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Admissible Vectors for Group Extensions

In this chapter we discuss a class of examples which has received considerable
attention in recent years. The aim consists in making the abstract admissibility
conditions developed in Chapter 4 explicit, in particular the criteria from
Remark 4.30. Recall that this requires computing the Plancherel measure as
well as the direct integral decomposition of the representation at hand into
irreducibles. We consider certain group extensions

1 → N → G → H → 1 ,

using the techniques of Kleppner and Lipsman from Section 3.6 for the com-
putation of νG. Of particular interest will be the case where G = N � H ,
and π is the quasi-regular representation π = IndG

H1. The case N = R
k and

H < GL(k, R) has been studied by a number of authors, see the list below,
and we start by discussing this setting by more or less basic arguments. In
fact, Examples 2.28, 2.30 and 2.36 are all special cases of this setting. It turns
out that the arguments dealing with these examples extend to the general case
G = R

k
�H , yielding elementary admissibility conditions which avoid explicit

reference to the Plancherel transform of G (Theorem 5.8). Having done that,
we show in Theorem 5.23 how the concrete admissibility conditions relate to
the scheme described in Remark 4.30. As a result we obtain a very concrete
description of the various objects that enter the Plancherel formula for the
group under consideration. The argument is based on a general result about
the containment of a quasi-regular representation in the regular representation
(Theorem 5.22), which allows to conclude the existence of admissible vectors
for a wide range of settings.

The result can also be applied to cases where N is nonabelian; in particular
when N is a homogeneous Lie group and H a one-parameter group of dilations
acting on N (Corollary 5.28). Finally, we show how the Zak transform criteria
for Weyl-Heisenberg frames with integer oversampling can be regarded as
admissibility conditions with respect to a certain discrete group.

Thus the results of this chapter generalize and/or complement the findings
of various authors:
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140 5 Admissible Vectors for Group Extensions

• Murenzi’s [93] 2D continuous wavelet transform discussed in 2.30.
• The dyadic wavelet transform of Mallat and Zhong [92] considered in 2.36
• Bohnke [25] introduced H = R

+ ·SO0(1, 1) and H = R
+ ·SO0(2, 1). Again

the representations were irreducible.
• General characterizations of dilation groups H giving rise to discrete series

subrepresentations of the quasiregular representation were given in [22, 50].
• Klauder, Isham and Streater [67, 74] considered H = SO(k) and H =

SO(k−1, 1). As a matter of fact, the representations they consider are not
explicitly defined as subrepresentations of π, but they are direct integrals
which are immediately recognised as subrepresentations of the representa-
tion π̂ obtained by conjugating π with the Fourier transform on R

k.
• Cyclic and one-parameter subgroups of GL(k, R) were considered by

Gröchenig, Kaniuth and Taylor [59]. A general discussion of discrete dila-
tion groups can be found in [51].

• The characterization of dilation groups allowing the existence of admissible
vectors was addressed in full generality in [77, 113], as well as in [52], and
the discussion in the first two sections follows the latter paper closely.

• Lemarié [78] established the existence of wavelet orthonormal bases on
L2(N), where N is a stratified Lie group. These bases arise from the action
of a lattice in N and a discrete group of dilations, in an entirely analogous
fashion to the multiresolution wavelets on R. Our results provide a con-
tinuous analogue of these systems, for the larger class of homogeneous Lie
groups.

• Liu and Peng [83] considered a semidirect product H�R, where R denotes
a one-parameter group of dilations, and an associated quasi-regular repre-
sentation π on L2(H). They then showed that π splits into discrete series
representations, and gave admissibility conditions for each. Our results
yield admissible vectors for π itself.

• Daubechies [33] (among other authors) characterized tight Gabor frames
for the case of rational oversampling, making use of the Zak transform. The
discussion in Section 5.5 exhibits this criterion as yet another instance of
the scheme from Remark 4.30.

The standing assumptions of this chapter are: G is a type I group, N � G
is regularly embedded and type I. Whenever G is nonunimodular, we assume
that the Ker(∆G) has the same properties as N . The assumptions are chosen
to allow to apply the results from the previous chapters. As the discussion
of the concrete admissibility conditions shows, the conditions are somewhat
more restrictive than seems necessary. However, for all concrete examples that
have so far been considered in the literature, the standing assumptions can in
fact be verified.
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5.1 Quasiregular Representations and the Dual Orbit
Space

For this and the next section let H < GL(k, R) be a closed subgroup, and
G = R

k
� H . Elements of G are denoted by (x, h) with x ∈ R

k and h ∈ H ;
the group law is then given by (x0, h0)(x1, h1) = (x0 + h0x1, h0h1). Left Haar
measure of G is given by dµG(x, h) = | det(h)|−1dxdµH(h), and the modular
function is computed as ∆G(x, h) = ∆H(h)| det(h)|−1. For simplicity we will
sometimes write ∆G(h) instead of ∆G(0, h). The quasiregular representation
π of G acts on L2(Rk) by

(π(x, h)f)(y) = | det(h)|−1/2f(h−1(y − x)).

The closedness of H in GL(k, R) may seem a somewhat arbitrary condition
(Lie subgroups might also work), but it is in fact not a real restriction, because
of the following fact. It was observed in [49, Proposition 5] for the discrete
series case, but the proof does not use irreducibility. We reproduce it for the
sake of completeness.

Proposition 5.1. Let H be a subgroup of GL(k, R), endowed with some lo-
cally compact group topology. Assume that the semidirect product R

k
� H is

a topological semidirect product, and that the quasiregular representation has
a nontrivial subrepresentation with an admissible vector. Then H is a closed
subgroup of GL(k, R), and the topology on H is the relative topology.

Proof. Since all wavelet coefficients vanish at infinity by 2.19, there exists
a nontrivial C0 matrix coefficient Vfg for π. We may assume Vfg(e) = 1.
Let Wfg denote the matrix coefficient of the quasiregular representation of
R

k
� GL(k, R) corresponding to the same pair of functions f, g. Then Vfg

is the restriction of Wfg to R
k

� H . Since Wfg is continuous, there exists a
compact neighborhood U of 1 in GL(k, R) with |Wfg| > 1/2 on U . U ∩ H
is T -closed in H , since U is closed and T is finer than the relative topology.
Since H is closed in R

k
� H , the restriction of Vfg to H vanishes at infinity.

By choice of U , this implies that U ∩ H is contained in a T -compact set,
hence is T -compact itself. But then the inclusion map from U ∩ H to H is
a homeomorphism onto its image, being a continuous map from a compact
space to a Hausdorff space. Hence T coincides on U ∩ H with the relative
topology. Since U ∩ H is a neighborhood of 1 for both topologies, it follows
that the neighborhood filters of both topologies at unity coincide. Since a
group topology is uniquely determined by the neighborhoods at unity, the
topologies themselves coincide. In particular the relative topology is locally
compact, which means H is closed.

Mackey’s theory directs our attention towards the dual action. As it turns
out, the decomposition of the quasiregular representation is also closely related
to the dual orbit space. Let us quickly recall the notions of Mackey’s theory
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for this particular setup. The dual group R̂k is the character group of R
k,

identified with R
k itself. Denoting the usual scalar product on R

k by (ω, x) �→
ω · x, the duality between R̂k and R

k is given by

〈ω, x〉 = e−2πiω·x .

In this identification, the dual operation is given by

h.ω = (ht)−1ω , (5.1)

where the right-hand side denotes the product of a matrix with a column
vector. R̂k/H is the dual orbit space. For γ ∈ R̂k, Hγ denotes the stabilizer
of γ in H ; it is a closed subgroup of H .

For the discussion of subrepresentations of π, it is useful to introduce the
representation π̂ obtained by conjugating π with the Fourier transform on R

k.
It is readily seen to operate on L2(R̂k) via

(π̂(x, h)f̂)(ω) = | det(h)|1/2e−2πiω·xf(h−1.ω) . (5.2)

The action of π̂ allows to identify subrepresentations in a simple way: Every
invariant closed subspace H ⊂ L2(Rk) is of the form

H = HU = {g ∈ L2(Rk) : ĝ vanishes outside of U } ,

where U ⊂ R̂k is a measurable, H-invariant subset (see [48] for a detailed
argument). We let πU denote the subrepresentation acting on HU .

Remark 5.2. The structure of the dual orbit space As the structure of
the dual orbit space is important for the decomposition of the quasi-regular
representation and for the construction of admissible vectors on the one hand,
but also for the computation of Plancherel measure on the other, let us take a
closer look at its measure-theoretic structure. For our discussion, the following
two sets will be central

Ωc ={ω ∈ R̂k : Hω is compact } , Ωrc ={ω ∈ Ωc : O(ω) | is locally closed } .

The set Ωrc ⊂ Ωc consists of the “regular” orbits in Ωc; i.e., it is the “well-
behaved” part of Ωc. Loosely speaking, Ωc is the set we have to deal with,
and Ωrc is the set we can deal with. Put more precisely: While Theorem
5.8 below shows that subrepresentations with admissible vectors necessarily
correspond to invariant subsets U of Ωc, the existence result in Theorem 5.12
only considers subsets of the smaller set Ωrc. However, this distinction is not
due to a shortcoming of our approach: Remark 5.13 gives an example of a
subset of Ωc that does not allow admissible vectors for the corresponding
subrepresentation.

