Exponential Decay Parameters Associated with Excessive Measures

Mioara Buiculescu

Romanian Academy Institute of Mathematical Statistics and Applied Mathematics Calea 13 Septembrie nr.13 RO-76100 Bucharest, Romania e-mail: bmioara@csm.ro

Summary. Let X be a Markov process with semigroup (P_t) and m an excessive measure of X. With m we associate the spectral radius $\lambda_r^{(p)}(m)$ of (P_t) on $L^p(m)$ $(1 \le p \le \infty)$ and the exit parameter $\lambda_e^{\mathcal{C}}(m)$ defined for an m-nest $\mathcal{C} = (C_n)$ in terms of

 $p \leq \infty$) and the exit parameter $\lambda_e^{\mathcal{C}}(m)$ defined for an *m*-nest $\mathcal{C} = (C_n)$ in terms of the corresponding first exit times (τ_n) . We discuss the impact of these parameters as well as their connection with other parameters of interest for the process.

Mathematics subject classifications (2000): 60J25, 60J45.

Key words: Markov process, excessive measure, decay parameter.

1 Introduction

When X is a transient Markov process it is sometimes possible to associate with it a new process \widetilde{X} endowed with a conservative measure \widetilde{m} . Limit theorems obtained for \widetilde{X} relative to \widetilde{m} provide information on the long term behaviour of the initial process X. The process \widetilde{X} and the measure \widetilde{m} are obtained by means of a γ -subinvariant function and a γ -subinvariant measure (to be precisely defined in the sequel), whence the interest in the classes of γ -subinvariant functions and γ -subinvariant measures and the parameters associated with them.

In case of Harris irreducible processes this is a well established theory, sometimes called λ -theory (see [Ber97], [NN86], [TT79]). Related results for processes that are not necessarily irreducible are given in [Glo88] and [Str82].

The present paper is concerned with this kind of problems and they are considered in the context of the theory of excessive measures ([DMM92] and [Get90]). Unless otherwise mentioned the process X is assumed to be Borel right with state space (E, \mathcal{E}) , semigroup (P_t) , resolvent (U^q) and lifetime ζ .

M. Émery, M. Ledoux, and M. Yor (Eds.): LNM 1857, pp. 135–144, 2005.

For any $\gamma \geqslant 0$ we consider:

$$\mathbf{M}^{\gamma}(X) := \{ \eta : \sigma\text{-finite measure on } (E, \mathcal{E}) \text{ such that } \mathrm{e}^{\gamma t} \eta P_t \leqslant \eta, \, \forall \, t \geqslant 0 \},$$
$$\mathbf{F}^{\gamma}(X) := \{ f \in \mathcal{E}^* : f \geqslant 0 \text{ on } E \text{ such that } \mathrm{e}^{\gamma t} P_t f \leqslant f, \, \forall \, t \geqslant 0 \}.$$

An element of $\mathbf{M}^{\gamma}(X)$ (resp. $\mathbf{F}^{\gamma}(X)$) is called a γ -subinvariant mesure (resp. a γ -subinvariant function). They are called γ -invariant measures (resp. γ -invariant functions) when all the corresponding inequalities become equalities. Standard candidates as members of $\mathbf{F}^{\gamma}(X)$ are

$$\Phi^{\gamma} f(x) := \int_0^\infty e^{\gamma t} P_t f(x) dt, \qquad f \in \mathcal{E}^*, f \geqslant 0,$$

and as members of $\mathbf{M}^{\gamma}(X)$ the measures $\mu \Phi^{\gamma}$ provided they are σ -finite.

