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Wavelet Transforms
and Group Representations

In this chapter we present the representation-theoretic approach to continuous
wavelet transforms. Only basic representation theory and functional analysis
(including the spectral theorem) are required. The main purpose is to clarify
the role of the regular representation, and to develop some related notions,
such as selfadjoint convolution idempotents, which are then used for the for-
mulation of the problems which the book addresses in the sequel. Most of
the results in this chapter may be considered well-known, or are more or less
straightforward extensions of known results, with the exception of the last
two sections: The notion of sampling space and the related results presented
in Section 2.6 are apparently new. Section 2.7 contains the discussion of an
example which is crucial for the following: It motivates the use of Fourier
analysis and thus serves as a blueprint for the arguments in the following
chapters.

2.1 Haar Measure and the Regular Representation

Given a second countable locally compact group G, we denote by µG a left
Haar measure on G, i.e. a Radon measure on the Borel σ-algebra of G which
is invariant under left translations: µG(xE) = µG(E). Since G is σ-compact,
any Radon measure ν on G is inner and outer regular, i.e., for all Borel sets
A ⊂ G and ε > 0 there exist sets C ⊂ A ⊂ V with C compact, V open such
that ν(V \ C) < ε.

One of the pillars of representation theory of locally compact groups is
the fact that Haar measure always exists and is unique up to normalization.
We use a simple dx to denote integration against µG, and |A| = µG(A) for
Borel subsets A ⊂ G. An associated rightinvariant measure, the so called
right Haar measure is obtained by letting µG,r(A) = |A−1|. The modular
function ∆G : G → R

+ measures the rightinvariance of the left Haar measure.
It is given by ∆G(x) = |Ex|

|E| , for an arbitrary Borel set E of finite positive
measure. Using the fact that µG is unique up to normalization, one can show

H. Führ: LNM 1863, pp. 15–58, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



16 2 Wavelet Transforms and Group Representations

that ∆G is a well-defined continuous homomorphism, and independent of the
choice of E. The homomorphism property entails that ∆G is either trivial or
unbounded: ∆G(G) is a subgroup of the multiplicative R

+, and all nontrivial
subgroup of the latter are unbounded. ∆G can also be viewed as a Radon-
Nikodym derivative, namely

∆G =
dµG

dµG,r
,

see [45, Proposition 2.31]. Hence the following formula, which will be used
repeatedly [45, (2.32)]:

∫
G

f(x)dx =
∫

G

f(x−1)∆G(x−1)dx . (2.1)

G is called unimodular if ∆G ≡ 1, which is the case iff µG is rightinvariant
also.

We will frequently use invariant and quasi-invariant measures on quotient
spaces. If H < G is a closed subgroup, we let G/H = {xH : x ∈ G}, which is a
Hausdorff locally compact topological space. G acts on this space by y.(xH) =
yxH , and the question of invariance of measures on G/H arises naturally.
Given any measure ν on G/H let νg be the measure given by νg(A) = ν(gA).
Then ν is called invariant if νg = ν for all g ∈ G, and quasi-invariant if νg

and ν are equivalent. The following lemma collects the basic results concerning
quasi-invariant measures on quotients.

Lemma 2.1. Let G be a locally compact group, and H < G.

(a) There exists a quasi-invariant Radon measure on G/H. All quasi-invariant
Radon measures on G/H are equivalent.

(b) There exists an invariant Radon measure on G/H iff ∆H is the restriction
of ∆G to H.

(c) If there exists an invariant Radon measure µG/H on G/H, it is unique
up to normalization. After picking Haar measures on G and H, the nor-
malization of µG/H can be chosen such as to ensure Weil’s integral
formula ∫

G

f(x)dx =
∫

G/H

∫
H

f(xh)dhdµG/H(xH) . (2.2)

The invariance property of Haar measure implies that the left translation
action of the group on itself gives rise to a unitary representation on L2(G).
The result is the regular representation defined next.

Definition 2.2. Let G be a locally compact group. The left (resp. right)
regular representation λG (�G) acts on L2(G) by

(λG(x)f)(y) = f(x−1y) resp. (�G(x)f)(y) = ∆G(x)1/2f(yx)

The two-sided representation of the product group G × G is defined as
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(λG × �G)(x, y) = λG(x)�G(y) .

λG-invariant subspaces are called leftinvariant.

The convolution of two functions f, g on G is defined as the integral

(f ∗ g)(x) =
∫

G

f(y)g(y−1x)dy . (2.3)

This is well-defined, with absolute convergence for almost every x ∈ G,
whenever f, g ∈ L1(G). But L2-functions can be convolved also, if we employ
a certain involution.

Definition 2.3. Given any function f on G, define f∗(x) = f(x−1).

Remark 2.4. If f is p-integrable with respect to left Haar measure, then f∗ is
p-integrable with respect to right Haar measure, and vice versa. In general,
f∗ will not be in Lp(G) if f is. Notable exceptions are given by the (trivial)
case that G is unimodular, or more generally, that f is supported in a set on
which ∆−1

G is bounded.
The mapping f �→ f∗ is obviously a conjugate-linear involution. With

respect to convolution, the involution turns out to be an antihomomorphism:

(g ∗ f)∗(x) =
∫

G

g(y)f(y−1x−1)dy

=
∫

G

g∗(y−1)f∗(xy)dy

=
∫

G

f∗(y)g∗((x−1y)−1)dy

=
∫

G

f∗(x)g∗(y−1x)dy

= f∗ ∗ g∗(x) .

Note that our definition differs from the notation in [45, 35]. Our choice is
motivated by proposition 2.19 below which clarifies the connection between
the involution and taking adjoints of coefficient operators.

The following simple observation relates convolution to coefficient functions:

Proposition 2.5. For f, g ∈ L2(G),

(g ∗ f∗)(x) =
∫

G

g(y)f(x−1y)dy = 〈g, λG(x)f〉 , (2.4)

in particular the convolution integral g ∗ f∗ converges absolutely for every x,
yielding a continuous function which vanishes at infinity.
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Proof. Equation (2.4) is self-explanatory, and it yields pointwise absolute con-
vergence of the convolution product. Continuity follows from the continuity of
the regular representation. Recall that a function f on G vanishes at infinity
if for every ε > 0 there exists a compact set C ⊂ G such that |f | < ε outside of
C. If f and g are compactly supported, it is clear that g ∗f∗ also has compact
support, hence vanishes at infinity. For arbitrary L2-functions f and g pick
sequences fn → f and gn → g with fn, gn ∈ Cc(G). Then the Cauchy-Schwarz
inequality implies gm ∗ f∗

n → g ∗ f∗ uniformly, as m, n → ∞. But then the
limit vanishes at infinity also.

The von Neumann algebras generated by the regular representation are
the left and right group von Neumann algebras.

Definition 2.6. Let G be a locally compact group. The von Neumann algebras
generated by the left and right regular representations are

V Nl(G) = λG(G)′′ and V Nr(G) = �G(G)′′ .

V Nl(G) and V Nr(G) obviously commute; in fact V Nl(G)′ = V Nr(G). If the
group is abelian, V Nl(G) = V Nr(G) =: V N(G).

The equality V Nl(G)′ = V Nr(G) is a surprisingly deep result, known as the
commutation theorem. For a proof, see [109].

2.2 Coherent States and Resolutions of the Identity

In this section we present a general notion of coherent state systems. Basically,
the setup discussed in this section yields a formalization for the expansion
of Hilbert space elements with respect to certain systems of vectors. The
blueprint for this type of expansions is provided by ONB’s: If η = (ηi)i∈I is
an ONB of a Hilbert space H, it is well-known that the coefficient operator

Vη : H � ϕ �→ (〈ϕ, ηi〉)i∈I ∈ �2(I) (2.5)

is unitary, and that every ϕ ∈ H may be written as

ϕ =
∑
i∈I

〈ϕ, ηi〉ηi . (2.6)

The generalization discussed here consists in replacing I by a measure space
(X,B, µ), and summation by integration. In the following sections we will
mostly specialize to the case X = G, a locally compact group, endowed with
left Haar measure. However, in connection with sampling we will also need
to discuss tight frames (obtained by taking a discrete space with counting
measure), which is why have chosen to base the discussion on a slightly more
abstract level.
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Definition 2.7. Let H be a Hilbert space. Let η = (ηx)x∈X denote a family
of vectors, indexed by the elements of a measure space (X,B, µ).

(a) If for all ϕ ∈ H, the coefficient function

Vηϕ : X � x �→ 〈ϕ, ηx〉

is µ-measurable, we call η a coherent state system.
(b) Let (ηx)x∈X be a coherent state system, and define

dom(Vη) := {ϕ ∈ H : Vηϕ ∈ L2(X, µ)} ,

which may be trivial. Denote by Vη : H → L2(X, µ) the (possibly un-
bounded) coefficient operator or analysis operator with domain Dη.

(c) The coherent state system (ηx)x∈X is called admissible if the associated
coefficient operator Vη : ϕ �→ Vηϕ is an isometry, with dom(Vη) = H.

It would be more precise to speak of µ-admissibility, since obviously the
property depends on the measure. However, we treat the measure space
(X,B, µ) as given; it will either be a locally compact group with left Haar
measure, or a discrete set with counting measure.

We next collect a few basic functional-analytic properties of coherent state
systems. The following observation will frequently allow density arguments in
connection with coefficient operators:

Proposition 2.8. For any coherent state system (ηx)x∈X , the associated co-
efficient operator is a closed operator.

Proof. Let ϕn → ϕ, where ϕn ∈ dom(Vη). Assume in addition that Vηϕn →
F in L2(X, µ). After passing to a suitable subsequence we may assume in
addition pointwise almost everywhere convergence. Now the Cauchy-Schwarz-
inequality entails

|Vηϕn(x) − 〈ϕ, ηx〉| = |〈ϕn − ϕ, ηx〉| ≤ ‖ϕn − ϕ‖ ‖ηx‖ → 0 ,

hence F = Vηϕ a.e., in particular the right hand side is in L2(X, µ).

Next we want to describe adjoint operators. For this purpose weak integrals
will be needed.

Definition 2.9. Let (ηx)x∈X be a coherent state system. If the right-hand side
of

ϕ �→
∫

X

〈ϕ, ηx〉dµ(x)

converges absolutely for all ϕ, and defines a continuous linear functional on H,
we let the element of H corresponding to the functional by the Fischer-Riesz
theorem be denoted by the weak integral
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∫
X

ηxdµ(x) .

Hence we obtain the following defining relation for
∫

X ηxdµ(x):
〈

ϕ,

∫
X

ηxdµ(x)
〉

=
∫

X

〈ϕ, ηx〉dµ(x) (2.7)

For a family of operators (Tx)x∈X we define the weak operator integral
∫

X
Txdx

pointwise as (∫
X

Txdx

)
(ϕ) =

∫
X

Tx(ϕ) dx ,

whenever the right-hand sides converges weakly for every ϕ.

Proposition 2.10. Let (ηx)x∈X be a coherent state system. The associated
coefficient operator Vη is bounded on H iff dom(Vη) = H. In that case, its
adjoint operator is the synthesis operator, given pointwise by the weak in-
tegral

V ∗
η (F ) =

∫
X

F (x)ηxdµ(x) . (2.8)

Proof. The first statement follows from the closed graph theorem and the
previous proposition. For (2.8) we compute

〈Vηϕ, F 〉 =
∫

X

〈ϕ, ηx〉F (x)dµ(x) =
∫

X

〈ϕ, F (x)ηx〉dµ(x)

=
〈

ϕ,

∫
X

F (x)ηxdµ(X)
〉

.

We will next apply the proposition to admissible coherent state systems.
Note that for such systems η the isometry property entails that V ∗

η Vη is the
identity operator on H, and VηV ∗

η is the projection onto the range of Vη. The
first formula, the inversion formula, can then be read as a (usually continuous
and redundant) expansion of a given vector in terms of the coherent state sys-
tem. An alternative way of describing this property, commonly used in math-
ematical physics, expresses the identity operator as the (usually continuous)
superposition of rank-one operators. In order to present this formulation, we
use the bracket notation for rank-one operators:

|η〉〈ψ| : ϕ �→ 〈ψ|ϕ〉η . (2.9)

Note the attempt to reconcile mathematics and physics notation by letting
〈η|ϕ〉 = 〈ϕ, η〉. In particular, the bracket (2.9) is linear in η and antilinear in
ψ. Outside the following proposition, we will however favor the tensor product
notation η ⊗ ψ over the bracket notation.
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Proposition 2.11. If (ηx)x∈X is an admissible coherent state system, then
for every ϕ ∈ H, the following (weak-sense) reconstruction formula (or co-
herent state expansion) holds:

ϕ =
∫

X

〈ηx|ϕ〉ηxdµ(x) . (2.10)

Equivalently, we obtain the resolution of the identity as a weak operator
integral ∫

X

|ηx〉〈ηx|dµ(x) = IdH . (2.11)

Proof. Recall that by the defining relation (2.7) the right hand side of (2.10)
denotes the Hilbert space element ψ ∈ H satisfying for all z ∈ H the equation

〈ψ, z〉 =
∫

X

〈ϕ, ηx〉〈ηx, z〉dµ(x) .