The measure-theoretic properties of the two sets are summarized as fol-
lows: Ωc can be shown to be measurable, see Corollary 5.6. But usually Ωc is
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not open, even when it is conull, as is illustrated by the example of SL(2, Z):
It is easy to see that Ωc consists of all the vectors (ω1, ω2) such that ω1/ω2 is
irrational. This is a conull set with dense complement in R̂2.

By contrast, Ωrc is always open, by Proposition 5.7. A pleasant conse-
quence of this is that Glimm’s Theorem [56] applies (since Ωrc is locally com-
pact), which entails a number of useful properties of the orbit space Ωrc/H :
It is a standard Borel space having a measurable cross section Ωrc/H → Ωrc,
and there exists a measurable transversal, i.e., a Borel subset A ⊂ Ωrc meeting
each orbit in precisely one point.

Unfortunately, the example of SL(2, Z) shows that Ωrc can be empty even
when Ωc is conull: Ωc contains no nonempty open set, since its complement
is dense.

The rest of the section is devoted to proving the measurability of Ωc and
the openness of Ωrc. The proof for the first result uses the subgroup space of
H , as introduced by Fell [44].

Definition 5.3. Let G be a locally compact group. The subgroup space of
G is the set K(G) := {H < G : H is closed }, endowed with the topology
generated by the sets

U(V1, . . . , Vn; C) := {H ∈ K(G) : H ∩ Vi �= ∅, ∀1 ≤ i ≤ n, H ∩ C = ∅},

where V1, . . . , Vn denotes any finite family of open subsets of G and C ⊂ G is
compact.
With this topology K(G) is a compact Hausdorff space.

The motivation for introducing the K(G) to our discussion is the following:

Proposition 5.4. Let X be a countably separated Borel space, and G a locally
compact group acting measurably on X. Consider the stabilizer map s : X →
K(G) defined by s(x) = {g ∈ G : g.x = x}. Then s is Borel.

Proof. That s indeed maps into K(G) is due to [17, Chapter I, Proposition
3.7], the measurability is [17, Chapter II, Proposition 2.3].

Proposition 5.5. Let G be a σ-compact, locally compact group. Then
Kc(G) = {H ∈ K(G) : H is compact } is a Borel subset of K(G).

Proof. We first construct a sequence of compact set (Cn)n∈N such that A ⊂
G is relatively compact iff A ⊂ Cn for some n ∈ N. For this purpose let
G =

⋃
n∈N

Kn with compact Kn. Pick a compact neighborhood V of the unit
elements, and define Cn = V ·

⋃n
i=1 Ci. Then the open kernels of the Cn cover

G. Hence, if A ⊂ G is compact, the fact that the Cn increase implies that
A ⊂ Cn for some n. It follows that

Kc(G) =
⋃
n∈N

{H ∈ K(G) : H ∩ (G \ Cn) = ∅}

=
⋃
n∈N

K(G) \ U(G \ Cn, ∅)
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is an Fσ-set.

Combining 5.4 and 5.5, we obtain the desired measurability.

Corollary 5.6. Ωc is a Borel subset of R̂k.

The proof of the following proposition uses ideas from [77].

Proposition 5.7. Ωrc is open.

Proof. Define the ε-stabilizer

Hε
ω = {h ∈ H : |h.ω − ω| ≤ ε} ,

where | · | denotes the euclidean norm on R̂k. If Hε
ω is compact for some ε > 0,

then Bε(ω) ∩ O(ω) = Hε
ω.ω is compact. Here Bε(x) denotes the closed ε-ball

around x. Hence the orbit O(ω) is locally closed.
Conversely, assume that Bε(ω) ∩ O(ω) is compact for some ε > 0 and

that Hω is compact. There exists a measurable cross-section τ : O(ω) → H
which maps compact sets in O(ω) to relatively compact sets in H . Hence
Hε

ω ⊂ Hωτ(Bε(ω)) is relatively compact and closed, hence compact.
In short, we have shown

ω ∈ Ωrc ⇐⇒ ∃ε > 0 : Hε
ω is compact ,

and we are going to use this characterization to prove the openness of Ωrc.
If the origin is in Ωrc, then H is compact, and Ωrc = R̂k. In the other case,

pick ω in Ωrc and ε > 0 with Hε
ω compact. Since GL(k, R) acts transitively on

R̂k\{0}, we may (possibly after passing to a smaller ε) assume that there exists
a continuous cross-section α : Bε(ω) → GL(k, R) with relatively compact
image, i.e., α(γ).ω = γ, for all γ ∈ Bε(ω), and α(Bε(ω)) ⊂ U , where U is a
compact neighborhood of the identity in GL(k, R). We are going to show that
Bε(ω) ⊂ Ωrc. For this purpose let γ ∈ Bε(ω). Clearly it is enough to prove
that

C := {h ∈ H : h.γ ∈ Bε(ω)} = {h ∈ GL(k, R) : h.γ ∈ Bε(ω)} ∩ H

is relatively compact. By assumption,

Hε
ω = {h ∈ GL(k, R) : h.ω ∈ Bε(ω)} ∩ H

is compact. Hence

C = {h ∈ GL(k, R) : ωα(γ).h ∈ Bε(ω)} ∩ H

= α(γ)−1{h ∈ GL(k, R) : h.ω ∈ Bε(ω)} ∩ H

⊂ U−1({h ∈ GL(k, R) : h.ω ∈ Bε(ω)} ∩ H)

i.e., C is contained in the product of two compact sets, and thus relatively
compact. Note that we used here that H is a closed subgroup of GL(k, R),
hence compactness in H is the same as compactness in GL(k, R).
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5.2 Concrete Admissibility Conditions

We will now derive the admissibility condition for the quasiregular represen-
tation and its subrepresentations. The proof of the admissibility condition is
fairly straightforward. It is only when we address the existence of functions
fulfilling the condition that we are forced to use more involved arguments. The
theorem was derived for certain concrete groups H in [92, 67, 74], and the argu-
ments presented in this section are generalizations of those in [92, 67, 74]. The
general version given here appears also in [77, 52]. Note that the admissibility
condition also figures as a part of the definition of the notion of “projection
generating function” in [59, Definition 2.1]. Thus the following theorem also
answers a question raised in [59, Remark 2.6(b)]: There the authors observe
that taking a projection generating function as wavelet gives rise to orthogo-
nality relations among the wavelet coefficients which closely resemble those for
irreducible square-integrable representations, even though the representation
at hand is not irreducible. The explanation for this phenomenon is that the
orthogonality relations in the discrete series case are particular instances of
the orthogonality relations arising in connection with the Plancherel formula.

A comparison of the following theorem with Theorem 4.20 gives a first
hint towards the connection between abstract and concrete admissibility con-
ditions.

Theorem 5.8. Let (πU ,HU ) be a subrepresentation of π corresponding to
some invariant measurable subset U . Then

g ∈ HU is bounded ⇔
∫

H

|ĝ(h−1.ω)|2dµH(h) ≤ constant (5.3)

g ∈ HU is cyclic ⇔
∫

H

|ĝ(h−1.ω)|2dµH(h) �= 0 (5.4)

g ∈ HU is admissible ⇔
∫

H

|ĝ(h−1.ω)|2dµH(h) = 1 (5.5)

Here all right-hand sides are understood to hold almost everywhere. In partic-
ular, if πU has a bounded cyclic vector, then U ⊂ Ωc (up to a null set).

Proof. We start by explicitly calculating the L2-norm of Vgf , for f, g ∈ HU .
The following computations are generalizations of the argument used for the
1D continuous wavelet transform in Example 2.28, see also [22, 48, 113].
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‖Vgf‖2L2(G) =
∫

G

|〈f, π(x, h)g〉|2 dµG(x, h)

=
∫

G

∣∣∣〈f̂ , (π(x, h)g)∧〉
∣∣∣2 dµG(x, h)

=
∫

G

∣∣∣∣
∫
R̂k

f̂(ω)| det(h)|1/2e2πiγxĝ(h−1.ω)dω

∣∣∣∣
2

dµG(x, h)

=
∫

H

∫
Rk

∣∣∣∣
∫
R̂k

f̂(ω)e2πiωxĝ(h−1.ω)dω

∣∣∣∣
2

dλ(x)dµH (h)

=
∫

H

∫
Rk

|F(φh)(−x)|2 dλ(x)dµH (h).

Here φh(ω) = f̂(ω)ĝ(h−1.ω), and F denotes the Fourier transform on L1(R̂k).
An application of Plancherel’s formula – or more precisely, the extension of
2.22 to R

k – to the last expression yields∫
H

∫
R̂k

|φh(ω)|2 dωdµH(h) =
∫

H

∫
R̂k

∣∣∣f̂(ω)
∣∣∣2 ∣∣ĝ(h−1.ω)

∣∣2 dωdµH(h)

=
∫
R̂k

∣∣∣f̂(ω)
∣∣∣2

(∫
H

∣∣ĝ(h−1.ω)
∣∣2 dµH(h)

)
dω .