The following global parameters are of interest and were considered in various contexts ([Glo88], [NN86], [Str82], [TT79]):

$$\lambda_{\pi} := \sup\{\gamma \geqslant 0 : \mathbf{M}^{\gamma}(X) \neq \{0\}\};$$

$$\lambda_{\omega} := \sup\{\gamma \geqslant 0 : \exists f \in \mathbf{F}^{\gamma}(X), f > 0 \text{ on } E, f \text{ not identically } \infty\}.$$

When $\gamma = 0$ instead of $\mathbf{M}^{\gamma}(X)$ we write as usual $\operatorname{Exc}(X)$ and consider its well known important subclasses:

$$Pur(X) := \{ m \in Exc(X) : mP_t(h) \to 0 \text{ when } t \to \infty, \forall h > 0, m(h) < \infty \};$$

$$Inv(X) := \{ m \in Exc(X) : mP_t = m, \forall t \ge 0 \};$$

$$Con(X) := \{ m \in Exc(X) : m(Uh < \infty) = 0, \forall h > 0, m(h) < \infty \};$$

$$Dis(X) := \{ m \in Exc(X) : m(Uh = \infty) = 0, \forall h > 0, m(h) < \infty \}.$$

Whenever $m \in \operatorname{Exc}(X)$, each P_t , t > 0, and each qU^q , q > 0, may be thought as a contraction from $L^p(m)$ to $L^p(m)$ for $1 \leqslant p \leqslant \infty$; also, the semigroup (P_t) is strongly continuous on $L^p(m)$, $1 \leqslant p \leqslant \infty$ (these facts are discussed in a more general setting in [Get99]). As usual let $\lambda_r^{(p)}(m)$, the spectral radius of (P_t) on $L^p(m)$, $1 \leqslant p \leqslant \infty$, be defined as

$$\lambda_r^{(p)}(m) := \lim_{t \to \infty} \{-t^{-1} \ln \|P_t\|_{L^p(m)}\}.$$

The second section is devoted to the impact of $\lambda_r^{(p)}(m)$, $1 \leq p \leq \infty$, as decay parameters. First the connection of $\lambda_r^{(2)}(m)$ with λ_π is discussed. Then under certain restrictions on the process (imposed by the application of a very powerful result of Takeda [Tak00]) one gets that $\lambda_r^{(p)}(m)$ are independent of p and one identifies this common value with the decay parameter associated with X as irreducible process. The remaining part of section 2 is concerned exclusively with properties of $\lambda_r^{(1)}(m)$ having in view especially the connection with λ_π , λ_φ . An expression of $\lambda_r^{(1)}(m)$ in terms of the Kuznetsov measure Q_m associated with m is given. This allows to distinguish those measures m

for which $\lambda_r^{(1)}(m) > 0$ among the purely excessive ones. Finally, the underlying construction in the classical context of quasi-stationary distributions for irreducible processes is retrieved in the general case emphasizing the role of $\lambda_r^{(1)}(m)$.

Section 3 introduces the exit parameter associated with an m-nest, when m is a dissipative measure. These are similar to some parameters considered in [Str82] in a more specific context.

Notation. As is standard, we denote by \mathcal{E}^e the σ -algebra generated by excessive functions and for any $B \in \mathcal{E}^e$, $T_B := \inf\{t > 0 : X_t \in B\}$, $\tau_B := T_{E \setminus B}$, $P_B f(x) := P^x \{f(X_{T_B}); T_B < \infty\}$.

2 Spectral radius as decay parameter

We start by revealing the special role played by the spectral radius in case of some irreducible processes. Recall that the process X is said to be μ irreducible, with μ a σ -finite measure, if:

$$\mu\text{-}(\mathrm{I}) \qquad \qquad \mu(B) > 0 \implies \forall \, x \in E, \quad U^1(x,B) > 0.$$

The following theorem introduces the $decay\ parameter$ associated with the irreducible process X.