But the right-hand side of this equation is just 〈Vηϕ, Vηz〉L2(X) = 〈ϕ, z〉, by
the isometry property of Vη. Hence ψ = ϕ. Equation (2.11) is just a rephrasing
of (2.10).

As a special case of (2.10) we retrieve (2.6) (with a somewhat weaker sense
of convergence), observing that by (2.5) ONB’s are admissible coherent state
systems. Next we identify the ranges of coefficient mappings.

Proposition 2.12. Let (ηx)x∈X be an admissible coherent state system. Then
the image space K̃ = Vη(H) ⊂ L2(X, µ) is a reproducing kernel Hilbert space,
i.e., the projection P onto K is given by

PF (x) =
∫

X

F (y)〈ηy , ηx〉dµ(y) .

Proof. Note that the integral converges absolutely since Vη(ηy) ∈ L2(X). If
we assume that Vη is an isometry, then P = VηV ∗

η . Plugging in (2.8) gives the
desired equation:

VηV ∗
η F (x) = 〈V ∗

η F, ηx〉

=
∫

X

F (y)〈ηy, ηx〉dµ(y) .

2.3 Continuous Wavelet Transforms and the Regular
Representation

We now introduce the particular class of coherent state expansions associated
to group representations which this book studies in detail. We first exhibit
the close relation to the regular representation of the group. After that we
investigate the functional-analytic basics of the coefficient operators in this
setting, i.e., domains and adjoints.
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Definition 2.13. Let (π,Hπ) denote a strongly continuous unitary represen-
tation of the locally compact group G. In the following, we endow G with left
Haar measure. Associate to η ∈ Hπ the orbit (ηx)x∈G = (π(x)η)x∈G. This is
clearly a coherent state system in the sense of Definition 2.7(a), in particular
the coefficient operators Vη can be defined according to 2.7(b).

(a) η is called admissible iff (π(x)η)x∈G is admissible.
(b) If η is admissible, then Vη : Hπ ↪→ L2(G) is called (generalized) con-

tinuous wavelet transform.
(c) η is called a bounded vector if Vη : Hπ → L2(G) is bounded on Hπ.

We note in passing that η is cyclic iff Vη, this time viewed as an operator
Hπ → Cb(G), is injective: Indeed, Vηϕ = 0 iff ϕ⊥π(G)η, and that is equivalent
to the fact that ϕ is orthogonal to the subspace spanned by π(G)η.

A straightforward but important consequence of the definitions is that

Vη(π(x)ϕ)(y) = 〈π(x)ϕ, π(y)η〉 = 〈ϕ, π(x−1y)η〉 = (Vηϕ)(x−1y) , (2.12)

i.e., coefficient operators intertwine π with the action by left translations on
the argument. The same calculation shows that dom(Vη) is invariant under π.

Our next aim is to shift the focus from general representations of G to
subrepresentations of λG. For this purpose the following simple proposition
concerning the action of the commuting algebra on admissible (resp. bounded,
cyclic) vectors is useful.

Proposition 2.14. Let (π,Hπ) be a representation of G and η ∈ Hπ. If T ∈
π(G)′, then

VTη = Vη ◦ T ∗ . (2.13)

In particular, suppose that K is an invariant closed subspace of Hπ, with
projection PK. If η ∈ Hπ is admissible (resp. bounded or cyclic) for (π,Hπ),
then PKη has the same property for (π|K,K).

Proof. VTηϕ(x) = 〈ϕ, π(x)Tη〉 = 〈T ∗ϕ, π(x)η〉 shows (2.13), in particular the
natural domain of Vη ◦ T ∗ coincides with dom(VTη). As a consequence VPKη

is the restriction of Vη to K. The remaining statements are immediate from
this: The restriction of an isometry (resp. bounded or injective operator) has
the same property.

The following rather obvious fact, which follows from similar arguments,
will be used repeatedly.

Corollary 2.15. Let T be a unitary operator intertwining the representations
π and σ. Then η ∈ Hπ is admissible (cyclic, bounded) iff Tη has the same
property.

We will next exhibit the central role of the regular representation for
wavelet transforms. In view of the intertwining property (2.12), the remaining
problems have more to do with functional analysis. The chief tool for this is
the generalization of Schur’s lemma given in 1.2.
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Proposition 2.16. (a) If π has a cyclic vector η for which Vη is densely
defined, there exists an isometric intertwining operator T : Hπ ↪→ L2(G).
Hence π < λG.

(b) If ϕ ∈ Hπ is such that Vϕ : Hπ → L2(G) is a topological embedding, there
exists an admissible vector η ∈ Hπ.

(c) Suppose that η is admissible and define H = Vη(Hπ). Then H ⊂ L2(G)
is a closed, leftinvariant subspace, and the projection onto H is given by
right convolution with Vηη.

Proof. For part (a) note that by assumption Vη is densely defined, and it
intertwines π and λG on its domain, by (2.12). Hence Lemma 1.2 applies.
Since η is cyclic, kerVη = 0, yielding π < λG.

For (b) define U = V ∗
η Vη and η = U−1/2ϕ. Note that by assumption U is a

selfadjoint bounded operator with bounded inverse, hence U−1/2 is bounded
also. Moreover, U ∈ π(G)′, hence 1.4 implies U−1/2 ∈ π(G)′.

Then by (2.13), V ∗
η Vη = U−1/2UU−1/2 = IdHπ . The statements in (c) are

obvious; for the calculation of the projection confer Proposition 2.12.

The proposition shows that up to unitary equivalence all representations
of interest are subrepresentations of the left regular representation. In this
setting, wavelet transforms are right convolution operators. We next want to
discuss adjoint operators in this setting. Before we do this, we need to insert
a small lemma.

Lemma 2.17. Let a be a measurable bounded function, b ∈ L2(G) such that
for all g ∈ L1(G) ∩ L2(G),

∫
G

a(x)g(x)dx = 〈b, g〉 .

Then g = f almost everywhere.

Proof. Assuming that a and b differ on a Borel set M of positive, finite mea-
sure, we find a measurable function g supported on M , with modulus 1 and
such that g(x)(b(x) − a(x)) > 0 on M . But then g ∈ L1(G)∩L2(G) yields the
desired contradiction.

Remark 2.18. The nontrivial aspect of this lemma is that its proof is not
just a density argument. Initially it is not even clear whether a is square-
integrable. For this type of argument, replacing L1(G)∩L2(G) by some dense
subspace generally does not work, as the following example shows: Consider
the constant function a(x) = 1 on G and the subspace H = {g ∈ L1(G) ∩
L2(G) :

∫
G g(x)dx = 0} ⊂ L2(G). H is dense if G is noncompact, and for all

g ∈ H, ∫
R

g(x)a(x)dx = 0 ,

with absolute convergence, but of course a �= 0 ∈ L2(R).
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One of the reasons we single this argument out is that we will meet it
again in connection with the Plancherel Inversion Theorem 4.15.

Proposition 2.19. Suppose that f ∈ L2(G).

(a) Vf : L2(G) → L2(G) is a closed operator with domain

dom(Vf ) = {g ∈ L2(G) : g ∗ f∗ ∈ L2(G)} ,

and acts by Vfg = g ∗ f∗. The subspace dom(Vf ) is invariant under left
translations.

(b) If f∆−1/2 ∈ L1(G), then f is a bounded vector, with ‖Vf‖ ≤ ‖f∆−1/2‖1.
This holds in particular when f has compact support.

(c) If f∗ ∈ L2(G) then L1(G) ∩ L2(G) ⊂ dom(Vf ).
(d) Suppose that f∗ ∈ L2(G). Then V ∗

f ⊂ Vf∗ . If one of the operators is
bounded, so is the other, and they coincide.

Proof. The first part of (a) was shown in Proposition 2.8. Vfg = g ∗ f∗ was
observed in equation (2.4). (b) and (c) are nonabelian versions of Young’s
inequality. We prove (b) along the lines of [45, Proposition 2.39], the proof of
part (c) is similar (and can be found in [45]). We write

g ∗ f∗(x) =
∫

G

g(y)f(x−1y)dy

=
∫

G

g(xy)f(y)dy

=
∫

G

(Ryg)(x)f(y)dy ,

where (Ryg)(x) = g(xy). An application of the generalized Minkowski in-
equality then yields

‖g ∗ f∗‖2 ≤
∫

G

‖Ryg‖2|f(y)|dy =
∫

G

‖g‖2∆G(y)−1/2|f(y)|dy

= ‖g‖2‖f∆
−1/2
G ‖1 .

For the computation of the adjoint operator in (d), let g ∈ dom(V ∗
f ). For

all h ∈ L1(G) ∩ L2(G) ⊂ dom(Vf ), we note that
∫

G

∫
G

|h(x)f(y−1x)g(y)|dydx ≤
∫

G

|h(x)|‖f∗‖2‖g‖2dx < ∞ ,

hence we may apply Fubini’s theorem to compute
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〈h, V ∗
f g〉 = 〈Vfh, g〉

=
∫

G

∫
G

h(x)f(y−1x)dxg(y)dy

=
∫

G

h(x)
∫

G

g(y)f(y−1x)dydx

=
∫

G

h(x)
∫

G

g(y)f∗(x−1y)dydx

=
∫

G

h(x)Vf∗g(x)dx

Note that Vf∗g here denotes the coefficient function as an element of Cb(G);
we have yet to establish that g ∈ dom(Vf∗ . Here Lemma 2.17 applies to prove
Vf∗g = V ∗

f g ∈ L2(G) and thus V ∗
f ⊂ Vf∗ . Assuming that Vf is bounded,

it follows that Vf∗ ⊃ V ∗
f is everywhere defined and closed, hence bounded.

Conversely, V ∗
f being contained in a bounded operator clearly implies that V ∗

f

is bounded.

Remark 2.20. Part (c) of the proposition implies that Vf is densely defined
for arbitrary f ∈ L2(G), when G is unimodular. This need not be true in the
nonunimodular case, see example 2.29 below.

We note the following existence theorem for bounded cyclic vectors.

Theorem 2.21. There exists a bounded cyclic vector for λG. Hence, an arbi-
trary representation π has a bounded cyclic vector iff π < λG.

Proof. Losert and Rindler [84] proved for arbitrary locally compact groups
the following statement: There exists f ∈ Cc(G) which is a cyclic vector for
λG iff G is first countable. Thus second countable groups have a cyclic vector
f ∈ Cc(G). But then 2.19 (b) entails that Vf is bounded on L2(G), i.e. f is
a bounded cyclic vector for L2(G). Propositions 2.14 and 2.16 (a) yield the
second statement.

Remark 2.22. When dealing with subrepresentations π1 < π2 and a vector
η ∈ Hπ1 ⊂ Hπ2 , the notation Vη is somewhat ambiguous. Nonetheless, we
refrain from introducing extra notation, since no serious confusion can occur:
Denoting V πi

η for the operator on Hπi (i = 1, 2), we find that V π2
η = V π1

η on
Hπ1 , and V π2

η = 0 on H⊥
π1

. Hence V π2
η is just the trivial extension of V π1

η .

We close the section with a first short discussion of direct sum represen-
tations.

Proposition 2.23. Let π =
⊕

i∈I πi, and η ∈ H. Let Pi denote the projection
onto Hπi , and ηi = Piη. Then the following are equivalent:

(a) η is admissible.
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(b) ηi := Piη is admissible for πi, for all i ∈ I, and Im(Vηi)⊥Im(Vηj ), for all
i �= j.

Proof. For (a) ⇒ (b), the admissibility of ηi is due to Proposition 2.14. More-
over, if Vη is isometric, then it respects scalar products; in particular, the
pairwise orthogonal subspaces (Pi(H))i∈I have orthogonal images. But since
Vη ◦Pi = Vηi , this is precisely the second condition. The converse direction is
similar.

One way of ensuring the pairwise orthogonality of image spaces in part (b)
of the proposition is to choose the representations πi as pairwise disjoint:

Lemma 2.24. Let π1 and π2 be disjoint representations, and ηi ∈ Hπi be
bounded vectors (i = 1, 2). Then Vη1(Hπ1)⊥Vη2(Hπ2) in L2(G).

Proof. V ∗
η2

Vη1 : Hπ1 → Hπ2 is an intertwining operator, hence zero. Therefore,
for all ϕ1 ∈ Hπ1 and ϕ2 ∈ Hπ2 ,

0 = 〈V ∗
η2

Vη1ϕ1, ϕ2〉 = 〈Vη1ϕ1, Vη2ϕ2〉 ,

which is the desired orthogonality relation.