Now (5.3) through (5.5) are obvious. Moreover, it is easily seen that whenever
the stabilizer Hω is noncompact, we have∫

H

|ĝ(h−1.ω)|2dµH(h) ∈ {0,∞},

(cf. also the proof of [48, Theorem 10]), hence Vgf ∈ L2(G) entails that the
pointwise product f̂ ĝ vanishes a.e. outside of Ωc. In particular, a bounded
cyclic vector vanishes almost everywhere outside of Ωc, hence we obtain in
such a case that U ⊂ Ωc (up to a null set).

For the construction of admissible vectors we first decompose Lebesgue
measure λ on Ωrc into measures on the orbits and a measure on Ωrc/H . Then
we address the relationship of the measures on the orbits to the Haar measure
of H .

Lemma 5.9. (a) There exists a measure λ on Ωrc/H and on each orbit O(γ)
a measure βO(γ) such that for every measurable A ⊂ Ωrc the mapping

O(γ) �→
∫
O(γ)

111A(ω)dβO(γ)(ω)

is λ-measurable, and in addition

λ(A) =
∫
R̂k/H

∫
O(γ)

111A(ω)dβO(γ)(ω)dλ(O(γ)).



5.2 Concrete Admissibility Conditions 147

(b) Let (λ, (βO(γ))O(γ)∈Ωrc/H) be as in (a). For γ ∈ Ωrc define µO(γ) as the
image measure of µH under the projection map pγ : h �→ h−1.γ. µO(γ) is a
σ-finite measure, and its definition is independent of the choice of represen-
tative γ. Then, for almost all γ ∈ Ωrc, the µO(γ) and βO(γ) are equivalent,
with globally Lebesgue-measurable Radon-Nikodym-derivatives: There ex-
ists an (essentially unique) Lebesgue-measurable function κ : Ωrc → R

+

such that for ω ∈ O(γ),

dβO(γ)

dµO(γ)
(ω) = κ(ω) .

(c) The function κ fulfills the semi-invariance relation

κ(h−1.ω) = κ(ω)∆G(h)−1 . (5.6)

In particular, κ is H-invariant iff G is unimodular. In that case, we can
in fact assume that κ = 1 almost everywhere. This choice determines the
measure λ uniquely.

Proof. Statement (a) is a special instance of Proposition 3.28.
In order to prove part (b), well-definedness and σ-finiteness of µO(γ) follow

from compactness of Hγ . The independence of the representative γ of the orbit
follows from the fact that µH is leftinvariant. To compute the Radon-Nikodym
derivative κ, we first introduce an auxiliary function � : Ωrc → R

+
0 : Fix a

Borel-measurable transversal A ⊂ Ωrc of the H-orbits. Then the mapping
τ : A × H → Ωrc, τ(ω, h) = h−1.ω is bijective and continuous, hence, since
A × H is a standard Borel space, τ−1 : Ωrc → A × H is Borel as well,
by [15, Theorem 3.3.2]. If we let τ−1(γ)H denote the H-valued coordinate
of τ−1(γ), then �(γ) := ∆G(τ−1(γ)H) is a Borel-measurable mapping. Since
∆G is constant on every compact subgroup (in particular on all the little fixed
groups of elements in Ωrc), a straightforward calculation shows that � satisfies
the semi-invariance relation �(h−1.ω) = �(ω)∆G(h)−1.

Next fix an orbit O(γ) and let us compare the measures βO(γ) and �µO(γ):
Since

dµO(γ)(h−1.ω)=∆H(h)dµO(γ)(ω) and dβO(γ)(h−1.ω)= | det(h)|dβO(γ)(ω) ,

the definition of � ensures that �µO(γ) and βO(γ) behave identically under
the action of H . Moreover, they are σ-finite and quasi-invariant, hence equiv-
alent. Since they have the same behaviour under the operation of H , the
Radon-Nikodym derivative turns out to be a positive constant on the orbit.
Summarizing, we find for ω ∈ O(γ) that

dβO(γ)

dµO(γ)
(ω) = �(ω)cO(γ) ,

with �, cO(γ) > 0, and it remains to show that cO(γ) depends measurably on
the orbit.
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For this purpose pick a relatively compact open neighborhood B ⊂ H of
the identity. Then AB = τ(A×B) ⊂ Ωrc is Borel-measurable, as a continuous
image of a standard space, hence 111AB, the indicator function of AB, is a Borel-
measurable function. Both

φ1 : O(γ) �→
∫
O(γ)

111AB(ω)dβO(γ)(ω)

and
φ2 : O(γ) �→

∫
O(γ)

111AB(ω)�(ω)dµO(γ)(ω)

are measurable functions: The first one is by choice of the βO(γ), see part (a).
The second one is measurable by Fubini’s theorem, applied to the mapping
(ω, h) �→ 111AB(h−1.ω)�(h−1.ω) on R̂k × H (recall the definition of µO(γ)).

In addition, both functions are finite and positive on Ωrc. We have

φ2(O(γ)) =
∫
O(γ)

111AB(ω)�(ω)dµO(γ)(ω) =
∫

p−1
γ (AB)

∆G(h)dµH(h) ,

and p−1
γ (AB) is relatively compact and open, hence it has finite and positive

Haar measure. Since in addition ∆G is positive and bounded on p−1
γ (AB), we

find 0 < φ2(O(γ)) < ∞. Hence

φ1(O(γ)) = cO(γ)φ2(O(γ))

can be solved for cO(γ), which thus turns out to depend measurably upon
O(γ). Hence

κ(ω) =
dβO(γ)

dµO(γ)
= �(ω)cO(γ)

is a Lebesgue-measurable function.
The remaining part (c) is simple to prove: The semi-invariance relation of �

entails the relation for κ. The normalization is easily obtained: If κ is constant
on the orbits, it defines a measurable mapping κ on Ωrc/H . If we replace each
βO(γ) by µO(γ), we can make up for it by taking κ(O(γ))dλ(O(γ)) as the new
measure on the orbit space. The new choice has the desired properties. The
uniqueness of λ follows from the usual Radon-Nikodym arguments.

Remark 5.10. Let us for the next two sections fix a choice of λ. Note that this
also uniquely determines the function κ. In the unimodular case we take κ to
be 1, which in turn determines λ uniquely.

As we shall see in Theorem 5.23, the choice of a pair (λ, κ) corresponds
exactly to a choice of Plancherel measure and the associated family of Duflo-
Moore operators, at least on a subset of Ĝ.

Before we turn to the construction of admissible vectors, we introduce some
notation to help clarify the construction: To a function ĝ on U we associate
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two auxiliary H-invariant functions TH(ĝ) and SH(ĝ) such that admissibility
of g translates to a condition on TH(ĝ) and square-integrability to a condition
on SH(ĝ).

Definition 5.11. For a measurable function ĝ on Ωrc, let TH(ĝ) denote the
function

TH(ĝ)(ω) :=

(∫
O(ω)

|ĝ(γ)|2dµO(ω)(γ)

)1/2

=

(∫
O(ω)

|κ(γ)−1/2ĝ(γ)|2dβO(ω)(γ)

)1/2

.

TH(ĝ) is a measurable, H-invariant mapping Ωrc → R
+
0 ∪ {∞}. The admis-

sibility condition can then be reformulated:

g ∈ L2(U) is admissible ⇔ TH(ĝ) ≡ 1 ( a.e. on U) . (5.7)

Similarly, weak admissibility is equivalent to the requirement that TH(ĝ) ∈
L∞(U) and TH(ĝ) > 0 almost everywhere. We can also define

SH(ĝ)(ω) :=

(∫
O(ω)

|ĝ(γ)|2dβO(ω)(γ)

)1/2

.

By our choice of measures, SH and TH coincide iff G is unimodular. Both
TH(ĝ) and SH(ĝ) may (and will) be regarded as functions on the quotient
space U/H. By the choice of the βO(ω),∫

U

|ĝ(ω)|2dω =
∫

U/H

|SH(ĝ)(O(ω))|2dλ(O(ω)) , (5.8)

so that ĝ is square-integrable iff SH(ĝ) is a square-integrable function on U/H.

Now we can address the existence of admissible vectors. The following
theorem is essentially the same as [77, Theorem 1.8]. Again, a comparison of
this theorem with the abstract version in Theorem 4.22 is instructive. The
connection will be made explicit in Theorem 5.23 below.

Theorem 5.12. Let U ⊂ Ωrc be measurable and H-invariant. Then πU has
a bounded cyclic vector. It has an admissible vector iff either

(i) G is unimodular and λ(U/H) < ∞.
(ii)G is nonunimodular.

Note that the strategy for the construction of admissible vectors in the
following proof is similar to the arguments in [77], but also to the construc-
tion in Theorem 4.23. It amounts to treating the admissibility condition –
involving TH – first, and then adjusting the construction to fulfill the square-
integrability condition – involving SH – as well.
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Proof. Recall that by the last remark we have for each admissible vector g that
TH(ĝ) is constant almost everywhere. At the same time, in the unimodular
case it is square-integrable as a function on U/H , because of SH = TH . This
shows the necessity of (i) in the unimodular case.

To prove the existence of admissible vectors, we first construct a func-
tion ĝ on U fulfilling the admissibility condition (5.7), and then modify the
construction to provide for square-integrability.