Theorem 1 ([TT79]). For any Markov process X satisfying μ -(I) there exist a μ -polar set Γ , an increasing sequence of sets $(B_n) \subseteq \mathcal{E}^e$ with $E = \bigcup_n B_n$ and a parameter $\lambda \in [0, \infty[$ such that:

- (i) For any $\gamma < \lambda$ we have $\Phi^{\gamma}(x, B_n) < \infty$, $\forall x \notin \Gamma$, $n \in \mathbb{N}$.
- (ii) For any $\gamma > \lambda$ we have $\Phi^{\gamma}(x, B) \equiv \infty$, $\forall B \in \mathcal{E}$, $\mu(B) > 0$.
- (iii) The process is either λ -transient, i.e. (i) holds for $\gamma = \lambda$, or it is λ -recurrent, i.e. (ii) holds for $\gamma = \lambda$.
- (iv) $\lambda = \lambda_{\pi} = \lambda_{\varphi}$.

We recall also that the whole theory of irreducible processes is based on the existence of a remarkable class of sets, namely:

$$\mathcal{L}(\mu) := \{ B \in \mathcal{E}^e : \mu(B) > 0 \text{ for which there exists a measure } \nu_B \neq 0$$
 such that $U^1(x, ...) \geqslant \nu_B(...), \forall x \in B \}.$

The impact of $\mathcal{L}(\mu)$ comes from the fact that whenever B is in $\mathcal{L}(\mu)$ and $\Phi^{\gamma}(x,B) = \infty$ for some $x \in E$, one has $\Phi^{\gamma}(x,A) = \infty$ for any $A \in \mathcal{E}$ such that $\mu(A) > 0$.

The next result is concerned with the connection between $\lambda_r^{(2)}(m)$ and λ_{π} .

Proposition 1. (i) For any excessive measure m we have $\lambda_r^{(2)}(m) \leqslant \lambda_{\pi}$.

(ii) Suppose that the state space is locally compact with countable base and that X is a Feller process, m-symmetric with respect to the Radon measure m. Suppose further that m-(I) holds and that the support of m has non-empty interior. Then $\lambda_r^{(2)}(m) = \lambda$.

Proof. (i) We shall actually show that given $h \in \mathcal{E}$ such that $0 < h \leq 1$ and $m(h) < \infty$, the parameter

$$\lambda(m;h) := \liminf_{t \to \infty} \left\{ -t^{-1} \ln \frac{(h, P_t h)_m}{\|h\|_{L^{(2)}(m)}} \right\}$$

satisfies $\lambda(m;h) \leqslant \lambda_{\pi}$. This will be enough to prove (i) since $\lambda_{r}^{(2)}(m) \leqslant \lambda(m;h)$. To this end consider $\gamma < \lambda(m;h)$, $\gamma' \in]\gamma, \lambda(m;h)[$ and let $t_{\gamma'}$ be such that $(h,P_{t}h)_{m} \leqslant e^{-\gamma't} \|h\|_{L^{(2)}(m)}, \forall t \geqslant t_{\gamma'}$. Then the measure $\nu_{\gamma}(g) := (\gamma' - \gamma) \int_{t}^{\infty} e^{t\gamma} m(hP_{t}g) dt$, $g \in \mathcal{E}$, $g \geqslant 0$, is in \mathbf{M}^{γ} .

(ii) By (i) and m-(I) we have $\lambda_r^{(2)}(m) \leqslant \lambda_\pi = \lambda$. We will next prove that for any $\gamma > \lambda_r^{(2)}(m)$ there exists a compact K such that m(K) > 0 and $\Phi^{\gamma}1_K \equiv \infty$. According to Proposition 6.3.8 (ii) in [MT96], whose hypotheses are the ones in (ii) but for the m-symmetry, any compact K such that m(K) > 0 is in $\mathcal{L}(m)$. This will be enough to ensure that $\gamma \geqslant \lambda$ and thus $\lambda \leqslant \lambda_r^{(2)}(m)$. Let $(E_z)_{z \in \mathbb{R}}$ be the resolution of the generator of $\{P_t; t > 0\}$ on $L^2(m)$ and let $\gamma' \in]\lambda_r^{(2)}(m), \gamma[$. There exists a function φ , continuous and with compact support such that $E_{-\gamma'}\varphi \neq E_{-\lambda_r^{(2)}(m)}\varphi$. Then φ may be written as $\varphi = \int_{-\gamma'}^{-\lambda_r^{(2)}(m)} \mathrm{d}E_z\varphi$ and