2.4 Discrete Series Representations

The major part of this book is concerned with the following two questions:

• Which representations π have admissible vectors?
• How can the admissible vectors be characterized?

For irreducible representations (such as the above mentioned examples), these
questions have been answered by Grossmann, Morlet and Paul [60]; the key
results can already be found in [38]. Irreducible subrepresentations of λG are
called discrete series representations. The complete characterization of
admissible vectors is contained in the following theorem. We will not present
a full proof here, since the theorem is a special case of the more general results
proved later on. However, some of the aspects of more general phenomena
encountered later on can be studied here in a somewhat simpler setting, and
we will focus on these.

Theorem 2.25. Let π be an irreducible representation of G.

(a) π has admissible vectors iff π < λG.
(b) A nonzero η ∈ Hπ is admissible (up to normalization) if Vηη ∈ L2(G), or

equivalently, if Vηϕ ∈ L2(G), for some nonzero ϕ ∈ Hπ.
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(c) There exists a unique, densely defined positive operator Cπ with densely
defined inverse, such that

η ∈ Hπ is admissible ⇐⇒ η ∈ dom(Cπ), with ‖Cπη‖ = 1 . (2.14)

This condition follows from the orthogonality relation

〈Cπη′, Cπη〉〈ϕ, ϕ′〉 = 〈Vηϕ, Vη′ϕ′〉 , (2.15)

which holds for all ϕ, ϕ′ ∈ Hπ and η, η′ ∈ dom(Cπ). Conversely, Vψϕ �∈
L2(G) whenever ψ �∈ dom(Cπ) and 0 �= ϕ ∈ Hπ.

(c) Cπ = cπ × IdHπ for a suitable cπ > 0 iff G is unimodular, or equivalently,
if every nonzero vector is admissible up to normalization.

(d) Up to normalization, Cπ is uniquely characterized by the semi-invariance
relation

π(x)Cππ(x)∗ = ∆G(x)1/2Cπ . (2.16)

The normalization of Cπ is fixed by (2.15).

Proof. The ”only-if” part of (a) is noted in Proposition 2.16 (a). For the
converse direction assume π < λG, w.l.o.g. π acts by left translation on a
closed subspace of L2(G). Then projecting any η ∈ Cc(G) into Hπ yields
a bounded vector, by 2.19(b) and 2.14. Since Cc(G) is dense in L2(G), we
thus obtain a nonzero bounded vector η. Since π is irreducible, it follows that
Vη is isometric up to a constant (by Lemma 1.2), hence we have found the
admissible vector.

For the proof of part (b) note that the following chain of implications is
trivial:

η is admissible up to normalization ⇒ Vηη ∈ L2(G)
⇒ (∃ϕ ∈ Hπ \ {0} : Vηϕ ∈ L2(G)) .

For the converse direction, assume Vηϕ ∈ L2(G) for a nonzero ϕ. Then
dom(Vη) is nonzero and invariant, hence it is dense by irreducibility of π.
But then Lemma 1.2 applies to yield that Vη is isometric up to a constant.
Since Vηη �= 0, the constant is nonzero, and thus η is admissible up to nor-
malization.

The construction of the operators Cπ requires additional tools from func-
tional analysis. The basic idea is the following: Fix a normalized vector ϕ ∈ Hπ

and consider the positive definite sesquilinear form

Bϕ : (η, η′) �→ 〈Vη′ϕ, Vηϕ〉 ,

which is the right hand side of (2.15) for the special case that ϕ = ϕ′. The
domain of this form is D × D, where D is the space of vectors η which are
admissible up to normalization. Note that D is dense, being nonzero and
invariant.
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Recalling from linear algebra the representation theorem establishing a
close connection between quadratic forms and symmetric matrices, we are
looking for a positive selfadjoint operator A such that

Bϕ(η, η′) = 〈Aη, η′〉 ,

and then letting Cπ = A1/2 should do the trick. Here we are in the situation
that the domain is only a dense subset. We intend to use the representation
theorem [101, Theorem VIII.6], and for this we need to show that Bϕ is
closed. This amounts to checking the following condition, for every sequence
(ηn)n∈N and η ∈ Hπ such that ηn → η: If

Bϕ(ηn − ηm, ηn − ηm) → 0 , as n, m → ∞ (2.17)

then η ∈ D and Bϕ(ηn − η, ηn − η) → 0. It turns out that this is precisely the
argument from the proof of Proposition 2.8: Observing that

Bϕ(η − η′, η − η′) = ‖Vη−η′ϕ‖22 = ‖Vηϕ − Vη′ϕ‖22 ,

we see that condition (2.17) is equivalent to saying that (Vηnϕ)n∈N is a Cauchy
sequence in L2(G). Hence after passing to a suitable subsequence we find that
Vηnϕ → F ∈ L2(G), both in L2 and pointwise almost everywhere. On the
other hand, ηn → η entails Vηnϕ → Vηϕ uniformly, by Cauchy-Schwarz.
Hence F = Vη, and η ∈ D by part (a). Therefore we obtain the operator A,
and letting Cπ = A1/2 yields

〈Vη′ϕ, Vηϕ〉 = 〈Cπη, Cπη′〉 (2.18)

The first step for deriving the general orthogonality relations consists in
observing that Bϕ (and consequently Cπ) is independent of the choice of
normed vector ϕ: Fixing an arbitrary admissible η, the fact that Vη is the
multiple of an isometry yields for all normed ϕ

Bϕ(η, η) = ‖Vηϕ‖22 = cη‖ϕ‖2

where cη is a constant independent of ϕ. By polarization this implies that
Bϕ is independent of ϕ. Hence we obtain for arbitrary ϕ ∈ H and admissible
vectors η, η′

〈Vη′ϕ, Vηϕ〉 = ‖ϕ‖2〈Cπη, Cπη〉 .

Polarization with respect to ϕ yields (2.15).
Part (c) follows from (d), for (d) we refer to [38].

We note that (2.16) entails that Cπ is unbounded in the nonunimodular
case, since the operator norm on B(Hπ) is invariant under conjugation with
unitaries. The operators Cπ are called Duflo-Moore operators. More details
on these operators can be found in Section 3.8. The proof given here basically
follows the argument in [60]. The main reason we have reproduced it in part is
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to demonstrate the close connection between the admissibility condition and
the construction of the operators: The admissibility criterion (2.14) implies the
orthogonality criterion (2.15) by polarization, and the latter was used to define
Cπ . Let us also point out the crucial role of irreducibility, which particularly
implies that the space of admissible vectors (up to normalization) is dense in
Hπ.

Remark 2.26. Note that the Duflo-Moore operators Cπ studied here relate to
the formal dimension operators Kπ in [38] as K

−1/2
π = Cπ . The terminol-

ogy ”formal dimension operator” is best understood by considering compact
groups: Let π be an irreducible representation of a compact group G. Since
coordinate functions are bounded, it is obvious that π is square-integrable. G
is unimodular, thus Cπ is scalar. Now the Schur orthogonality relations for
compact groups [45, 5.8] yield for a normalized vector ϕ that

‖Vϕϕ‖22 = d−1
π ‖ϕ‖2

where dπ = dim(Hπ). Thus Cπ = d
−1/2
π · Hπ, and the formal dimension

operator Kπ = C−2
π is multiplication with the Hilbert space dimension of Hπ .

The theorem of Grossmann, Morlet and Paul provides a rich reservoir
of cases. In fact the large majority of papers dealing with the construction of
wavelet transforms refers to this result. We give a small sample which contains
the most popular examples.

Example 2.27. Windowed Fourier transform. Consider the reduced
Heisenberg group, given as the set Hr = R

2 × T, with the group law

(p, q, z)(p′, q′, z′) = (p + p′, q + q′, zz′eπi(pq′−qp′)) .

Haar measure here is given by dpdqdz, where dz is the rotation-invariant
measure on the torus, normalized to one. G is unimodular. It acts on L2(R)
via the Schrödinger representation given by

(π(p, q, z)f)(x) = ze2πiq(x+p/2)f(x + p) . (2.19)

Straightforward calculation allows to establish that

‖Vηg‖22 =
∫
R

∫
R

∫
T

∣∣∣∣
∫
R

g(x)ze−2πiq(x+p/2)η(x + p)dx

∣∣∣∣
2

dzdqdp

=
∫
R

∫
R

∣∣∣∣
∫
R

g(x)e−2πiq(x+p/2)η(x + p)dx

∣∣∣∣
2

dqdp

=
∫
R

∫
R

∣∣∣∣
∫
R

g(x)e−2πiqxη(x + p)dx

∣∣∣∣
2

dqdp

=
∫
R

∫
R

|Ĥp(q)|2dpdq ,
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where Hp(x) = g(x)η(x + p), which for fixed p ∈ R is an integrable function.
An application of Fubini’s and Plancherel’s theorem for the reals yields

∫
R

∫
R

|Ĥp(q)|2dpdq =
∫
R

∫
R

|g(x)η(x + p)|2dxdp

= ‖η‖22‖g‖22 .

This relation implies first of all that π is irreducible: Vη is injective for every
nonzero η, i.e., η is cyclic. Moreover, every η ∈ L2(R) is admissible up to
normalization; more precisely, iff ‖η‖ = 1. This is what we are to expect by
Theorem 2.25: G is unimodular, hence the formal dimension operator is a
scalar multiple of the identity. In addition, we have established by elementary
calculation that the scalar equals one.

Since the torus acts by multiplication, we have |Vf (p, q, z)| = |Vf (p, q, 1)|,
for all z ∈ T. Hence the map Wf : g �→ (Vfg)|R2×{1} is isometric as well. Wf

is the windowed Fourier transform associated to the window f .
Hence we have derived for all f ∈ L2(R) with ‖f‖ = 1 the transform

Wfg(p, q) =
∫
R

g(x)e2πiq(x+p/2)f(x + p) dx ,

with inversion formula

g(x) =
∫
R

∫
R

Wfg(p, q) e−2πiq(x+p/2)f(x + p) dpdq .

Note that this inversion is to be understood in the weak sense and usually
does not hold pointwise.

Example 2.28. 1-D CWT. This is the original “continuous wavelet trans-
form” introduced in [60]. It is based on the ax + b group, the semidirect
product R � R

′. As a set G is given as G = R × R
′, with group law

(b, a)(b′, a′) = (b + ab′, aa′) .

The left Haar measure is db|a|−2da, which is distinct from the right Haar
measure db|a|−1da. Wavelets arise from the quasi-regular representation
π acting on L2(R) via

(π(b, a)f)(x) = |a|−1/2f

(
x − b

a

)
.

Again, computing L2-norms of wavelet coefficients turns out to be an exercise
in real Fourier analysis. First observe that on the Fourier transform side π
acts as

(π(b, a)f)∧ (ω) = |a|1/2e−2πiωbf̂(aω)

Hence, using the Plancherel theorem for the reals we can compute
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‖Vηg‖22 =
∫

G

|〈g, π(b, a)η〉|2 dµG(b, a)

=
∫

G

|〈ĝ, (π(b, a)η)∧〉|2 dµG(b, a)

=
∫
R′

∫
R

∣∣∣∣
∫
R

f̂(γ)|a|1/2e2πiγbη̂(aγ)dγ

∣∣∣∣
2

|a|−2dbda

=
∫
R′

∫
R

∣∣∣∣
∫
R̂k

f̂(γ)e2πiγbη̂(aγ)dγ

∣∣∣∣
2

|a|−1dbda

=
∫
R′

∫
R

∣∣∣φ̂a(−b)
∣∣∣2 |a|−1dbda,

where φa(γ) = ĝ(γ)η̂(aγ). The Plancherel theorem allows thus to continue
∫
R′

∫
R

∣∣∣φ̂a(−b)
∣∣∣2 |a|−1dbda =

∫
R′

∫
R

∣∣ĝ(γ)η̂(aγ)
∣∣2 |a|−1dbda

=
∫
R

|ĝ(γ)|2
(∫

R′
|η̂(aγ)|2|a|−1da

)
dγ

=
(∫

R

|ĝ(γ)|2dγ

)
·
(∫

R′
|η̂(aγ)|2|a|−1da

)

= c2η‖g‖2 ,

where we used the fact that the measure a−1da is Haar measure of the mul-
tiplicative group R

′. Hence we have derived

‖Vηg‖22 = c2η‖g‖2 , (2.20)

where

c2η =
∫
R

|η̂(ω)|2
|ω| dω . (2.21)

Note that our calculations also include the case cη = ∞, where (2.20) means
that Vηf �∈ L2(G). For this additional observation we need the following ex-
tended version of the Plancherel theorem:

∀h ∈ L1(R) :
(
h ∈ L2(R) ⇐⇒ ĥ ∈ L2(R)

)
. (2.22)

Now “=⇒” is due to Plancherel’s theorem, but the other direction is not. In
order to show it, let g ∈ L2(R) denote the inverse Plancherel transform of ĥ,
we have to show g = h. But this follows from the injectivity of the Fourier
transform on the space of tempered distributions, since restriction to L1(G)
resp. L2(G) yields the Fourier- resp. Plancherel transform.