For this purpose we recycle the sets A ⊂ Ωrc and B ⊂ H from the proof of
Lemma 5.9. We already observed there that f̂ = 111AB is Lebesgue-measurable,
and that TH(f̂) is positive and finite almost everywhere on U . Hence we
may define ĝ = f̂ /TH(f̂), which fulfills the admissibility criterion. In the
unimodular case, equation (5.8) together with SH = TH shows that ĝ ∈ L2(U).

In the nonunimodular case, we modify g as follows: For every γ ∈ U , the
compactness of p−1

γ (AB) entails that ∆G is bounded on that set. Thus SH(ĝ)
is positive and finite almost everywhere. Since λ is σ-finite, we can write
U/H =

⋃
n∈N

Vn, with disjoint Vn of finite measure, such that in addition
SH(ĝ) is bounded on each Vn (here we regard SH(ĝ) as a function on the
quotient). In particular, SH(ĝ) · 111Vn is square-integrable on U/H . Now let
Un ⊂ U be the inverse image of Vn under the quotient map, and for h0 ∈ H
and n, kn ∈ N, denote by

ĝn(ω) := ∆H(h0)kn/2f̂2(h−1.ωkn
0 ) · 111Un(ω) .

Then the normalization ensures that ĝn has the following properties:

TH(ĝn) = 111Un (5.9)

and

SH(ĝn) = ∆H(h0)kn/2| det(h0)|−kn/2SH(ĝ) · 111Un

= ∆G(h0)kn/2SH(ĝ) · 111Un . (5.10)

Hence the following construction gives an admissible vector: Choose h0 ∈ H
such that ∆G(h0) < 1/2, pick kn ∈ N satisfying

2−kn‖SH(ĝ) · 111Un‖22 < 2−n (5.11)

and let ̂̃g(ω) := ∆H(h0)kn/2f̂2(h−1.ωkn
0 ), for ω ∈ Un. Then (5.9) implies that

TH(̂̃g) = 1 a.e., whereas (5.10) and (5.11) ensure that SH(̂̃g) ∈ L2(U/H, λ).
A bounded cyclic vector for πU –which is missing in the unimodular case–

can be obtained by similar (somewhat simpler) methods.

Remark 5.13. In Theorem 5.12 we cannot replace Ωrc by the bigger set Ωc.
To give a nonunimodular example, let H = {2kh : k ∈ Z, h ∈ SL(2, Z)}, which
is a discrete subgroup of GL(2, R). Whenever (γ1, γ2) ∈ R̂2 is such that γ1/γ2
is irrational, the stabilizer of (γ1, γ2) in H is finite. Hence the set Ωc is a
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conull subset in R̂2, whereas (as we already noted) Ωrc is empty. H operates
ergodically on R̂2 (already SL(2, Z) does, [118, 2.2.9]), and we can use this
fact to show that π has no admissible vectors: For every g ∈ L2(R2), the map

R
2 � γ �→

∑
h∈H

|ĝ(γh)|2

is measurable and H-invariant, hence, by ergodicity, it is constant almost ev-
erywhere. By the same calculation as in the proof of the admissibility condition
(5.5) we see that g is admissible iff the constant is finite.

Let g �= 0. Pick ε > 0 and a Borel set A on which |ĝ|2 > ε holds. Then
∑
h∈H

|ĝ(γh)|2 ≥ ε
∑
h∈H

|111A(γh)| .

Choose a sequence (An)n∈N of pairwise disjoint subsets of A satisfying
λ(An) > 0. Then, for any fixed n, the set Bn := {γ ∈ U : γH ∩ An �= ∅}
is H-invariant and contains An, hence, by ergodicity, it is a conull set. Hence
the intersection B of all Bn is a conull set, and for every γ ∈ B the set γH∩A
is infinite, the An being disjoint. But this implies

∑
h∈H

|111A(γh)| = ∞

on B, and thus a forteriori
∑
h∈H

|ĝ(γh)|2 = ∞ ,

hence g is not admissible.

Let us now give a short summary of the steps which have to be carried out
for the construction of wavelet transforms from semidirect products:

1. Compute the H-orbits in R̂k, possibly by giving a parametrization of
R̂k/H .

2. Determine the set Ωrc. If λ(Ωrc) = 0, stop.
3. Parametrize each orbit in Ωrc and determine the image µO(γ) of Haar

measure under the projection map h �→ h−1.γ.
4. Compute the measure decomposition dλ(γ) = dβO(ω)(γ)dλ(O(ω)).
5. Compute the Radon-Nikodym derivative κ.
6. The admissibility condition can then be formulated for subsets of Ωrc

just as in Theorem 5.8. Theorem 5.12 ensures the existence of admissible
vectors.
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In Remark 5.17 below we carry out the steps for the Poincaré group, which was
already considered in [74]. Since the final step – the actual construction of ad-
missible vectors – is missing, the description is somewhat incomplete. Clearly
the construction given in the proof of Theorem 5.12 is not very practical, but
it seems doubtful to us that a more explicit method is available which works
in full generality. However, in many concrete cases where parameterizations
of orbits and orbit spaces are possible, they can be given differentiably. Then
computing the various measures and Radon-Nikodym derivatives reduces to
computing the Jacobian determinants of those parameterizations. We expect
that in such a setting the construction of admissible vectors should also be
facilitated.

Further simplification can be obtained by the action of a matrix group in
the normalizer of H , as we will see next. For the remainder of this section
we focus on the case that G is unimodular. The main motivation for the
following proposition is to show that certain subrepresentations of π do not
have admissible vectors. In the light of Theorem 5.12, this amounts to proving
that λ(U/H) is infinite, for the H-invariant set U ⊂ Ωrc under consideration.

The argument proving the following proposition employs the action of the
scalars on the orbit space Ωrc/H . The group of scalars could be replaced by
any group A ⊂ GL(k, R) which normalizes H . Symmetry arguments of this
type could also simplify some of the steps 1. through 6. sketched above.

The multiplicative group (R′, ·) operates on R̂k/H by multiplication: If
a ∈ R

+ then a · (O(γ)) = O(aγ) is well-defined. Obviously Ωrc is invariant,
so that we obtain an operation on Ωrc/H . The next proposition gives the
behaviour of λ under this action. Obviously the fixed groups are constant
along R

′-orbits, i.e., Haγ = Hγ .

Proposition 5.14. Assume that G is unimodular. Let the measures λ and
µO(γ) be as in Lemma 5.9. Assume that a constant choice of Haar measure
on Haγ = Hγ was used to compute the µO.(aγ) (a ∈ R

′). For a ∈ R
′ and

γ ∈ R̂k let a∗(µO(γ)) denote the image measure of µO(γ) on O(aγ), i.e., for
measurable B ⊂ O(aγ) let a∗(µO(γ))(B) := µO(γ)(a−1B). Moreover let the

measure λa be given by λa(B) := λ(aB) (B ⊂ R̂k/H measurable). Then on
Ωrc/H the following relations hold:

µO(aγ) = a∗(µO(γ)),

λa = |a|nλ.

Proof. The first equality is immediate from the definitions of µO(γ) and µO(aγ).
For the second equation let us introduce the following notation: If f : Ωrc → R

is a positive, measurable function, let q(f) denote the function on Ωrc/H
defined by

q(f)(O(γ)) :=
∫
O(γ)

f(ω)dµO(γ)(ω).
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Moreover let fa(ω) := f(a−1ω), for all ω ∈ Ωrc and a ∈ R
′. From the first

equation we obtain

q(fa)(O(γ)) =
∫
O(γ)

f(a−1ω)dµO(γ)(ω)

=
∫
O(γ)a−1

f(ω)dµO(a−1γ)(ω)

= q(f)(O(a−1γ)).

Using this equation, we compute
∫

Ωrc/H

q(f)(O(γ))dλ(O(γ)) = a−n

∫
Ωrc

fa(ω)dλ(ω)

= a−n

∫
Ωrc/H

q(fa)(O(γ))dλ(O(γ))

= a−n

∫
Ωrc/H

q(f)(O(a−1γ))dλ(O(γ))

= a−n

∫
Ωrc/H

q(f)(O(γ))dλa(O(γ))

Using arguments similar to the one in the proof of Theorem 5.12, it is readily
seen that for each measurable A ⊂ Ωrc/H there exists a positive measurable
f on Ωrc with q(f) = 111A. Hence we have shown the second equation.

As a first consequence we obtain that admissible vectors exist only for
proper subsets of Ωrc. This was already noted (in the special case where Ωrc

is conull in R̂k) in [77, Theorem 1.8].

Corollary 5.15. Assume that G is unimodular, and that U := Ωrc is not a
nullset. Then the subrepresentation πU does not have an admissible vector.

Proof. By assumption we have λ(Ωrc/H) > 0, and we need to show that
λ(Ωrc/H) = ∞. But for all a ∈ R

′, aΩrc = Ωrc, and Proposition 5.14 yields
λ(Ωrc/H) = λ(a · Ωrc/H) = |a|−kλ(Ωrc/H).

Recall from Theorem 2.25 (c) that, given a square integrable represen-
tation σ of a locally compact group G, every vector in Hσ is admissible iff
σ is irreducible and G is unimodular. Hence discrete series representations
of unimodular groups are particularly useful, having no restrictions at all on
admissible vectors. But the following corollary excludes irreducible represen-
tations from our setting. The statement was proved first in [50] by a technique
employing the Fell topology of the group.

