures that (6.3) is fulfilled. �

Proof of Corollary 6.7. Pick an admissible vector η and transfer the corre-
sponding results from Theorem 6.4 and Corollary 6.6 to Hπ via V −1

η . �

Proof of Corollary 6.8. Pick any measurable function m : [−1, 1] → N
′

such that h �→ m(h)|h| is integrable but unbounded. Pick a closed, leftinvari-
ant space H with multiplicity function m. The space can be constructed by
realizing that each representation in the Plancherel decomposition of H enters
with infinite multiplicity, hence the projection field

Ph =
m(h)∑
n=1

en(h) ⊗ en(h)

constructed from a measurable field (en)n∈N of ONB’s is well-defined and
measurable. H is of the desired form, but violates (6.3), for all lattices Γ . �

Proof of Corollary 6.9. To give an example proving the first statement, let
Γ = Γd; using the appropriate α ∈ Aut(H) the argument can be adapted to
suit any other lattice. For h ∈

[
0, 1

d

]
, define

ηh =
1√
h/2

111[0,h/2] .

and S ∈ L2(H) with Ŝ(h) = ηh⊗ηh. Then S is a selfadjoint convolution idem-
potent, and H = L2(H) ∗ S has a tight frame of the form λH(Γ )Φ. However,
for H to be a sampling space, λH(Γ )S must be a tight frame, and condition
(6.5) implies that G(h, d, ηh) is a tight frame of L2(R), for almost every h. But
111[h/2,h] has disjoint support with all elements of that system, hence G(h, d, ηh)
is not even total.

The second statement is obvious from Proposition 2.54. The last statement
follows from Theorem 6.4 (ii). �

6.6 A Concrete Example

In this section we explicitly compute a sinc-type function for Γ = Γ1. The
construction proceeds backwards, starting on the Plancherel transform side by
giving a field of rank-one projection operators fulfilling the additional require-
ments for the sampling space property. Fourier inversion yields the sinc-type
function S. As a consequence, the sampling space is given as L2(H) ∗ S. In
order to minimize tedium, we have shortened some of the more straightfor-
ward calculations. The three steps carry out the abstract program developed
above.
1. Construction on the Plancherel transform side.
For h ∈ [−0.5, 0.5] let ηh = |h|−1/2111[−|h|/2,|h|/2], and
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Ŝ(h) = ηh ⊗ ηh ,

and let Ŝ be zero outside of [−0.5, 0.5]. Ŝ is a measurable field of rank-one pro-
jection operators, with integrable trace, hence has an inverse image S ∈ L2(H)
which is a selfadjoint convolution idempotent. Moreover, it is straightforward
to check that �h(Γ r

1 )|h|1/2ηh = �h(Γ r
1 )111[−0.5,0.5] is a normalized tight frame

of L2(R), (compare the proof of Proposition 6.14 (a)). Hence, by Proposi-
tion 6.11, λH(Γ )S is a normalized tight frame of H = L2(H) ∗ S, and H is a
sampling space.
2. Plancherel inversion.
An application of the Plancherel inversion formula (4.5) yields

S(p, q, t)

=
∫ 0.5

−0.5

〈ηh, �h(p, q, t)ηh〉|h|dh

=
∫ 0.5

−0.5

e−2πih(t+pq/2)

∫ |h|
2

− |h|
2

e−2πiqx111[−|h|/2,|h|/2](x + hp)dx dh . (6.16)

3. Computing integrals.
Let S̃(p, q, h) denote the inner integral. In the following, we assume that q �= 0
and p ≥ 0. The missing values will be obtained by taking limits (for q = 0)
and reflection (for p < 0). Observe further that S(p, q, t) = 0 for |p| > 1, hence
we will use |p| ≤ 1 wherever we may need it. Integration yields

S̃(p, q, h) =




e2πiq|h|/2 − e−2πiq(|h|/2−hp)

2πiq h ≥ 0

e2πiq(|h|/2+hp) − e−2πiq|h|/2
2πiq h < 0

,

After plugging this into (6.16) and integrating, straightforward simplifications
lead to

S(p, q, t) =
1

2πq

(
cos (π(t + (p − 1)q/2)) − 1

π(t + (p − 1)q/2)
− cos (π(t − (p − 1)q/2)) − 1

π(t − (p − 1)q/2)

)
.

In order to further simplify this expression, we use the relation

cos(πα) − 1
πα

= −πα

2
sinc2

(α

2

)

by which means we finally arrive at

S(p, q, t) =
1
4

[(
t

q
+

1 − p

2

)
sinc2

(
t

2
+

1 − p

4
q

)

−
(

t

q
− 1 − p

2

)
sinc2

(
t

2
− 1 − p

4
q

)]
. (6.17)
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For p < 0 we use that S(p, q, t) = S∗(p, q, t) = S(−p,−q,−t). It turns out that
replacing p by |p| in (6.17) is the only necessary adjustment for the formula
to hold in the general case. Finally, sending q to 0 allows to compute the
values S(p, 0, t), since S is continuous. The following theorem summarizes our
calculations:

Theorem 6.18. Define S ∈ L2(H) by

S(p, q, t) =




0 for |p| > 1
1
4

[(
t
q + 1−|p|

2

)
sinc2

(
t
2 + 1−|p|

4 q
)

−
(

t
q − 1−|p|

2

)
sinc2

(
t
2 − 1−|p|

4 q
)]

for |p| ≤ 1, q �= 0
1−|p|

4 (2sinc(t) − sinc2(t/2)) for |p| ≤ 1, q = 0

Let H ⊂ L2(H) be the leftinvariant closed subspace generated by S, H =
L2(H) ∗ S. Then H is a sampling space for the lattice Γ1, with cH = 1, and
S the associated sinc-type function. λH(Γ1)S is a normalized tight frame, but
not an orthonormal basis of H, because of ‖S‖2 = 1

2 .
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