As in the case of the windowed Fourier transform, (2.20) implies that the
representation is irreducible. This time, the admissibility condition reads as:

η ∈ L2(R) is admissible ⇔ cη = 1 . (2.23)
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Comparing our findings to Theorem 2.25, we see that we have a discrete
series representation of a nonunimodular group. Accordingly, the admissibility
condition is more restrictive, requiring not just the right normalization. As
a matter of fact, it is straightforward to check the semi-invariance relation
(2.16) to show that the Duflo-Moore operator is given by

(Cπf)∧(ω) = |ω|−1/2f̂(ω) ,

as (2.21) suggests.

Example 2.29. As observed in Remark (2.20) above, Vf need not be densely
defined for arbitrary f ∈ L2(G), when G is nonunimodular. Here we construct
such an example for the case that G is the ax+b-group. For this purpose con-
sider the quasi-regular representation π from Example 2.28. Pick a ψ ∈ L2(R)
which is not in the domain of the Duflo-Moore operator, and an admissible
vector η. Defining f = Vηψ and H = Vη(L2(R)) ⊂ L2(G), we see that Vfg = 0
for g ∈ H⊥, whereas for g = Vηϕ ∈ H,

Vfg(x) = 〈Vηϕ, λG(x)Vηψ〉 = 〈ϕ, π(x)ψ〉 = Vψφ(x) ,

and the latter function is not in L2(G) by 2.25 (b) and the choice of ψ. Hence
dom(Vf ) = H⊥, and Vf = 0 on this domain.

Example 2.30. 2-D CWT. This construction was first introduced by Murenzi
[93], as a natural generalization of the continuous transform in one dimension.
We consider the similitude group G = R

2
� (SO(2) × R

+). Hence G is the
set R

2 × SO(2) × R
+ with the group law

(x, h, r)(x′, h′, r′) = (x + rhx′, hh′, rr′) .

The group can be identified with the subgroup of the full affine group of the
plane generated the translations, the rotations and the dilations. It thus acts
naturally on R

2, which gives rise to the quasi-regular representation π acting
on L2(R2) via

(π(x, h, r)f)(y) = |r|−1f(r−1h−1(y − x)) .

An adaptation of the argument for the 1D CWT yields

‖Vηf‖22 = c2η‖f‖2 , (2.24)

where this time

c2η =
∫
R2

|f̂(ω)|2
|ω|2 dω .

Therefore the admissibility condition reads

η is admissible ⇐⇒
∫
R2

|f̂(ω)|2
|ω|2 dω = 1 .
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As in the case of the 1D-CWT, we obtain from the norm equality that π is
again irreducible. The Duflo-Moore operator is computed as

(Cπf)∧(ω) = |ω|−1f̂(ω) .

Next let us consider direct sums of discrete series representations. The
following theorem describes how far the discrete series arguments carry. Recall
that Proposition 2.23 gives criteria for direct sum representations, and the
orthogonality relations for the discrete series case allow to derive admissibility
criteria for multiplicities greater than one.

Theorem 2.31. Let π =
⊕

i∈I πi, where each πi is a discrete series represen-
tation. Denote by Pi the projection onto the representation space Hπi , and by
Cπi the associated Duflo-Moore operators. Since the πi are irreducible, there
exist (up to normalization) unique intertwining operators Si,j : Hπi → Hπj .
Then the following are equivalent:

(a) η is admissible.
(b) ηi ∈ dom(Cπi), with ‖Cπiηi‖ = 1. Moreover, for all i, j with πi 
 πj,

〈Cπj Si,jηi, Cπj ηj〉 = 0 (2.25)

Proof. We apply Proposition 2.23. By Theorem 2.25(c), ‖Cπiηi‖ = 1 is the ad-
missibility condition on ηi. Moreover, the orthogonality relation (2.15) shows
that whenever πi 
 πj ,

Im(Vηi )⊥Im(Vηi) ⇐⇒ 〈Cπj Si,jηi, Cπj ηj〉 = 0 .

Since any two irreducible representations are either equivalent or disjoint,
Lemma 2.24 yields Im(Vηi)⊥Im(Vηi) for arbitrary vectors ηi and ηj , whenever
πi �
 πj . Hence the proof is finished.

The following remark is a preliminary version of one of the main results
contained in this book: The existence criterion for admissible vectors given
in Theorem 4.22. Here we only consider the case of direct sums of discrete
series representations. Some of the phenomena encountered in the general case
can be already examined in this simpler setting, in particular the striking
difference between unimodular and nonunimodular groups and the role of the
formal dimension operators in this context.

Remark 2.32. Let π =
⊕

i∈I πi, where each πi is a discrete series represen-
tation. We associate a multiplicity function mπ : Ĝ → N0

⋃
{∞} to π, by

letting
mπ(σ) = |{i ∈ I : σ 
 πi}| ,
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where |·| denotes cardinality. mπ simply counts the multiplicity with which the
representation π is contained in π. Note that Hπ is assumed to be separable,
hence the cardinalities are countably infinite at most, and only countably
many σ have a nonzero multiplicity. Fix unitary intertwining operators Ti :
Hπi → Hσ, for the unique σ ∈ Ĝ with σ 
 πi. The uniqueness property of
the Duflo-Moore operators entails that Cσ = TiCπiT

∗
i .

Using the operators Ti, the admissibility conditions from Theorem 2.31
can also be written as

〈CσTiηi, CσTjηj〉 = 0 (πi 
 πj) (2.26)
‖Cπiηi‖ = 1 (∀i ∈ I) (2.27)

Both relations can be used to derive necessary conditions for the multiplicity
function: (2.26) clearly implies that

mπ(σ) ≤ dim(Hσ) . (2.28)

Moreover, the orthogonal decomposition of Hπ yields in particular that

∞ > ‖η‖2 =
∑
i∈I

‖Piη‖2 =
∑
i∈I

‖ηi‖2 . (2.29)

Now assume that G is unimodular. Then Cσ = cσ×IdHσ , with positive scalars
cσ. Hence (2.27) entails the necessary condition∑

σ∈Ĝ

mπ(σ)c−2
σ < ∞ . (2.30)

Conversely, it is easily seen that vectors fulfilling (2.26) and (2.27) exist
once (2.28) and (2.30) hold, therefore we have found a characterization of
direct sums of discrete series representations with admissible vectors. Note
that (2.30) implies mπ(σ) < ∞, which can be seen as a sharpening of (2.28).

In the nonunimodular case the situation is much less transparent. However,
it turns out that the restrictions actually vanish! To begin with, dim(Hσ) = ∞
follows from the existence of an unbounded operator Cσ on Hσ. In addition,
while (2.29) still holds, implying in particular that (at least for I infinite) the
norms of the ηi become arbitrarily small, it is no contradiction to (2.27). Here
the fact that the Cπi are unbounded makes it conceivable that there exist
vectors that actually fulfill both conditions. Note that we still need to ensure
(2.26), which requires more knowledge of the formal dimension operators than
we have currently at our disposal. In any case the existence of an unbounded
operator on Hσ entails dim(Hσ) = ∞, i.e., (2.28) holds trivially.

We will next study the space L2
π(G) spanned by all coefficient functions

associated to a fixed discrete series representation π. Most of the following
is due to Duflo and Moore. The results can be seen as precursors of the
Plancherel formula, or more precisely, as the contribution of the discrete series
to the Plancherel formula. They also provide further insight into the role of
Hilbert-Schmidt operators and the quasi-invariance relation (2.16).
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Theorem 2.33. Let π be a discrete series representation, and define

L2
π(G) = span{H : λG|H 
 π} .

(a) L2
π(G) = span{Vηϕ : ϕ, η ∈ Hπ such that Vηϕ ∈ L2(G)}.

(b) L2
π(G) is λG × �G-invariant, with λG × �G|L2

π(G) 
 π ⊗ π. In particular,
λG × �G|L2

π(G) is irreducible.
(c) Let (ηi)i∈I denote an ONB of Hπ contained in dom(C−1

π ). Then(
VC−1

π ηi
ηj

)
i,j∈I

is an ONB of L2
π(G).

(d) If σ is another discrete series representation with σ �
 π, then L2
σ(G)⊥

L2
π(G).

Proof. For part (a) we let H0 = span{Vηϕ : ϕ, η ∈ Hπ, η is admissible}. Then
for every f = Vηϕ ∈ H0, the leftinvariant space spanned by f is just the image
of Hπ under Vη, which is a unitary equivalence. Hence H0 ⊂ L2

π(G), which
extends to the closure of H0.

For the other direction we argue indirectly. Assume that there exists g ∈
L2(G) such that the restriction of λG to the leftinvariant subspace generated
by g is equivalent to π, yet g is not contained in the closed span of H0. W.l.o.g.
we may assume that g⊥H0. Observe that H0 is rightinvariant also, since

Vπ(x)ηϕ(y) = 〈ϕ, π(yx)η〉 = ∆G(x)−1/2 (ρG(x)Vηϕ) (y) .

Let Q denote the projection onto the leftinvariant space generated by g. Pick
h ∈ Cc(G) such that Qh �= 0. Then we have

VQhg = Vhg = g ∗ h∗ ∈ L2(G)

by choice of h and 2.19 (b). Moreover, VQhg is nonzero since Qh and g are
nonzero and π is irreducible. By definition of H0 we have VQhg ∈ calH0. On
the other hand, rightinvariance of H0 yields that if g⊥H0, then g ∗ h∗⊥H0,
and we have the desired contradiction.

For part (b), consider the mapping

T : ϕ ⊗ η �→ VC−1
π ηϕ ,

defined for all elementary tensors ϕ⊗η satisfying η ∈ dom(C−1
π ). Since C−1

π is
densely defined, these tensors span a dense subspace of Hπ⊗Hπ. Moreover, by
the orthogonality relation (2.15), T is isometric. Hence there exists a unique
linear isometry, also denoted by T : Hπ ⊗ Hπ → L2

π(G). By part (a), it
has dense image, hence T is in fact unitary. We will next show that T is an
intertwining operator. For this purpose observe that (2.16) gives rise to

π(x)C−1
π π(x)∗ = ∆G(x)−1/2C−1

π .

Then we compute
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T (ϕ ⊗ π(x)η)(y) = 〈ϕ, π(y)C−1
π π(x)η〉

= 〈ϕ, ∆
1/2
G π(y)π(x)C−1

π η〉
= ∆G(x)1/2T (ϕ ⊗ π)(yx)
= (�(T (ϕ ⊗ π)) (y) .

This shows that T intertwines 1 ⊗ π with �G; the left half is obvious.
Now part (c) is obtained by applying T to the ONB (ηi ⊗ ηj)i,j∈I . Part

(d) follows from (a) and 2.24.

Observe that an ONB as in part (c) of the theorem always exists, since
dom(C−1

π ) is dense; simply apply Gram-Schmidt orthonormalization.
We will next show the announced contribution of π to the Plancherel

formula. For this purpose we need the following definition: For f ∈ L1(G) and
a representation π, let

π(f) =
∫

G

f(x)π(x)dx ,

where convergence is in the weak sense, which for f ∈ L1(G) is guaranteed.
This construction will be seen to yield the operator-valued Fourier trans-
form, which is discussed in more detail in Chapter 3. We postpone a more
complete discussion of the Fourier transform to that chapter, and only show
the following result.

Theorem 2.34. Let π be a discrete series representation. Denote by Pπ the
projection onto L2

π(G). Then, for all f ∈ L1(G) ∩ L2(G), π(f)C−1
π extends to

a Hilbert-Schmidt operator, with

‖π(f)C−1
π ‖ = ‖Pπ(f)‖ .

Proof. Let an ONB (ηi)i∈I ⊂ dom(C−1
π ) of Hπ be given. Then by part (c) of

the previous theorem, we can compute the norm of Pπ(f) as

‖Pπ(f)‖2 =
∑
i,j∈I

∣∣∣〈f, VC−1
π ηj

ηi〉
∣∣∣2

=
∑
i,j∈I

∣∣∣∣
∫

G

f(x)〈ηi, π(x)C−1
π ηj〉dx

∣∣∣∣
2

=
∑
i,j∈I

|〈π(f)C−1
π ηj , ηi〉|2 ,

where the last equation used the definition of the weak operator integral. But
the last term is just the Hilbert-Schmidt norm of π(f)C−1

π .