Corollary 5.16. Let G be unimodular. Then the quasiregular representation
π does not contain any irreducible square-integrable subrepresentations.
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Proof. Assume the contrary and let πU be an irreducible square integrable
subrepresentation. Here U denotes the corresponding H-invariant subset of
R̂k. Then, by [6, Theorem 1.1], U is (up to a null set) an orbit of positive
measure, hence open by Sard’s Theorem. In particular U ⊂ Ωrc, and λ({U}) >
0.

From the fact that HU has admissible vectors we conclude that λ({U}) <
∞. On the other hand, an easy connectedness argument shows that for each
γ ∈ U , the ray R

+γ is contained in the open orbit U . Hence the same argument
which proved the previous corollary shows that λ({U}) = ∞, which yields the
desired contradiction.

For illustration we now carry out the various steps for the Poincaré group,
already considered in [74].

Remark 5.17. Admissibility conditions for the Poincaré groups. For k ≥ 3 let
Lk denote the Lorentz bilinear form on R

k, i.e., Lk(x, y) = −x1y1 + x2y2 +
x3y3 + . . . + xkyk and let H = SO0(k − 1, 1) denote the connected compo-
nent of the linear group leaving Lk invariant. We exclude the case k = 2 for
simplicity. The Plancherel measure was explicitly calculated in [75]. We want
to determine the admissibility condition for the quasiregular representation
associated with this group. For this purpose we need to compute the measure
decomposition of Lebesgue-measure on R̂k, and we employ the symmetry ar-
guments from 5.14 for this purpose.

1. The SO0(k − 1, 1)-orbits in R̂k can be parameterized as follows (see, e.g.,
[75, I, Example 2, Section 10])

{0}, {γ ∈ R̂k : Lk(γ, γ) = 0, γ1 > 0}, {γ ∈ R̂k : Lk(γ, γ) = 0, γ1 < 0},
O+

r = {γ ∈ R̂k : Lk(γ, γ) = −r, γ1 < 0} (r > 0),

O−
r = {γ ∈ R̂k : Lk(γ, γ) = −r, γ1 > 0} (r > 0),

Ur = {γ ∈ R̂k : Lk(γ, γ) = r, γ1 > 0} (r > 0).

Clearly the first three orbits may be neglected, leaving us with three fam-
ilies of orbits, each parameterized by a ray. Hence, under the action of
R

+ on R̂k used in 5.14, we have essentially two A-orbits in R̂k/H , i.e.,
the O±

r -families yield one orbit, and the remaining A-orbit is obtained
from the Ur-family. Hence, λ is more or less completely determined by the
action of A, and the µO(γ) have to be computed for at most two H-orbits,
which are represented by γ1 := (1, 0, . . . , 0) and γ2 := (0, . . . , 0, 1).

2. Now let us determine Ωrc. It is easily seen that the fixed group Hγ1 is
canonically isomorphic to SO(k−1), whereas Hγ2 is isomorphic to SO(k−
2, 1). In particular the former is compact and the latter is not. Clearly Ωrc

is not a null set, hence we may continue.
3. The orbit O(γ)1 can be parametrized by
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Ψ : R × Sk−2 � (u,y) �→ (sinh u, y1 coshu, . . . , yk−1 coshu).

The measure dµO(γ)1 = dudy, where du is the usual measure on R and dy
is the rotation-invariant surface measure on the sphere, is easily verified
to be invariant under the action of H . Hence it is the image of µH under
the quotient map, since H is unimodular. (Note that here we have in fact
fixed a normalization of µH .) The parametrization of O(aγ1) is a ·Ψ , and
µO(aγ1) = a∗(µO(γ1).

4. As we have seen, Ωrc/H may be identified with R \ {0}, and the measure
λ has to fulfill the relation λa = |a|kλ, whence we immediately obtain
dλ(r) = |r|k−1dr.

5. G is unimodular, and we have chosen the µO(γ) so as to ensure κ ≡ 1.
6. We obtain the following admissibility condition: An invariant subspace

HU ⊂ L2(Rk) has an admissible vector iff the corresponding H-invariant
subset U ⊂ R̂k is contained in Ωrc and its projection U := {r ∈ R :
(r, 0, . . . , 0) ∈ U} satisfies

∫
U

|r|k−1dr < ∞. (5.12)

A vector f ∈ HU is admissible for HU iff
∫
R

∫
Sk−2

|f̂(r sinh u, ry1 coshu, . . . , ryk−1 coshu)|2dydu = 1 for a.e. r ∈ U.

This normalization refers to the fixed choice of Haar measure µH made in
step 3.

7. It is now simple to produce admissible vectors g for arbitrary H-invariant
sets U ⊂ R̂k satisfying (5.12): Fix a function g0 on R × Sk−2 with

∫
R

∫
Sk−2

|g0(u,y)|2dydu = 1

and let

ĝ(r sinh u, ry1 coshu, . . . , ryk−1 cosh u) = g0(u,y) .

5.3 Concrete and Abstract Admissibility Conditions

We will now work out the connection between the admissibility criteria of
the previous section and the Plancherel transform of G. We consider a more
general setting, i.e., G = N � H , where N is a unimodular group. Note that
since G/N carries an invariant measure, ∆N is the restriction of ∆G to N .
Hence N ⊂ Ker(∆G), so that ∆G can be lifted to a function on H .

We denote by h �→ αh the associated homomorphism H → Aut(N). If we
identify H with a subgroup of G, then αh(n) = hnh−1. Elements of G are
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pairs (x, h) ∈ N × H , with the group law (x, h)(x′, h′) = (xαh(x′), hh′). The
quasiregular representation π = IndG

H1 acts on L2(N) by

(π(x, h)f)(y) = ∆G(h)−1/2f(α−1
h (x−1y)) .

We want to establish when π ≤ λG, by decomposing π into irreducibles and
checking for absolute continuity with respect to Plancherel measure.

Next we compute the decomposition of π. Since the restriction of π to N is
λN , it is no surprise that the Plancherel transform of N is a useful tool for the
decomposition of π into irreducible representations. Thus far the discussion
runs completely parallel to the one in the previous two sections.

Proposition 5.18. Let

PN : L2(N) →
∫ ⊕

N̂

B2(Hσ)dνN (σ)

be the Plancherel transform of N . Define a representation π̂ of G acting on
the right hand side by π̂(x, h) = PN ◦ π(x, h) ◦ P−1

N . Then

(π̂(x, h)F )(σ) = ∆G(h)1/2σ(x) ◦ F (h−1.σ) (5.13)

Proof. For F = f̂ with f ∈ L1(G) ∩ L2(G), and ϕ, η ∈ Hσ, we compute

〈(π̂(x, t)F )(σ)ϕ, η〉 =
∫

N

∆
−1/2
G (h)f(α−1

h (x−1y))〈σ(y)ϕ, η〉dy

=
∫

N

∆
−1/2
G (h)f(α−1

h (y))〈σ(x)σ(y)ϕ, η〉dy

= ∆
1/2
G (h)

∫
N

f(y)〈σ(x)σ(αh(y))ϕ, η〉dy

= ∆
1/2
G (h)σ(x)f̂ (h−1.σ) .

Proposition 5.19. Assume that for a νN -conull subset the Mackey obstruc-
tions are particularly trivial in the sense of 3.38. For almost every orbit
O(σ) ⊂ N̂ , let µO(σ) denote the measure arising from the measure decom-
position

dνN = dµO(σ)dνN . (5.14)

By standardness of νN/H, these measures exist and are unique νN -almost ev-
erywhere. We define the representations �σ acting on L2(O(σ), µO(σ);B2(Hσ))
via

(�σ(x, h)F )(ω) = ∆G(h)1/2ω(x) ◦ F (h−1.ω) . (5.15)

Then the following statements hold:

(a) �σ 
 dim(Hσ) · IndG
Gσ

σ × 1.
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(b) The Plancherel transform of N effects a decomposition

π 

∫ ⊕

Σ/H

dim(Hσ) ·
(
IndG

Gσ
σ × 1

)
dνN (σ) . (5.16)

This is a decomposition into irreducibles.

Proof. We first show that �σ is induced from the left action via σ on B2(Hσ),
by comparing (5.15) with (3.29). First observe that by relation (5.14) and

dνN (x,h)−1

dνN
(ω) = ∆G(h) ,

we obtain that
dµO(σ)(x,h)−1

dµO(σ)
(ω) = ∆G(h) .

In other words, the Radon-Nikodym derivative used in the definition of �σ

coincides with the one employed in (3.29).
Next pick a cross-section α0 : O(σ) → H , and let α : G.σ → G be defined

by α(ω) = (eN , α0(ω)), where eN denotes the neutral element in N . Then we
find for (x, h) ∈ G that

α(ω)−1(x, h)α((n, h)−1ω)) = (eN , α0(ω)−1)(x, h)(eN , α0((x, h)−1ω))
= (α0(ω)−1(x), α0(ω)−1hα0(h−1.ω)) ,

with α0(ω)−1hα0(h−1.ω) ∈ Hσ. By assumption, σ extends trivially to a rep-
resentation of the big fixed group Gσ = N � Hσ. Hence

(σ × 1)
(
α(ω)−1(x, h)α((x, h)−1ω)

)
= (α0(ω).σ)(x) = ω(x)

Hence the second term, ω(x), in the definition of �σ also coincides with the
second term of the right hand side of (3.29). Since the same is obviously true
for the third terms, we are finished.

The left action via σ on B2(Hσ) is clearly a dim(Hσ)-fold multiple of σ,
and induction commutes with taking direct sums [45, 6.9], hence (a) follows.
In view of this and Proposition 3.29, part (b) follows from a comparison of
the definition of the �σ with (5.13). It is a decomposition into irreducibles by
Mackey’s theorem.

Next we show the desired containment result. As in the above discussion
the set Ωc = {σ ∈ N̂ : Hσ is compact } plays a crucial role. We have again,
with the same arguments as before:

Lemma 5.20. Ωc is a Borel set.

Lemma 5.21. The mapping Φ : O(γ) �→ IndG
Gγ

γ × 1 is a Borel isomorphism
onto a Borel subset Σ of Ĝ.



158 5 Admissible Vectors for Group Extensions

Proof. This follows from the decomposition in 5.19 and the uniqueness theo-
rem 3.25.

Theorem 5.22. Let G = N�H, and suppose that G and N are as in Theorem
3.40. Letting

π1 

∫ ⊕

Ωc

dim(Hσ) · (IndG
Gσ

σ × 1)dν(O(γ)) (5.17)

and π2 the orthogonal complement in π, then π1 < λG, and π2 is disjoint from
λG.

Proof. Denote the part corresponding to Ωc by Σc. The image measure of νN

under this map is a standard measure ν̃ on Ĝ. The key observation is now
that, with respect to the measure decomposition (3.32), Σ meets each fibre in
exactly one point, namely in σ × 1. In computing νN (B), for subsets B of Σ,
the inner integral is simply νHγ ({1}), which is positive iff Hγ is compact. In
short, ν̃ is νG-absolutely continuous on Σc, and disjoint with νG on Σ \ Σc.
The containment statement π1 < λG is obtained by checking the conditions in
3.26: The absolute continuity requirement has already been verified. For the
comparison of multiplicities note that the representation space of IndG

Gγ
σ×1 is

a nontrivial Hσ-valued L2-space, thus its dimension is necessarily ≥ dim(Hσ).
The former is the multiplicity of IndG

Gγ
σ × 1 in λG, the latter (smaller) is the

multiplicity of the same representation in π. Thus follows the containment
statement.

The disjointness part is due to Corollary 3.18.

The disjointness statement means that π1 is the maximal subrepresentation
of π which is contained in λG.

Let us now take a second look at the case N = R
k. The following theorem

explains how the different admissibility conditions are related:

Theorem 5.23. Let G = R
k

� H, and assume that G and N = R
k fulfill all

requirements of Theorem 3.40. For O(γ) ⊂ Ωc let KO(γ) denote the operator
on L2(O(γ), dβO(γ)) given by pointwise multiplication with κ|O(γ). The map
Φ from Lemma 5.21 gives rise to the following correspondences between the
objects in Section 5.2 and those appearing in the Plancherel decomposition:

Ωc/H ←→ Σ ,

O(γ) ←→ σ ,

L2(O(γ), dβO(γ)) ←→ Hσ ,

f̂ |O(γ) ←→ ησ ,

SH(f̂)(O(γ)) ←→ ‖ησ‖ ,

λ ←→ νG ,

KO(γ) ←→ C−2
σ ,

TH(f̂)(O(γ)) ←→ ‖Cσησ‖ .
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In particular, the admissibility criterion from Theorem 5.8 is a special case of
(4.15).

Proof. It remains to check that the C−2
σ corresponds to KO(γ), and that the

Plancherel measure νG belonging to this particular choice of Duflo-Moore
operators corresponds to λ. Straightforward calculation, using relation (5.6)
from Lemma 5.9, shows that KO(γ) satisfies the semi-invariance relation

(
IndG

Gγ
(γ × 1)(x, h)

)
KO(γ)

(
IndG

Gγ
(γ × 1)(x, h)

)∗
= ∆G(x, h)−1KO(γ) .

It follows that K
−1/2
O(γ) obeys the semi-invariance relation (3.51), hence Theorem

3.48(e) entails the desired correspondence.
It remains to prove that, given this particular choice of Duflo-Moore oper-

ators, the measure λ is the corresponding Plancherel measure. But in view of
the identifications we already established, (4.15) yields for every H-invariant
measurable U ⊂ R̂k that

g ∈ HU is admissible ⇐⇒
(

dλ

dνG
(O(γ))

)1/2

‖K−1/2
O(γ) (ĝ|O(γ))‖2 = 1 , (a.e.) .

On the other hand, (5.5) provides

g ∈ HU is admissible ⇐⇒ ‖K−1/2
O(γ) (ĝ|O(γ))‖2 = 1 , (a.e.) .

Hence the Radon-Nikodym derivative is trivial.

As mentioned before, the majority of authors dealing with wavelets from
semidirect products of the form R

k
� H concentrated on discrete series repre-

sentations occurring as subrepresentations of the quasiregular representation.
In this context, a well-known result relates the existence of such represen-
tations to open dual orbits with associated compact fixed groups, see e.g.
[22, 48]. This condition can now be retrieved, by restricting the discrete series
criterion in Corollary 3.41 to representations of the form IndG

Gσ
σ × 1, as they

appear in the decomposition of the quasiregular representation. Note that a
group is compact iff the Haar measure of the group is finite, iff the trivial
representation is square-integrable.

Corollary 5.24. The quasiregular representation π contains a discrete series
representation iff there exists a dual orbit O(γ) ⊂ N̂ of positive Plancherel
measure, such that in addition Hγ is compact.

Note that if N is a vector group and H a closed matrix group, then Sard’s
theorem implies that all orbits of positive measure are indeed open. See [49]
for a proof.



160 5 Admissible Vectors for Group Extensions

5.4 Wavelets on Homogeneous Groups∗∗

In this section we use Theorem 4.22 to prove that there exists a continuous
wavelet transform on homogeneous Lie groups. Starting from a homogeneous
Lie group N with a one-parameter group H of dilations, we show that the
quasiregular representation of G = N � H on L2(N) has admissible vectors.
Since G is nonunimodular, containment in λG will be sufficient for that.

The resolution of the identity provided by the wavelet transform can also
be read as a continuous Calderon reproducing formula. Discrete versions of
the Calderon reproducing formula have been employed for the analysis of
pseudodifferential operators on these groups [47], and it is conceivable that
the wavelet transform we present below could be useful for these purposes
also. Note however that we only provide the existence of admissible vectors.
Unless N is a vector group, the arising representation has infinite multiplicity,
and an explicit characterization of admissible vectors will be a tough problem.

Now for the definition of homogeneous Lie groups.

Definition 5.25. A connected simply connected Lie group N with Lie algebra
n is called homogeneous, if there exists a one-parameter group H = {δr :
r ≥ 0} of Lie algebra automorphisms of the form δr = eA log r, such that in
addition A is diagonalizable with strictly positive eigenvalues. The elements
of H are called dilations.

We define G = N �H , and π as the quasiregular representation π = IndG
H1

of G. The homogenous structure of the group allows a rather nice geometric
interpretation of G and π: It can be shown that N carries a “homogeneous
norm” | · | : N → R

+
0 , on which the dilations act in the expected way, i.e.,

|δr(x)| = r|x|. See [47, Chapter 1] for details. Hence the group G consists of
shifts on N and “zooms” with respect to the norm, and the interpretation of
the continuous wavelet transform as a “mathematical microscope” carries over
from R to N . However, the “mathematical microscope” view requires some
sort of decay behaviour of the admissible vectors (ideally, compact support),
and whether admissible vectors exist with these properties is unclear.

Lemma 5.26. Let N be homogeneous with dilation group H and the associ-
ated infinitesimal generator A. For a ∈ R, let Ea = Ker(A − aId). Then we
have:

(i) If X ∈ Ea and Y ∈ Eb, then [X, Y ] ∈ Ea+b.
(ii) N is nilpotent. H acts as a group of automorphisms of N .
(iii) The Haar measure on N is Lebesgue measure. We have µN (δr(E)) =

rQµN (E), where Q := trace(A) > 0. Hence G is nonunimodular, with
N = Ker(∆G).

(iv) Let 0 < a1 ≤ a2 ≤ . . . ≤ an be the eigenvalues of A, each occurring with
its geometric multiplicity. Let X1, . . . , Xn be a basis of n with AXi = aiXi.
Given Y ∈ n arbitrary, Ad(Y ) is properly upper triangular with respect to
this basis.
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(v) For almost all σ ∈ N̂ the little fixed group Hσ is trivial.

Proof. See [47] for (i), (ii) and the formula µN (δr(E)) = rQµN (E). But this
formula entails that ∆G(x, r) = rQ, and since Q > 0, we find N = Ker(∆G).
(iv) is immediate from (i). (v) follows from (iii) and Proposition 3.50(ii).

We need one more auxiliary result to show that the quasiregular represen-
tation on L2(N) is contained in λG, namely the fact that G is type I.

Proposition 5.27. G is an exponential Lie group. In particular, G is type I.