Let us now give a few examples for which the discrete series approach can-
not work. Clearly, if the underlying group is compact, then every irreducible
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representation is in the discrete series: Wavelet coefficients are bounded func-
tions and the Haar measure is finite, hence every wavelet coefficient is trivially
in L2. At the other end of the scale we have the reals: Every irreducible rep-
resentation is a character, i.e. a group homomorphism R → T. Matrix coeffi-
cients are constant multiples of that character, hence never square-integrable.
The following theorem extends this observation to a larger class. The result
is probably folklore, though I am not aware of a reference.

Theorem 2.35. Let G be a SIN-group, i.e., every neighborhood of unity
contains a conjugation-invariant neighborhood. If G has a discrete series rep-
resentation, then G is compact.
In particular, if G is discrete and has a discrete series representation, then
G is finite. If G is abelian and has a discrete series representation, then G is
compact.

Proof. Note that SIN-groups are unimodular: For any conjugation-invariant
neighborhood U of unity, and any x ∈ G we have |Ux| = |x−1Ux| = |U |.

Now let π be a discrete series representation. The first step consists in
showing that dim(Hπ) is finite. For this purpose pick a conjugation-invariant
neighborhood of unity such that π(111U ) �= 0. The existence of such a neighbor-
hood is seen as follows: Since the characteristic functions of a neighborhood
base at unity span a dense subspace of L1(G), we would otherwise obtain
π(f) = 0 for all f ∈ L1(G). This would contradict [35, 13.3.1], hence U exists.

We next show that π(111U ) is an intertwining operator. Using conjugation-
invariance of U and rightinvariance of Haar measure, we find

〈φ, π (111U )π(y)η〉 =
∫

G

111U (x)〈φ, π(x)π(y)η〉dµG(x)

=
∫

U

〈φ, π(xy)η〉dµG(x)

=
∫

Uy

〈φ, π(x)η〉dµG(x)

=
∫

yU

〈φ, π(x)η〉dµG(x)

=
∫

U

〈φ, π(yx)η〉dµG(x)

= 〈φ, π(y)π (111U ) η〉.

Hence, by Schur’s lemma, π(111U ) is a scalar, which is nonzero by choice of 111U .
On the other hand, π(111U ) is Hilbert-Schmidt. Hence dim(Hπ) < ∞.

Now assume that G is not compact. Since G is σ-compact and locally
compact, there is a sequence (Cn)n∈N of compact sets in G with the property
that A ⊂ G is compact iff there exists n ∈ N such that A ⊂ Cn. Pick a
sequence (xn)n∈N ⊂ G with xn ∈ G \ Cn. Then for every compact set A ⊂ G
there exists nA ∈ N with xk �∈ C for all k ≥ nA, and this property is inherited
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by subsequences. Since dim(Hπ) < ∞, we may assume that Hπ = C
n and

π(G) ⊂ U(n). Since U(n) is compact, passing to a subsequence allows the
assumption that π(xn) → S ∈ U(n). Picking any unit vector η, we thus arrive
at

Vη(Sη)(xn) = 〈Sη, π(xn)η〉 → ‖Sη‖2 = 1 .

On the other hand, Vη(Sη) vanishes at infinity, by 2.19, which yields the
desired contradiction.

Note that the somewhat complicated choice of the sequence xn is only
made to avoid that any subsequence is relatively compact.

Let us close with an example that cannot be covered by the results in this
section.

Example 2.36. Dyadic wavelet transform. This construction was first con-
sidered by Mallat and Zhang [92], though without referring to any group
structure. We consider the group H = R � Z, where Z acts by powers of 2.
Hence H is the subgroup of the ax+ b-group generated by R×{0} and (0, 2);
let’s call it the 2kx + b-group. We are interested in admissible vectors for the
restriction of the quasiregular representation from Example 2.28 to H . An
easy adaptation of the calculations there yields

‖Vηf‖22 =
∫
R

|f̂(ω)|2Φη(ω)dω , (2.31)

where the function Φη is given by

Φη(ω) =
∑
n∈Z

|η̂(2nω)|2 .

For the proof of a more general result we refer the reader to Theorem 5.8
below.

Unlike the previous examples, this representation is not irreducible: Con-
sider a function f such that f̂ is supported in [1, 1.5], and η with supp(η̂) ⊂
[1.5, 2]. Then Φη = 0 on the support of f , and thus (2.31) implies Vηf = 0.

On the other hand, (2.31) yields the admissibility criterion

η is admissible ⇔ Φη ≡ 1 ,

and it is easy to construct such functions, say η̂ = 111[−2,−1] + 111[1,2]. Hence
we have found a representation which is not covered by the discrete series
case. As a matter of fact, π does not contain irreducible subrepresentation:
Suppose that H ⊂ L2(R) is an irreducible subspace. Since π has admissible
vectors, the subrepresentation also does, by Proposition 2.14. Let η ∈ H be
admissible. Then π(G)η spans H, therefore relation (2.31) yields that

H⊥ = {ϕ ∈ L2(R) : Vηϕ = 0}
= {ϕ ∈ L2(R) : |supp(ϕ̂) ∩ supp(Φη|) = 0} .
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But the orthogonal complement of the latter space is easily computed, yielding

H = {ϕ ∈ L2(R) : supp(ϕ̂) ⊂ supp(Φη)}

Recall that supp denotes the measure-theoretic support, and inclusion is un-
derstood up to sets of measure zero. Now it is easy to construct two nonzero
vectors ξ1 and ξ2 such that Φξ1 and Φξ2 have disjoint supports, both con-
tained in supp(Φη). To see this observe that Φη(2nω) = Φη(ω) implies that
supp(Φη) ⊂ ∪n∈Z2nA, where A = [1, 2[∩supp(Φη). In particular, A has pos-
itive measure. Hence, if we pick B1, B2 ⊂ A disjoint with positive measure,
and let ξ̂i = 111Bi , we obtain two nonzero functions such that supp(Φξ1) and
supp(Φξ2 ) are disjoint. But then (2.31) implies Vξ1ξ2 = 0, in particular ξ1 is
not cyclic for H.

Thus π has no irreducible subrepresentation, in particular Theorem 2.31
has significance either.

2.5 Selfadjoint Convolution Idempotents and Support
Properties

We now continue the discussion of the subspaces of L2(G) which arise as im-
age spaces of wavelet transforms. The following notion describes the associated
reproducing kernels. After proving this observation, we will draw several con-
sequences from the properties of the reproducing kernel spaces. In particular,
we study support properties of wavelet transforms, as well as the existence of
admissible vectors for λG.

Definition 2.37. S ∈ L2(G) is called (right selfadjoint) convolution
idempotent if S = S ∗ S∗ = S∗.

Convolution idempotents in L1(G) have been studied for instance in [59],
and generally the existence of such idempotents is a strong restriction on
the group. By contrast, we will see that L2-convolution idempotents exist in
abundance. But first the connection between convolution idempotents and
generalized wavelet transforms.

Proposition 2.38. (a) Let S ∈ L2(G) be a convolution idempotent, and de-
note by H the closed leftinvariant subspace generated by S, i.e., H =
span(λG(G)S). Then the projection onto H is given by right convolution
with S, i.e. H = L2(G)∗S = {g ∗S : g ∈ L2(G). Moreover, if T is another
convolution idempotent in H with H = L2(G) ∗ T , then T = S.

(b) S is a selfadjoint convolution idempotent iff there exists a representation
π and an admissible η ∈ Hπ such that S = Vηη. Consequently, the image
spaces of continuous wavelet transforms are precisely the spaces of the
form L2(G) ∗ S.
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Proof. For (a) observe that clearly f = f ∗ S holds for all f ∈ span(λG(G)S),
as well as f ∗ S = 0 for all f⊥H. Hence on a dense subspace VS = PH, the
latter being the projection onto H. Since VS is closed, the result follows. The
uniqueness statement follows from T = T ∗ S and T = T ∗, hence

T = S∗ ∗ T ∗ = S ∗ T = S .

The “if”-part of (b) is due to 2.16 (c). For the other direction let π be the
restriction of λG to H = L2(G) ∗ S. Then f = f ∗ S = VSf for f ∈ H shows
that the inclusion map is a continuous wavelet transform. The last statement
is obvious by now.

The next property will be relevant for sampling theorems, allowing to
conclude uniform convergence from L2-convergence. Note that this observation
holds for a larger class of reproducing kernel Hilbert spaces.

Proposition 2.39. Let S ∈ L2(G) be a selfadjoint convolution idempotent,
then for all f ∈ H = L2(G) ∗ S we have ‖f‖∞ ≤ ‖f‖2‖S‖2.

Proof. This follows from the Cauchy-Schwarz inequality:

|f(x)| = |(f ∗ S∗)(x)| = |〈f, λG(x)S〉| ≤ ‖f‖2‖S‖2 .

The following proposition gives rise to a somewhat subtle distinction be-
tween unimodular and nonunimodular groups: In the unimodular case, any
invariant subspace of L2(G) which has admissible vectors possesses one in the
form of a convolution idempotent. This will not be the case for nonunimodular
groups, as will be clarified in Remark 2.43 below.

Proposition 2.40. Suppose that H ⊂ L2(G) is closed and leftinvariant. As-
sume that H has an admissible vector η with η∗ ∈ L2(G). Then there exists a
right convolution idempotent S ∈ H such that H = L2(G) ∗ S. In particular,
in such a case H ⊂ C0(G).

Proof. Suppose that an admissible vector η ∈ H exists, then the projection
onto H is given by Vη∗Vη. Since Vη is bounded, 2.19 (d) implies that S =
η∗∗η = V ∗

η η∗ ∈ H. Hence, using associativity of convolution, f = (f ∗η∗)∗η =
f ∗S, for all f ∈ H, whereas f ∗(η∗∗η) = 0, for f⊥H. Therefore H = L2(G)∗S,
and S is the desired selfadjoint convolution idempotent.

We use the proposition to prove the following result due to Rieffel [102].

Proposition 2.41. Let G be a unimodular group and H ⊂ L2(G) a closed,
leftinvariant subspace. Then H contains a nonzero selfadjoint convolution
idempotent.
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Proof. We start by choosing a nonzero bounded vector φ ∈ H: Pick φ0 ∈
Cc(G) with nontrivial projection PHφ in H. Then φ0 is a bounded vector
by 2.19(b), and Proposition 2.14 implies that φ = PHφ0 is bounded as well.
Pick a nonzero spectral projection Q of the selfadjoint operator U = V ∗

φ Vφ

corresponding to a subset in R
+ bounded away from zero. Then U restricted to

K := Q(H) is a topological mapping. It follows that as a mapping K → Vφ(K)
the operator Vφ = VQφ is topological. Now Proposition 2.16 (b) ensures the
existence of an admissible vector η in K, and then Proposition 2.40 entails
that K is generated by a convolution idempotent. (Note that the last step was
the only instance where we used that G is unimodular; otherwise we have no
way of checking η∗ ∈ L2(G).)

Our next aim is to decide for which unimodular groups G the regular
representation itself allows admissible vectors. Note that in view of Proposition
2.14, the existence of admissible vectors for λG provides admissible vectors for
all subrepresentations as well. Hence for these groups the necessary condition
π < λG is also sufficient, which yields a complete answer at least to the
existence part of our problem. For unimodular groups, this approach turns
out to be too bold, except for the somewhat trivial case of discrete groups.
The following theorem first appeared in [53], with a somewhat sketchy proof.

Theorem 2.42. Let G be unimodular. Then λG has an admissible vector iff
G is discrete.

Proof. First, if G is discrete, then the indicator function of {eG}, where eG is
the neutral element of G, is admissible: The associated wavelet transform is
the identity operator. Now assume that λG has an admissible vector, then by
Proposition 2.40 L2(G) consists of bounded continuous functions, in particular
L2(G) ⊂ L∞(G). In order to show that this implies discreteness of G, we first
show that for G nondiscrete there exist measurable sets of arbitrarily small,
positive measure. For suppose otherwise, i.e.,

ε := inf{|A| : A ⊂ G Borel , |A| > 0} > 0 .

Then the infimum is actually attained: For n ∈ N there exists Un such that
|Un| < ε + 1/n. Using regularity, we find Vn ⊃ Un open with |Vn \Un| < 1/n.
Pick xn ∈ Vn, then x−1

n Vn is an open neighborhood of unity in G. It follows
that letting for arbitrary N ∈ N,

WN =
N⋂

n=1

x−1
n Vn

defines a decreasing series of open neighborhoods of unity satisfying

ε ≤ |WN | ≤ |VN | < ε + 2/N .

But then U =
⋂

n∈N
Un has measure ε.



42 2 Wavelet Transforms and Group Representations

Next pick C ⊂ U ⊂ V , C compact, V open with µ(V \ C) < ε. C and
V exist by regularity of Haar measure. Then V \ C is open and has zero
measure (by minimality of ε), hence U = V is open. If U contains two distinct
points, they can be divided by two disjoint open sets contained in U , which
contradicts the minimality of µ(U). Hence U is an open singleton, and G is
discrete, contrary to our assumptions.