Proof. Let g denote the Lie algebra of G. In order to prove that G is exponen-
tial, we need to show that there does not exist a Z ∈ g for which ad(Z) has
a purely imaginary eigenvalue [34]. Let a1, . . . , an and the associated eigen-
basis X1, . . . , Xn of n be as in Lemma 5.26. Then a basis of g is given by
X1, . . . , Xn, Y , with [Y, Xi] = aiXi. It is therefore straightforward to com-
pute that, for an arbitrary Z = tY +

∑n
i=1 siXi = tY + X , the matrix of

ad(Z) with respect to our basis is
(

tA + M v
0 0

)
, (5.18)

where M is the matrix of ad(X) (acting on n), in particular (properly) upper
triangular by Lemma 5.26 (iv), and v is some column vector. But this matrix
clearly has the eigenvalues ta1, . . . , tan and 0. Hence G is exponential, and
[23, Chap. VI, 2.11] implies that G is type I.

Now Remark 5.26 (v) and Theorem 5.22 allow to conclude that π is con-
tained in the regular representation. Hence 4.22 provides the desired existence
result:

Corollary 5.28. The quasi-regular representation π = IndG
H1 is contained in

λG. Hence there exists a continuous wavelet transform on N arising from the
action of N by left translations and the action of the dilations.

The bad news is that, unless N is abelian (in which case we are back to the
first sections of this chapter) the problem of computing concrete admissible
vectors is essentially equivalent to that of computing admissible vectors for
λG:

Proposition 5.29. We have π ≈ λG. Moreover, π 
 λG iff N is nonabelian.

Proof. For the first statement we observe that νG is precisely the quotient
measure on N̂/H , which also underlies the decomposition of π, by (5.16).
Hence νG ≈ π.

If N is abelian, then π is multiplicity-free; already the restriction π|N is.
But G is nonabelian, and therefore λG is not multiplicity-free.
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Conversely, assume N to be nonabelian. It is enough to prove that π 

∞ · π, which in view of (5.16) amounts to proving dim(Hσ) = ∞, for νN -
almost every σ. Since N is not abelian, there exist coadjoint orbits of positive
dimensions, and the coadjoint orbits of maximal dimension are a conull subset
of n∗. Hence νN -almost every σ corresponds to a coadjoint orbit of positive
– and necessarily even – dimension, say of dimension 2k. By construction of
the Kirillov map, σ is therefore induced from a character of a subgroup M of
codimension k, hence Hσ = L2(N/M) is infinite-dimensional. Since the action
of H on N̂ is free νN -almost everywhere, each dual orbit in N̂ contributes
precisely one representation, which also occurs in (5.16).

5.5 Zak Transform Conditions for Weyl-Heisenberg
Frames

This section deals with another class of examples. The results presented here
are taken from [54]. We consider a characterization of tight Weyl-Heisenberg
frames via the Zak transform. It turns out that it can be seen as a special
instance of the Plancherel transform criterion, where the underlying group is
discrete and type I. This makes the example somewhat remarkable. As in the
semidirect product case, the admissibility conditions which arise are already
known and obtainable by less involved machinery also.

Admissibility Conditions and Weyl-Heisenberg Frames

Weyl-Heisenberg systems are discretizations of the windowed Fourier trans-
form introduced in Example 2.27. To make things precise, define the transla-
tion operators Tx and modulation operators Mω on L2(R) by

(Txf)(y) = f(y − x) , (Mωf)(y) = e2πiωyf(y) .

Now a Weyl-Heisenberg system G(α, β, g) of L2(R) is a family

gk,m = MαkTβmg (m, k ∈ Z),

arising from a fixed vector g ∈ L2(R) and α, β �= 0. A (normalized, tight)
Weyl-Heisenberg frame is a Weyl-Heisenberg system that is a (normalized,
tight) frame of L2(R). There exist several alternative definitions, with varying
indexing and ordering of operators. However, up to phase factors which clearly
do not affect any of the frame properties, the resulting systems are identical.

Here we focus on normalized tight Weyl-Heisenberg frames with integer
oversampling LLL (L ∈ N), which corresponds to choosing α = 1 and β = 1/L.
Given L, the problem is to decide for a given g whether it induces a normalized
tight Weyl-Heisenberg frame or not. As we will see in the next subsection, the
Zak transform allows a precise answer to this question. Our next aim is to show
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that the condition is in fact an admissibility condition for ψ. Note that for
L = 1, this is obvious: The set {TnMm : n, m ∈ Z} is an abelian subgroup of
the unitary group of L2(R), and the normalized tight frame condition precisely
means admissibility in this case. For L > 1 however, {TnMm/L : n, m ∈ Z} is
not a subgroup, and we have to deal with the nonabelian group G generated by
this set. Hence, for the duration of this section, we fix an integer oversampling
rate L ≥ 1, and define the underlying group G as

G = Z × Z × (Z/LZ) ,

with the group law

(n, k, �)(n′, k′, �′) = (n + n′, k + k′, � + �′ + k′n) (5.19)

and inverse given by (n, k, �)−1 = (−n,−k,−� + kn). Here we used the nota-
tion n = n + LZ. The representation π of G acts on L2(R) by

π(n, k, �) = e2πi(�−nk)/LMn/LTk = e2πi�/LTkMn/L .

It is straightforward to check how normalized tight frames with oversampling
L relate to admissibility for π:

Lemma 5.30. Let ψ ∈ L2(R). Then (Mn/LTkψ)n,k∈Z is a normalized tight
frame iff 1√

L
ψ is admissible for π.

Proof. The relation

Mn/LTkψ = e−2πi(�−nk)/Lπ(k, n, �)ψ

implies for all g ∈ L2(R) that
∑
n,k,�

∣∣〈g, π(k, n, �)f〉
∣∣2 = L

∑
n,k

∣∣〈g, Mn/LTkf〉
∣∣2 ,

which shows the claim.

The following lemma establishes that G is a finite extension of an abelian
normal subgroup N . It is central for our purposes: It ensures that G is type
I, and it allows to compute νG via Theorem 3.40.

Lemma 5.31. Let

N = {(nL, k, �) : k, n, � ∈ Z} .

Then N is an abelian normal subgroup of G with G/N ∼= Z/LZ. In particular,
G is type I.

Proof. The statements concerning N are obvious from (5.19); for the descrip-
tion of G/N use the representatives (0, 0, 0), (1, 0, 0), . . . , (L − 1, 0, 0) of the
N -cosets. The type I property of G follows by Theorem 3.39 (c), observing
that the orbit space of a standard Borel space by a measurable finite group
action is standard.
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Zak Transform Criteria for Tight Weyl-Heisenberg Frames

In this subsection we introduce the Zak transform and formulate the crite-
rion for normalized tight Weyl-Heisenberg frames. Our main reference for the
following will be [58].

Definition 5.32. For f ∈ Cc(R), define the Zak transform of f as the func-
tion Zf : R

2 → C given by

Zf(x, ω) =
∑
m∈Z

f(x − m)e2πimω .

The definition of the Zak transform immediately implies a quasi-periodicity
condition for F = Zf :

∀m, n ∈ Z : F (x + m, ω + n) = e2πimωF (x, ω) . (5.20)

In particular, the Zak transform of a function f is uniquely determined by
its restriction to the unit square [0, 1]2. We next extend the Zak transform
to a unitary operator Z : L2(R) → H, where H is a suitably defined Hilbert
space. For the proof of the following see [58, Theorem 8.2.3]. In the proposi-
tion L2

loc(R
2) denotes the space of all measurable functions which are square-

integrable on compact sets.

Proposition 5.33. Let the Hilbert space H be defined by

H = {F ∈ L2
loc(R

2) : F satisfies (5.20) almost everywhere on R
2} ,

with norm
‖F‖H = ‖F‖L2([0,1]2) .

The Zak transform extends uniquely to a unitary operator Z : L2(R) → H.

The next lemma describes how the representation π operates on the Zak
transform side. It is easily verified on Z(Cc(R)), and extends to H by density.

Proposition 5.34. Let π̂ be the representation acting on H, obtained by con-
jugating π with Z, i.e., π̂(n, k, �) = Z ◦ π(n, k, �) ◦ Z∗. Then

π̂(n, k, �)F (x, ω) = e2πi(�−nk)/Le2πinx/LF (x − k, ω − n/L) . (5.21)

Now we can cite the Zak transform criterion for normalized tight Weyl-
Heisenberg frames with integer oversampling. For a sketch of the proof confer
[58], more details are contained in [33]. Our discussion provides an alternative
proof, see Corollary 5.41.

Theorem 5.35. Let f ∈ L2(R). Then (Mn/LTkf)n,k∈Z is a normalized tight
frame of L2(R) iff

L−1∑
i=0

|Zf(x, ω + i/L)|2 = 1 almost everywhere. (5.22)
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There exist more general versions of this criterion, which allow more compli-
cated sets of time-frequency translations for the construction of the Gabor
frames. While we have restricted our attention to the simple time-frequency
lattice Z×(1/L)Z mostly for reasons of notational simplicity, the more general
statements can be obtained by use of suitable symplectic automorphisms of
the time-frequency plane.

Computing the Plancherel Measure

G is a unimodular group extension, thus νG is obtainable from Theorem 3.40
by computing Ĝ with the aid of the Mackey machine, and keeping track of
the various measures on duals and quotient spaces.