Now suppose G is nondiscrete. Pick a sequence of Borel sets Un ⊂ G with
the 0 < |Un| < n−6, and define f =

∑
n∈N

n · 111Un . Since ‖n111Un‖2 ≤ n−2,
the sum converges in L2(G), but clearly the limit is not in L∞(G). Hence
L2(G) �⊂ L∞(G).

Remark 2.43. We note that if G is nonunimodular and type I, Theorem 4.22
provides the existence of an admissible vector for λG, even though G is ob-
viously nondiscrete. Hence there is a sharp contrast between the unimodular
and the nonunimodular setting.

The admissible vector for λG also shows that the assumption η∗ ∈ L2(G)
in Proposition 2.40 cannot be dispensed with: If η is admissible for λG and
such that η∗ ∈ L2(G), the Proposition implies L2(G) ⊂ C0(G). But then the
proof of 2.42 can be adapted to show that G is discrete, which contradicts the
fact that G is nonunimodular.

As one application of the connection between wavelets and convolution
idempotents, we want to prove that wavelet coefficients have noncompact
supports, at least for a large class of groups. We will see later on that in the
abelian setting these results are related to the qualitative uncertainty property,
stating that any L2-function having support of finite Lebesgue measure both
in time and frequency domains must be zero. The analog of that theorem for
nonabelian groups will be given in Corollary 4.28 below.

But now let us show the result concerning the supports of wavelet coeffi-
cients. It was established by Wilczok both for the one-dimensional continuous
wavelet transform and for the windowed Fourier transform [115], but the rea-
soning can be extended to a much larger class of groups. This was done by
Arnal and Ludwig [14], who showed the unimodular version of 2.45, by an
adaptation of the proof by Amrein and Berthier [5]. The only contribution of
the author is realizing that with minor adjustments the proof goes through in
the general case as well. First a small lemma is needed. Recall for this lemma
that the connected component of a locally compact group is by definition
the connected component of the unit element. It is a closed subgroup.

Lemma 2.44. Let G be a locally compact group with noncompact connected
component. Let V ⊂ W be two measurable subsets of G such that 0 �=
|V |, |W | < ∞. Then, whenever |V | > ε > 0, there exists x ∈ G such that

|V | − 2ε < |xV ∩ W | < |V | − ε . (2.32)

Proof. The function φ : x �→ |xV ∩ W | = 〈111W , λG(x)111V 〉 vanishes at infin-
ity, being a matrix coefficient associated to two L2-functions (confer Propo-
sition 2.5). Hence, if G0 is the connected component of G, φ(G0) ⊂ R

+ is a
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connected set, and since G0 is noncompact, the closure of φ(G0) contains 0.
On the other hand, φ(e) = |V |, hence φ(G) contains the half-open interval
]0, |V |]. Hence there exists x ∈ G0 such that |V | − 2ε < φ(x) < |V | − ε, which
is (2.32).

Theorem 2.45. Let G be a locally compact group with noncompact connected
component. Let f ∈ L2(G) and suppose that there exists S ∈ L2(G) such that
f = f ∗ S and S∗ ∈ L2(G). If f is supported in a set of finite Haar measure,
then f = 0.

In particular, if η ∈ Hπ is admissible for the representation π, and Vηϕ is
supported in a set of finite Haar measure, for some ϕ ∈ Hπ, then ϕ = 0.

Proof. Suppose that f �= 0 fulfills f = f ∗ S, and in addition C = f−1(C \
{0}) has finite Haar measure. We pick x0 = e, and apply the last lemma to
recursively pick x1, x2, . . . ∈ G satisfying

|C| − 1
2k−1

< |xkC ∩ Ck−1| < |C| − 1
2k

, k ∈ N, (2.33)

where Ck−1 =
⋃k−1

i=0 xiC ⊃ C. Then, if we define C∞ =
⋃

i∈N
Ci, we find that

|C∞| < ∞. Indeed, by (2.33), we have

|Ck+1| = |Ck ∪ xk+1C| = |Ck| + |xk+1C \ Ck|

= |Ck| + |xk+1C| − |Ck+1 ∩ xkCk| ≤ |Ck| +
1
2k

,

which entails the desired finiteness.
Now define ϕ = 111C∞ , and consider the operator K : g �→ ϕ·(g∗S). Writing

K(g)(x) = ϕ(x)
∫

G

g(y)S(y−1x)dy =
∫

G

g(y)ϕ(x)S(y−1x)dy

shows that K is an integral operator with kernel (x, y) �→ ϕ(x)S(y−1x). Since
∫

G

∫
G

|ϕ(x)S(y−1x)|2dydx = µG(C∞)‖S∗‖22 < ∞ ,

K is a Hilbert-Schmidt operator [101, VI.23], hence compact.
On the other hand, (λG(xk)f)∗S = λG(xk)f and supp(λG(xk)f) = xkC ⊂

C∞ show that λG(xk)f is an eigenvector of K for the eigenvalue 1. In addition,
∣∣∣∣∣supp(λG(xk)f) \

k−1⋃
i=0

supp(λG(xi)f)

∣∣∣∣∣ > 0

by the lower inequality of (2.33), hence the λG(xk)f are linearly independent.
But this means that the eigenspace of K for the eigenvalue 1 is infinite-
dimensional, which contradicts the compactness.
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The condition concerning the connected component is clearly necessary:
If G is a compact group, the supports of the wavelet transforms are trivially
of finite measure, yet there are many nontrivial convolution idempotents in
L2(G), arising for instance from irreducible representations.

Using Theorem 2.45 and Proposition 2.40, we can formulate the following
sharpening of Theorem 2.42:

Corollary 2.46. Let G be a locally compact unimodular group with noncom-
pact connected component. Suppose that H ⊂ L2(G) is closed and leftinvari-
ant. If H contains a nonzero function whose support has finite Haar measure,
there is no admissible vector for H.

This concludes the discussion of the relations between continuous wavelet
transforms and λG. Let us summarize the main results:

• A necessary condition for π to have admissible vectors is that π < λG. For
nondiscrete unimodular groups, it is not sufficient.

• Embedding π into λG and making suitable identifications, we may assume
that Hπ = L2(G) ∗ S, with S a selfadjoint convolution idempotent.

• Admissible vectors in Hπ are those η for which f �→ f ∗ η∗ defines an
isometry on Hπ . For Hπ = L2(G) ∗ S, these vectors are characterized by
η∗ ∗ η = S.

Therefore, in order to give a complete classification of representations with
admissible vectors, we are faced with the following list of tasks:

T1 Give a concrete description of the closed, leftinvariant subspaces of
L2(G). In terms of the commuting algebra: Characterize the projections
in VNr(G).

T2 Given a leftinvariant subspace H, give admissibility criteria, i.e. cri-
teria for a right convolution operators g �→ g ∗ f∗, with f ∈ H, to be
isometric.

T3 Characterize the subspaces H for which the admissibility conditions can
be fulfilled. Equivalently, characterize the right convolution idempotents
S.

T4 Given a concrete representation π, decide whether π < λG; if yes, make
the criteria for T1 - T3 explicit.

Remark 2.47. Item T4 accounts for the fact that the discussion of the problem
in L2(G), while it makes perfect sense from a representation-theoretic point
of view, limits the scope of the characterizations for concrete cases, where the
realization of the representation is usually not given by left action on some
suitable subspace of L2(G). Indeed, in the case of the original wavelets arising
from the ax + b-group, the focus of interest is on the action of that group
on the real line by affine transformations, and the corresponding quasiregu-
lar representation. First finding an appropriate embedding into L2(G) hence
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turns out to be a serious obstacle which must be overcome before the results
presented here can be applied. However, for type I groups direct integral de-
compositions provide a systematic way of translating questions of containment
of representations to the problem of absolute continuity of measures on the
dual, and Chapter 5 contains a large class of examples to which this scheme
is applicable.

2.6 Discretized Transforms and Sampling

In this section we want to embed the discretization problem into the L2-
setting, in a way which is complementary to the treatment of continuous
transforms. In effect, we will only be able to do this in a satisfactory manner
for unimodular groups.

Definition 2.48. A family (ηx)x∈X of vectors in a Hilbert space H is called
a frame if the associated coefficient operator is a topological embedding into
�2(X), i.e., if there exist constants 0 < A ≤ B (called frame constants)
such that

A
∑
x∈X

|〈φ, ηx〉|2 ≤ ‖φ‖2 ≤ B
∑
x∈X

|〈φ, ηx〉|2 .

A frame is tight if A = B, and normalized tight if A = B = 1.

In the terminology established in Section 1.1., a normalized tight frame is
an admissible coherent state system based on a discrete space X with counting
measure. We next formalize the notion of discretization.

Definition 2.49. Let π be a representation and η ∈ Hπ an admissible vector.
Given a discrete subset Γ ⊂ G, the associated discretization of Vη is the
coefficient operator Vη,Γ : Hπ → �2(Γ ) associated to the coherent state system
(π(Γ )η).

Remark 2.50. (1) By 2.11 a discretization of Vη gives rise to the discrete re-
construction formula

f =
1
cη

∑
γ∈Γ

Vηf(γ) π(γ)η ,

which may be viewed as a Riemann sum version of the continuous reconstruc-
tion formula (2.10).
(2) Not all frames of the form π(Γ )η arise as discretizations of continuous
transforms, i.e., η need not be admissible. For instance, there exist frames
associated to representations which are only square-integrable on a suitable
quotient of the group [9]; these representations do not even possess admissible
vectors in the sense discussed here.

On the other hand, the admissibility of functions giving rise to wavelet
frames has been established in various settings, e.g., [33, 48, 8], which seems
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to indicate that under certain topological conditions on the sampling set there
is a strong connection between discrete and continuous transforms. See also
Proposition 2.60 for the case that the sampling set is a lattice.
(3) We deal with discretization in a rather restrictive way, since only isometries
are admitted. By now there exists extensive literature concerning the construc-
tion of wavelet frames and related constructions such as Gabor frames, see the
monograph [28] and the references therein. We have refrained from discussing
the discretization problem in full depth, since our focus is on Plancherel theory
and its possible uses in connection with discretization.

The same remark applies to the structure of the sampling set: As the
example of multiresolution ONB’s of L2(R) shows, the sampling set need not
be a subgroup, i.e. it is not required to be regular. However, we will mostly
concentrate on regular sampling, i.e., the sampling set will be a subgroup.
It is obvious that the scope of purely group-theoretic techniques for dealing
with irregular sampling will be limited, although examples like multiresolution
ONB’s are intriguing. A possible approach to obtain more general group-
theoretic results, even in the irregular sampling case, could consist in adapting
the techniques developed in [43] for certain discrete series representations (so-
called integrable representations) to a more general setting.

Clearly discretization is closely connected to sampling the continuous
transform. Hence the following notion arises quite naturally:

Definition 2.51. Let G be a locally compact group, Γ ⊂ G. Let H ⊂ L2(G)
be a leftinvariant closed subspace of L2(G) consisting of continuous functions.
We call H a sampling space (with respect to Γ ) if it has the following
two properties:

(S1) There exists a constant cH > 0, such that for all f ∈ H,
∑
γ∈Γ

|f(γ)|2 = cH‖f‖22 .

In other words, the restriction mapping RΓ : H � f �→ (f |Γ ) ∈ �2(Γ ) is a
scalar multiple of an isometry.

(S2) There exists S ∈ H such that every f ∈ H has the expansion

f(x) =
∑
γ∈Γ

f(γ)S(γ−1x) , (2.34)

with convergence both in L2 and uniformly.

The function S from condition (S2) is called sinc-type function. Further-
more, we say that a sampling space has the interpolation property if RΓ

maps onto all of �2(Γ ), i.e. any element in �2(Γ ) can be interpolated by a
function in H.
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It will become apparent below that the Heisenberg group allows a variety
of sampling spaces associated to lattices, but none that has the interpolation
property.

The definition is modelled after the following, prominent example:

Example 2.52 (Whittaker, Shannon, Kotel’nikov). Let G = R, Γ = Z

and
H = {f ∈ L2(R) : supp(f̂) ⊂ [−0.5, 0.5]} .

Then H is a sampling subspace with the interpolation property, with associ-
ated sinc-type function

S(x) = sinc(x) =
sin(πx)

πx
.

A short proof of this fact, which uses the notions developed here, can be found
in Remark 2.55 (1) below.

Our further discussion requires some basic and widely known facts about
tight frames.

Proposition 2.53. Let (ηi)i∈I ⊂ H be a tight frame with frame constant c.

(a) If H′ ⊂ H is a closed subspace and P : H → H′ is the projection onto H′,
then (Pηi)i∈I is a tight frame of H′ with frame constant c.

(b) Suppose that c = 1. Then (ηi)i∈I is an ONB iff ‖ηi‖ = 1 for all i ∈ I.
(c) If ‖ηi‖ = ‖ηj‖, for all i, j ∈ I, then ‖ηi‖2 ≤ c.
(d) (ηi)i∈I is an orthonormal basis iff c = 1 and the coefficient operator is

onto.

Proof. Part (a) follows from the fact that on H′ the coefficient operator asso-
ciated to (Pηi)i∈I coincides with the coefficient operator associated to (ηi)i∈I .
The “only-if”-part of (b) is clear. The “if”-part follows from

1 = ‖ηi‖2 =
∑
i∈I

|〈ηi, ηj〉|2 = 1 +
∑
i�=j

|〈ηi, ηj〉|2 ,

whence 〈ηi, ηj〉 vanishes for i �= j. Part (c) follows from a similar argument.
The “only if” part of (d) is obvious. For the converse let δi ∈ �2(I) be the
Kronecker-delta at i, and let T : H → �2(I) denote the coefficient operator.
Then 〈T ∗δi, ϕ〉 = 〈δi, Tϕ〉 = 〈ηi, ϕ〉 for all ϕ ∈ H implies T ∗δi = ηi, or
Tηi = δi (T is by assumption unitary), which is the desired orthonormality
relation.

The following proposition notes an elementary connection between sam-
pling and discretization.

Proposition 2.54. Let η ∈ Hπ be admissible, and such that π(Γ )η a tight
frame with frame constant cη. Then H = Vη(Hπ) is a sampling space, and
S = 1

cη
Vηη is the associated sinc-type function for H.
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Proof. Clearly Vη(Hπ) consists of continuous functions. Using the isometry
property of Vη together with the tight frame property of π(Γ )η, we obtain for
all f = Vηφ ∈ H

f = Vηφ = Vη


 1

cη

∑
γ∈Γ

〈φ, π(γ)η〉π(γ)η




=
∑
γ∈Γ

1
cη

Vηφ(γ)Vη(π(γ)η) =
∑
γ∈Γ

f(γ)S(γ−1·) ,

with convergence in ‖ · ‖2. Uniform convergence follows from this by Proposi-
tion 2.39, since Vη(Hπ) = L2(G) ∗ Vηη.

Remark 2.55. (1) The original sampling theorem in 2.52 can be seen to fit into
this setting. If we pick η to be the sinc-function, we find that Vη : H → L2(R) is
just the inclusion map, hence η is admissible. Moreover, the Fourier transform
of (λR(n)η)n∈Z

yields precisely the Fourier basis of L2([−1/2, 1/2]). Hence
Proposition 2.54 applies.
(2) The proposition shows that various results on the relation between discrete
wavelet or Weyl-Heisenberg systems and continuous ones give rise to sampling
theorems: For the wavelet case, the underlying group is the ax + b-group. A
result by Daubechies [33] ensures that every wavelet giving rise to a tight frame
is in fact an admissible vector (up to normalization), hence we are precisely in
the setting of the proposition. Similarly for discrete Weyl-Heisenberg system,
where the underlying group is the reduced Heisenberg group we encountered in
Example 2.27. Here admissibility of the window function is trivial. Again the
expansion coefficients are sampled values of the windowed Fourier transform,
which is the underlying continuous wavelet transform.

The following theorem serves various purposes. First of all it shows that,
at least for a unimodular groups, the definition of a sampling space is redun-
dant: Property (S2) follows from (S1). Moreover it shows that every sampling
space can be obtained from the construction in Proposition 2.54, hence the
construction of sampling subspaces and the discretization problem are (in a
somewhat abstract sense) equivalent.

Theorem 2.56. Assume that G is unimodular. Let H ⊂ L2(G) be a leftin-
variant closed space consisting of continuous functions, and assume that it has
property (S1). Then H is a sampling subspace. More precisely, there exists a
unique selfadjoint convolution idempotent S, such that 1

cH
S is the associated

sinc-type function, and in addition H = L2(G) ∗ S. In particular,

∀f ∈ H , ∀γ ∈ Γ : f(γ) = 〈f, λG(γ)S〉 ,

and thus λG(Γ )S is a tight frame for H. H has arbitrary interpolation iff
λG(Γ ) 1√

cH
S is an ONB of H.
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Proof. Define Sγ = R∗
Γ (δγ), where δγ ∈ �2(Γ ) is the Kronecker delta at γ.

Then 1
cη

R∗
Γ RΓ = IdH shows that

f =
∑
γ∈Γ

f(γ)
1
cH

Sγ , (2.35)

with convergence in the norm. The orthogonal projection P : �2(Γ ) → RΓ (H)
is given by P = 1

cH
RΓ R∗

Γ . Moreover, we compute

f(γ) = 〈RΓ f, δγ〉 = 〈f, R∗
Γ δγ〉 = 〈f, Sγ〉 . (2.36)

Next use Zorn’s lemma to pick a maximal family (Hi)i∈I of nontrivial
pairwise orthogonal closed subspaces of the form Hi = L2(G) ∗ Si, where the
Si are selfadjoint convolution idempotents in L2(G). Then Proposition 2.41
implies that H =

⊕
i∈I Hi; this is the only place where we need that G is

unimodular. Since right convolution with Si is the orthogonal projection onto
Hi, equation (2.36) implies for all f ∈ Hi

〈f, Sγ ∗ Si〉 = 〈f ∗ Si, Sγ〉 = 〈f, Sγ〉 = f(γ) = 〈f, λG(γ)Si〉 .

Here the first equality used 2.19(d) and Si = S∗
i , and the second one used

f = f ∗ Si. As a consequence, Sγ ∗ Si = λG(γ)Si. For all γ ∈ Γ ,

Sγ =
∑
i∈I

Sγ ∗ Si =
∑
i∈I

λG(γ)Si , (2.37)

with unconditionally converging sums. Since λG(γ) is unitary, we can thus
define

S =
∑
i∈I

Si

and conclude from (2.37) that

Sγ = λ(γ)S .

Moreover, Si = S∗
i for all i ∈ I implies S = S∗. Finally, for all f ∈ H,

(f ∗ S∗)(x) = 〈f, λG(x)S〉 = 〈f,
∑
i∈I

λG(x)Si〉 =

(∑
i∈I

f ∗ Si

)
(x) = f(x) .

Hence H = L2(G) ∗ S, and uniqueness of S was noted in Proposition 2.38.
Now (2.35) and (2.37) shows that for 1

cH S to be the associated sinc-type
function, only the uniform convergence of the sampling expansion remains to
be shown, which follows from the normconvergence by Proposition 2.39. The
statement concerning the tight frame property of λG(Γ )S is now obvious. The
last statement follows from Proposition 2.53 (d).
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We next collect some additional observations which concerning regular
sampling.

Definition 2.57. A discrete subgroup Γ < G is called a lattice if the quotient
G/Γ carries a finite invariant measure. If a lattice exists, G is unimodular.
If A ⊂ G is any Borel transversal mod Γ , which exists by 3.4, we let

covol(Γ ) = |A| ,

which is independent of the choice of A.

The well-definedness of covol(Γ ) is immediate from Weil’s integral formula
(2.2). The existence of a lattice implies that G is unimodular.

Proposition 2.58. Let Γ < G, and suppose that there exists a frame of the
form π(Γ )ϕ, with ϕ ∈ Hπ. Then there exist η ∈ Hπ such that π(Γ )η is a tight
frame.

Proof. First note that up to normalization the tight frame property is precisely
admissibility for the restriction of π to Γ . Hence the statement is immediate
from 2.16 (b).

Proposition 2.59. Let G be unimodular and Γ < G a discrete subgroup .
Assume that H ⊂ L2(G) is a sampling subspace for Γ . Then Γ is a lattice,
with covol(Γ ) = 1

cH
.

Proof. If f ∈ H is any nonzero vector, and A is any measurable transversal,
we compute

‖f‖2 =
∫

A

∑
γ∈Γ

|f(xγ)|2dµG(x) =
∫

A

cH‖λG(x−1)f‖2dµG(x)

= ‖f‖2cH covol(Γ ) .

The following general observation was pointed out to the author by K.
Gröchenig:

Proposition 2.60. Let Γ < G be a lattice and assume that π(Γ )η is a nor-
malized tight frame. Then 1

covol(Γ )η is admissible, i.e., the frame is a dis-
cretization of a continuous wavelet transform.

Proof. For arbitrary φ ∈ Hπ and any measurable transversal A mod Γ

‖Vηφ‖22 =
∫

A

∑
γ∈Γ

|〈φ, π(xγ)η〉|2dx

=
∫

A

∑
γ∈Γ

|〈π(x)∗φ, π(γ)η〉|2dx

=
∫

A

‖λG(x−1)φ‖2dx

= |A|‖φ‖2 .
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The next proposition gives a representation-theoretic criterion for sampling
spaces with the interpolation property.

Proposition 2.61. Let Γ < G be a lattice. There exists a sampling space
H ⊂ L2(G) with interpolation property with respect to Γ iff there exists a
representation π of G such that π|Γ 
 λΓ .

Proof. For the “only-if” part pick π = λG|H. For the “if”-part, if T : H →
�2(Γ ) is a unitary equivalence, then η = T−1(δ0) is such that π(Γ )η is an
ONB of H. Now the previous proposition implies that Vη : Hπ → L2(G) is an
isometric embedding, and H = Vη(Hπ) has the interpolation property.

At least for unimodular groups, Theorem 2.56 implies that the discretiza-
tion problem fits quite well into the framework developed for the continuous
transforms. In particular the construction of sampling spaces and the dis-
cretization of continuous transforms are equivalent problems. We thus find
one more task for our list:

T5 Characterize those convolution idempotents S ∈ L2(G) such that in
addition λG(Γ )S is a tight frame of H = L2(G)∗S. For the interpolation
property, decide which of these frames are in fact ONB’s.

2.7 The Toy Example

In this section, we solve T1 through T5 for the group G = R. This example
will provide orientation for the further development, since in this setting the
solutions turn out to be fairly simple exercises in real Fourier analysis; maybe
with the exception of T4, which requires more sophisticated arguments.

As we saw in Section 2.3 , every representation of interest can be realized on
some translationinvariant subspace on L2(R). Moreover, in this setting wavelet
transforms are convolution operators, hence it is quite natural to expect that
the convolution theorem plays a role. Usually the convolution theorem is given
on L1, however for our purposes the following L2-version will be more useful:

Theorem 2.62. Let f, g ∈ L2(R). Then f ∗ g∗ ∈ L2(R) iff f̂ ĝ ∈ L2(R̂). In
that case, (f ∗ g∗)∧ = f̂ ĝ.

Proof. The computation

(f ∗ g∗)(x) = 〈f, λR(x)g〉
= 〈f̂ , e−2πix·ĝ〉

=
∫
R

f̂(ω)ĝ(ω)e2πixωdx

shows that the convolution theorem boils down to the ”extended Plancherel
formula” (2.22) proved in Example 2.28.
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Solution to T1

Given a measurable subset U ⊂ R̂, define

HU = {f ∈ L2(R) : supp(f̂) ⊂ U} ,

where as usual inclusion is understood up to sets of measure zero. Then it is
straightforward to show that HU is a closed, translationinvariant subspace of
L2(R). The following theorem, which is essentially [104, 9.16], shows that this
construction of translationinvariant subspaces is exhaustive.

Theorem 2.63. The mapping

{U ⊂ R̂ measurable }/ nullsets −→ {H ⊂ L2(G) closed, leftinvariant} ,

U �→ HU

is a bijection.

Solution to T2

Theorem 2.64. Let f ∈ HU , for some measurable U ⊂ R̂.

f is admissible ⇐⇒ |f̂ | = 1 a.e. on U , (2.38)

f is a bounded vector ⇐⇒ f̂ ∈ L∞(U) , (2.39)

f is cyclic ⇐⇒ f̂ �= 0 (almost everywhere on U) . (2.40)

Proof. Given any f ∈ L2(R), denote by Mf̂ the multiplication operator with f̂ ,

with the natural domain {g ∈ L2(R) : f̂g ∈ L2(R)}. Then the L2-convolution
theorem implies that Vf and Mf̂ are conjugate under the Plancherel trans-
form, including the domains. Now the equivalences follow immediately.

Solution to T3

Theorem 2.65. HU ⊂ L2(R) has admissible vectors iff |U | < ∞. S ∈ L2(R)
is a convolution idempotent iff S = SU := 111∨U , for U ⊂ R̂ with |U | < ∞.

Proof. Any admissible vector f ∈ HU has to fulfill |f̂ | = 1 on U , and of
course f̂ ∈ L2(U). Thus follows the first condition. The characterization of
convolution idempotents is immediate from the convolution theorem and f̂∗ =
f̂ .