Note that since G/N is finite, N is regularly embedded in G. N is the direct
product of three cyclic groups, hence the character group N̂ is conveniently
parametrized by [0, 1[×[0, 1[×{0, 1, . . . , L − 1}, by letting

χω1,ω2,j(nL, k, �) = e2πi(ω1n+ω2k+j�/L) .

Since
(n, k, �)(n′L, k′, �′)(n, k, �)−1 = (n′L, k′, �′ + k′n) ,

we compute the dual action as

(ω1, ω2, j).(n, k, �) = (ω1, ω2 + jn/L − &ω2 + jn/L', j) .

Here &x' denotes the largest integer ≤ x. Hence, defining

Ωj = [0, 1[×[0, gcd(j, L)/L[×{j} ,

a measurable transversal of the orbits under the dual action is given by Ω =⋃L−1
j=0 Ωj . Here gcd(j, L) is the greatest common divisor of j and L. The

fact that the subgroup of Z/LZ generated by j coincides with the subgroup
generated by gcd(j, L) accounts for this choice of transversal. With the respect
to the dual action, (ω1, ω2, j) ∈ Ωj has Nj = {(nL/gcd(j, L), k, �) : k, n, � ∈ Z}
as fixed group. The associated little fixed group is Nj/N ∼= Z/gcd(j, L)Z. For
a convenient parametrization of Ĝ in terms of Ω and the duals of the Nj we
need to establish that every (ω1, ω2, j) ∈ N̂ has trivial Mackey obstruction.

Lemma 5.36. Let (ω1, ω2, j) ∈ Ωj and m ∈ {0, 1, . . . , gcd(j, L) − 1}. Then

�m,ω1,ω2,j(nL/gcd(j, L), k, �) = e2πi((ω1+m)n/gcd(j,L)+ω2k+j�/L)

defines a character of Nj with �m,ω1,ω2,j |N = χω1,ω2,j. Moreover, every irre-
ducible representation of Nj whose restriction to N is a multiple of χω1,ω2,j

is equivalent to some �m,ω1,ω2,j.

Proof. The character property is verified by straightforward computation. The
last statement is [45, Proposition 6.40].
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Note that the additional parameter m indexes the characters of the little
fixed group Nj/N . Now Theorem 3.39 implies that Ĝ is obtained by inducing
the �m,ωωω,j.

Proposition 5.37. Define, for (ω1, ω2, j) ∈ Ω and m ∈ {0, . . . , gcd(j, L)−1}
the representation

σm,ω1,ω2,j = IndG
Nj

�m,ω1,ω2,j .

If we let

Σj = {σm,ω1,ω2,j : (ω1, ω2, j) ∈ Ωj , m ∈ {0, 1, . . . , gcd(j, L) − 1} ,

then the dual of G is the disjoint union

Ĝ =
L−1⋃
j=0

Σj

We normalize all Haar measures on discrete groups occurring in the fol-
lowing by |{e}| = 1. This choice fixes the Plancherel measures uniquely, and
implies in particular for all abelian groups H arising in the following that
νH(Ĥ) = 1. Moreover, Weil’s integral formulae are automatically ensured by
these choices, whence we will obtain the correct normalizations.

Recall that we have the identification

Ĝ =
L−1⋃
j=0

Σj =
L−1⋃
j=0

(Nj/N)∧ × Ωj .

On each of the Σj, Plancherel measure is a product measure: The (Nj/N)∧

carry the Plancherel measure of the finite quotient group, which is simply
counting measure weighted with 1/|Nj/N | = 1/gcd(j, L). For the missing
parts, we decompose Plancherel measure of N on N̂ along orbits of the dual
action. This results in a measure on Ω 
 N̂/G, and the restrictions to the
Ωj provide the second factors. In order to explicitly compute these we note
that the Plancherel measure on N̂ ∼= [0, 1[×[0, 1[×{0, 1, . . . , L − 1} is 1/L
times the product measure of Lebesgue measure on the first two factors and
counting measure on the third. Since each orbit carries counting measure,
the measure on the quotient is simply Lebesgue measure on the transversal
[0, 1[×[0, gcd(j, L)/L[, for each j. Thus we arrive at:

Proposition 5.38. The Plancherel measure of G is given by

dνG(σm,ω1,ω2,j) =
1

Lgcd(j, L)
dmdω1dω2dj . (5.23)

Here dω1 and dω2 are Lebesgue measure on the intervals [0, 1[ and [0, gcd(j, L)/L[,
and dm, dj are counting measure on {0, . . . , gcd(j, L)− 1} and {0, . . . , L− 1},
respectively.
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As we will see in the next subsection, only the set Σ1 will be of interest for
the Weyl-Heisenberg frame setting. Here the indexing somewhat simplifies:
N1 = N , and m can only take the value 0. So we can identify Σ1 with
{0} × [0, 1[×[0, 1/L[×{1} ∼= [0, 1[×[0, 1/L[.

Zak Transform and Plancherel Transform

The aim in this subsection is to exhibit the representation π̂ obtained by
conjugating π with the Zak transform as a direct integral of irreducibles.
This is done by taking a second look at (5.21), which is a twisted action by
translations along Z × (1/L)Z. Hence a decomposition of Lebesgue measure
along cosets of Z × (1/L)Z gives rise to a decomposition into representations
acting on the cosets, and the twisted action of the latter representations reveals
them as induced representations.

To make this more precise, we let for ωωω ∈ [0, 1[×[0, 1/L[ denote Oωωω =
ωωω + Z× (1/L)Z. The following lemma exhibits the direct integral structure of
π̂; it is a direct consequence of Proposition 3.29.

Lemma 5.39. Define for ωωω ∈ [0, 1[×[0, 1/L[ the Hilbert space

Hωωω = {F : Oωωω → C : F fulfills (5.20)} ,

with the norm defined by

‖F‖2Hωωω
=

L−1∑
i=0

|F (ωωω + (0, i/L))|2. (5.24)

Let π̂ωωω be the representation acting on Hωωω by

π̂ωωω(k, n, �)F (γγγ) = e2πi(�+nk)/Le2πinx/LF (γγγ − (k, n/L)) .

Then

π̂ 

∫ ⊕

[0,1[×[0,1/L[

π̂ωωω dωωω , (5.25)

via the map
F �→ (F |Oωωω)ωωω∈[0,1[×[0,1/L[ (5.26)

As a first glimpse of the connection between conditions (5.22) and (4.15)
note that the right-hand side of (5.22) can now be reformulated as

‖(Zf) |Oωωω‖Hωωω
= 1, for almost every ωωω ∈ [0, 1[×[0, 1/L[ .

Hence the final step is to note that (5.25) is in fact a decomposition into
irreducibles:

Lemma 5.40. If ωωω ∈ [0, 1[×[0, 1/L[, then π̂ωωω 
 σ0,ωωω,1 ∈ Σ1.
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Proof. We will use the imprimitivity theorem to show that π̂ωωω is induced from
a character of N . For this purpose consider the set S = {ωωω + (0, i/L) : i =
0, . . . , L − 1}, with an action of G on S given by

γγγ.(n, k, �) = (γ1, γ2 − n/L − &γ2 − n/L') .

The action is transitive with N as associated stabilizer. To any subset A ⊂ S
we associate a projection operator PA on Hωωω defined by pointwise multiplica-
tion with the characteristic function of A + Z × Z. It is then straightforward
to check that A �→ PA is a projection-valued measure on S satisfying

π̂ωωω(n, k, �)PAπ̂ωωω(n, k, �)∗ = PA.(n,k,�) .

In other words, A �→ PA defines a transitive system of imprimitivity. Hence the
imprimitivity theorem [45, Theorem 6.31] applies to show that π̂ωωω 
 IndG

N�
for a suitable representation � of N . Since the system of imprimitivity is based
on a discrete set, we can follow the procedure outlined in [45] immediately
after Theorem 6.31, which identifies � as the representation of N acting on
P{ωωω}(Hω). For this purpose consider the function F ∈ Hωωω defined by

F (ωωω + (0, m/L)) = δm,0 for m = 0, . . . , L − 1 .

Now the fact that

π̂ωωω(nL, k, �)F = e2πi�/Le2πiω1ne2πiω2kF = χω1,ω2,1(nL, k, �)F

shows that
π̂ωωω 
 IndG

Nχω1,ω2,1 = σ0,ω1,ω2,1, .

By the last lemma and Mackey’s theory, no two representations appearing
in (5.25) are equivalent. Since G is type I, (5.25) is central, and 3.20 implies
that π is multiplicity-free.

Summarizing our findings in the language of Remark 4.30, we have verified
the following:

Corollary 5.41. (a) Z implements a unitary equivalence π 

∫ ⊕

Σ1
σdνG(σ).

The multiplicity function is computed as mπ(σ) = 111Σ1(σ).
(b) The necessary conditions for the existence of admissible vectors, in terms

of absolute continuity of the underlying measure, the multiplicity function
and the finite Plancherel measure condition are trivially fulfilled.

(c) The Zak transform criterion (5.22) is a special instance of (4.17).

In view of Theorem 4.32, it is in fact enough to establish the direct integral
decomposition of π. However, the calculations in this section also serve as an
illustration of the use of Theorem 3.40 for the explicit computation of νG.
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