Remark 2.66. The arguments for T1 through T3 generalize directly to locally
compact abelian groups G. Simply replace R̂ by the character group Ĝ and
Lebesgue measure by Haar measure on that group. This applies in particular
to the cases G = T, Z.
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Support Properties and the Qualitative Uncertainty Principle

Combining Theorems 2.65 and 2.45 yields the qualitative uncertainty principle
over the reals:

Corollary 2.67. If f ∈ L2(R) fulfills |supp(f)| < ∞ and |supp(f̂)| < ∞,
then f = 0.

Proof. |supp(f̂)| < ∞ implies f = f ∗ S = VSf for a suitable convolution
idempotent in L2(R). Hence 2.45 applies.

Solution to T4

The arguments in this subsection were developed together with Keith Taylor.
Suppose that (π,Hπ) is an arbitrary representation of R. A detailed descrip-
tion of such representation is obtainable by a combination of Stone’s theorem
and the spectral theorem for (possibly unbounded) operators. More precisely,
Stone’s theorem [101, VIII.8] implies the existence of an infinitesimal gener-
ator, i.e., a densely defined selfadjoint operator A on Hπ, such that

π(t) = e−2πitA .

In order to understand this formula, we need to recall the spectral theorem
[101, Chapter VIII]. Let Π denote the spectral measure of A. Then Π is
a map from the Borel σ-algebra of R to the set of orthogonal projections
on H mapping disjoint sets to projections with orthogonal ranges, satisfying
Π(A ∩ B) = Π(A) ◦ Π(B) as well as Π(R) = IdHπ . Π assigns to each pair
of vectors x, y ∈ dom(A) a complex measure Πx,y on R by letting Πx,y(E) =
〈Π(E)x, y〉. The spectral measure describes A via

〈Ax, y〉 =
∫ ⊕

R

sdΠx,y(s) .

Th shorthand for this formula we use

A =
∫
R

sdΠ(s) .

The spectral theorem can be viewed as a diagonalization of the selfadjoint op-
erator. In particular, exponentiating amounts to exponentiating the diagonal
elements, hence

〈e−2πitAx, y〉 =
∫ ⊕

R

e−2πistdΠx,y(s) ,

defines the unitary operator e−2πitA.
We want to decide in terms of the spectral measure whether admissible

vectors exist. Recall that admissible vectors are in particular cyclic. The fol-
lowing lemma translates cyclicity into a property of the spectral measure, for
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which the construction of the representation π takes a somewhat more con-
crete form. The result is well-known, see for instance [95, Chapter I, Proposi-
tion 7.3]. For the proof of the Lemma we need one more ingredient, namely the
Fourier-Stieltjes transform on R. For this purpose let M(R) denote the space
of complex (finite) measures on R. For every µ ∈ M(R), the exponentials are
absolutely integrable with respect to |µ|, hence the Fourier-Stieltjes-transform
µ̂ : R → C of µ, given by

µ̂(ω) =
∫
R

e−2πiωxdµ(x)

is well-defined. The crucial property of the Fourier-Stieltjes transform is that
it is injective on M(R) [45, 4.17]. As a consequence, to be used repeatedly in
the next proof, we conclude for all positive ν ∈ M(R) that the exponentials
are total in L2(R, ν): If 0 �= f ∈ L2(R, ν) ⊂ L1(R, ν), then fν ∈ M(R), and
thus the Fourier-Stieltjes transform of fν is nonzero. But the Fourier-Stieltjes
transform of fν is just the family of scalar products of f with the exponentials,
taken in L2(R, ν).

Lemma 2.68. The following are equivalent:

(i) π is cyclic.
(ii) There exists a positive, finite Borel-measure µ on R and a unitary map

T : Hπ → L2(R, µ) such that, for all B ∈ B(R), we have

Π(B) = T−1PBT , (2.41)

where PB : L2(R, µ) → L2(R, µ) denotes multiplication with 111B, as well
as

π(t) = T−1MtT , (2.42)

where Mt is multiplication with e−2πit·.

The measure µ is unique up to equivalence.

Proof. “(i) ⇒ (ii)”: Let η be a cyclic vector, and define µ = Πη,η. Since µ is
finite, all the characters e−2πit· are in L2(R, µ), and the equality

〈π(t)η, π(s)η〉 =
∫
R

e−2πi(t−s)ωdΠη,η = 〈e−2πit·, e−2πis·〉L2(R,µ)

implies that the mapping π(t)η �→ e−2πit· may be extended linearly to an
isometry T : Hπ → L2(R, µ); here we used that π(R)η spans a dense subspace
of Hπ. It is onto, since T (Hπ is closed and contains the exponentials, which
are total in L2(R, µ).
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For equation (2.41), we compute

〈TΠ(B)π(s)η, e−2πit·〉 = 〈Π(B)π(s)η, π(t)η〉

=
∫

B

e−2πi(s−t)λdΠη,η(λ)

=
∫
R

111B(λ)e−2πisλe−itλdµ(λ)

= 〈PBT (π(s)η), e−2πit·〉 ,

and thus TΠ(B) = PBT : The exponentials are total in L2(R, µ), and η is
cyclic. Equation (2.42) is immediate on π(R)η, and extends to all of H in the
same way.
“(ii) ⇒ (i)”: The totality of the exponentials in L2(R, µ) implies that the
constant function 1 is a cyclic vector with respect to the representation t �→
Mt. Hence η = T−1(1) is cyclic for π.

For the uniqueness result we observe that (2.41) clearly implies µ(B) = 0
iff Π(B) = 0.

Now we can characterize arbitrary representations with admissible vectors.
The argument is obtained by sharpening the proof of the lemma.

Theorem 2.69. π has admissible vectors iff it is cyclic, and in addition the
real-valued measure µ associated to its spectral measure by the previous lemma
is absolutely continuous with respect to Lebesgue measure, with support in a
set of finite Lebesgue measure.

Proof. Suppose that η is an admissible vector for π. The proof consists essen-
tially in repeating the construction proving the previous lemma and seeing
that for admissible vectors η the measure µ is as desired. For this purpose we
calculate

Vηφ(t) = 〈φ, π(t)η〉
= 〈φ, e−2πitAη〉

=
∫
R

e2πitωdΠη,φ(ω) ,

which exhibits Vηφ as the Fourier-Stieltjes transform of the measure Πη,φ. On
the other hand, Vηφ is an L2-function, hence Πη,φ turns out to be absolutely
continuous with respect to Lebesgue-measure λ. We let

Tη(φ) =
dΠφ,η

dλ
. (2.43)

This sets up an isometry between H and some subspace of L2(R). Let us next
show that the projection onto T (H) is given by restriction to an appropriately
chosen subset Σ. For this purpose we compute Tη(Π(B)η), for an arbitrary
measurable subset B. On the one hand,
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〈Π(B)η, η〉 =
∫
R

dµΠ(B)η,η(λ) =
∫

B

dΠη,η(λ) =
∫

B

T (η)(λ)dλ .

On the other hand, the isometry property of Tη gives that

〈Π(B)η, η〉 = 〈Tη(Π(B)η), Tη(η)〉 =
∫
R

Tη(Π(B))(λ)Tη(η)(λ)dλ

=
∫

B

Tη(η)(λ)Tη(η)(λ)dλ .

Since this holds for all subsets B, we obtain that Tη(η)(λ) = Tη(η)(λ)Tη(η)(λ)
a.e., which entails Tη(η)(λ) ∈ {0, 1}. On the other hand, Tη(η) is square-
integrable, hence it is the characteristic function of a set Σ of finite Lebesgue
measure. To show that Tη(H) = L2(Σ, dx), we note that Tη(Π(B)η) = 111B ,
and the characteristic functions span a dense subspace of L2.

Replacing Π(B)η by µ(B)φ in the above argument gives Tη(Π(B)φ) =
111BTη(φ). Similarly we obtain Tη(π(t)φ) = e−2πit·Tη(φ), and we have shown
the “only-if”-direction.

For the other direction, we construct an admissible vector for the equiv-
alent representation acting on L2(Σ), by picking η = 111Σ. Then for every
φ ∈ L2(Σ) ⊂ L1(Σ)

Vηφ(t) =
∫

Σ

e2πitλφ(λ)dλ = φ̂(−t) ,

which immediately implies ‖Vηφ‖L2 = ‖φ‖.

Remark 2.70. Given a representation π with admissible vector, we have now
found two different ways to arrive at an equivalent representation π̂U acting
on L2(U, dx) ⊂ L2(R) for some measurable U ⊂ R by

(π̂(t)f) (ω) = e−2πitωf(ω) .

The first one consists in embedding Hπ in L2(G) via Vη, and then applying
Theorem 2.63 to see that π 
 π̂U for a suitable U .

A shortcut is described by the mapping Tη constructed in the proof of
2.69. In fact, it is not hard to see that we have the following commutative
diagram

Vη

Hπ −→ HU

Tη ↘ ↓ F
L2(U, dx)

.

Indeed, observing that Tη(ϕ) ∈ L2(Σ) ⊂ L1(Σ), we can apply the Fourier
inversion formula to (2.43), obtaining

T (ϕ)∨(s) =
∫
R

e2πistT (ϕ)(t)dt =
∫
R

e2πistdΠϕ,η(t) = 〈ϕ, e−2πisAη〉

= Vηϕ(s) .
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Note also that the admissibility condition obtained in 2.64 coincides with
the admissibility condition which is derived in the proof of Theorem 2.69.
This is owed to the fact that both are just the admissibility conditions for
the representation π̂U , translated to the respective settings by the associated
intertwining operators.

Solution to T5

Here we focus on regular sampling, i.e., Γ = αZ is assumed to be a lattice,
with α > 0. The following theorem can be seen as a refinement of Shannon’s
sampling theorem. It can be regarded as folklore. Similar results for arbitrary
locally compact groups were obtained for instance by Kluvánek [76].

Theorem 2.71. Let HU with associated idempotent S = 111∨U . The following
are equivalent:

(a) λR(Γ )S is a tight frame, i.e., HU is a sampling space. The constant cH
associated to HU is 1/α.

(a’) There exists f ∈ HU such that λR(Γ )f is a frame.
(a”) There exists f ∈ HU such that λR(Γ )f is total.
(b) |U ∩ 1

αk + U | = 0, for all 0 �= k ∈ Z

Regarding the interpolation property, we have the following equivalent condi-
tions:

(i) HU is a sampling space with interpolation property.
(ii) |U ∩ k

α + U | = 0, for all 0 �= k ∈ Z, and |U | = 1
α .

Proof. (a) ⇒ (a’) ⇒ (a”) is obvious. Now assume that (a”) holds. If λR(Γ )f
is total in HU then f is a cyclic vector for the translation action of λR on HU .
Hence f̂ �= 0 almost everywhere on U , by condition (2.40). Suppose that (b) is
violated, i.e., there exists A ⊂ U measurable with |A| > 0 and k

α +A ⊂ U , for
a suitable nonzero k. Possibly after passing to a smaller set A we may assume
that |f̂(ω + αk)| ≥ ε for some fixed ε > 0 and all ω ∈ A. Then letting

ĝ(ω) =

{
1 for ω ∈ A

− f̂(ω−k/α)

f̂(ω)
for ω ∈ k

α + A

defines an L2-function supported on A ∪ k
α + A satisfying

f̂(ω)ĝ(ω) = −f̂(ω +
k

α
)ĝ(ω +

k

α
)

on A. Given � ∈ Z, the 1/α-periodicity of exp(2πiα�·) then implies that

〈g, λR(α�)f〉 = 〈ĝ, e−2πiα�·f̂〉 = 0 .

Hence λR(αZ)f is not complete, which gives the desired contradiction.
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Now assume (b). Pick a Borel set V ⊃ U fulfilling (b) and such that in
addition, |B| = 1/α. In other words, V is a measurable transversal containing
U . Then the 1/α-periodicity of the exponentials and the fact that the expo-
nentials (suitably normalized) form an ONB of L2([0, 1/α]) implies that they
also form an ONB of L2(V ). Then the restriction of the exponentials to U are
the image of an ONB under a projection operator, i.e., still a normalized tight
frame with frame constant 1/α, by 2.53(a). Pulling this back to HU gives the
desired statement. Moreover, we have also shown (ii) ⇒ (i).

For (i) ⇒ (ii) we note that the first condition in (ii) follows by (a) ⇒ (b),
whereas the second one follows from the requirement that α1/2‖S‖2 = 1.

We close the section with the observation that not every continuous trans-
form can be regularly sampled to give a discrete transform.

Example 2.72. There exists a space HU which has admissible vectors but does
not admit frames of the form λR(αZ)f . For this purpose, pick U ⊂ R̂ open,
dense and of finite measure, say a union of suitably small open balls around
the rationals. Then there exist admissible vectors by Theorem 2.63, but since
for t ∈ R arbitrary U ∩ t+U is open and nonempty, condition (b) of Theorem
2.71 is always violated.
Question: Does there exist a discrete set Γ ⊂ R and η ∈ HU such that
λR(Γ )η is a frame?
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