$$\left(|\varphi|, P_t |\varphi|\right)_m \geqslant \left(\varphi, P_t \varphi\right)_m = \int_{-\gamma'}^{-\lambda_r^{(2)}(m)} \mathrm{e}^{zt} \, \mathrm{d}(\varphi, E_z \varphi) \geqslant \mathrm{e}^{-\gamma' t} \left(\varphi, E_{-\lambda_r^{(2)}(m)} \varphi\right)_m.$$

Whence $(|\varphi|, \Phi^{\gamma}|\varphi|)_m = \infty$, which in turn implies $(1_{K_{\varphi}}, \Phi^{\gamma}1_{K_{\varphi}})_m = \infty$, K_{φ} being the compact support of φ .

By m-(I) we have only two possibilities: either $\Phi^{\gamma}1_{K_{\varphi}}$ is finite up to an m-polar set, or $\Phi^{\gamma}1_{K_{\varphi}} \equiv \infty$. Assuming the first possibility we get an M>0 such that $m(\Phi^{\gamma}1_{K_{\varphi}} \leqslant M)>0$ and therefore there exists a compact K such that $K\subseteq \{\Phi^{\gamma}1_{K_{\varphi}} \leqslant M\}$. This implies $m(1_K\Phi^{\gamma}1_{K_{\varphi}}) \leqslant Mm(K) < \infty$. On the other hand from $K_{\varphi} \in \mathcal{L}(m)$ and from the classical formula $\Phi^{\gamma}1_K = \sum_{n=1}^{\infty} (1+\gamma)^{n-1} U^{1(n)} 1_K$ we have $\Phi^{\gamma}1_K \geqslant \nu_{K_{\varphi}}(K)(1+\gamma)\Phi^{\gamma}1_{K_{\varphi}}$. Using this and m-symmetry we get

$$\left(1_K, \varPhi^\gamma 1_{K_\varphi}\right)_m = \left(1_{K_\varphi}, \varPhi^\gamma 1_K\right)_m \geqslant \nu_{K_\varphi}(K)(1+\gamma) \left(1_{K_\varphi}, \varPhi^\gamma 1_{K_\varphi}\right)_m = \infty.$$

The obtained contradiction rules out the possibility that $\Phi^{\gamma}1_{K_{\varphi}}$ is finite up to an m-polar set and thus $\Phi^{\gamma}1_{K_{\varphi}} \equiv \infty$, the property which was to be proved. \square

We now briefly discuss two other forms of irreducibility that will be involved in the sequel. We begin with

(I) for any finely open, non-empty set Γ we have $P_{\Gamma}1(x) > 0$, $\forall x \in E$.

Condition (I) amounts to the property that all states communicate in the sense of [ADR66]. Immediate consequences of it are: the fact that all excessive measures are equivalent and the property that any $\xi \in \text{Exc}(X)$ satisfies ξ -(I).

The next condition of irreducibility is the one imposed in [Tak00]. Let m be a σ -finite measure on (E, \mathcal{E}) and $\mathcal{I}(m) := \{A \in \mathcal{E} : 1_A P_t f = P_t 1_A f \text{ a.e.-} m$ for any bounded $f \in L^2(m)\}$. The condition is the following:

$$m$$
-(I)' for any $A \in \mathcal{I}(m)$ we have either $m(A) = 0$ or $m(E \setminus A) = 0$.

In what follows we consider conditions under which it is possible to relate the three forms of irreducibility.

Lemma 1. Let m belong to Exc(X).

- (i) If m is Radon and m-(I) holds, then m-(I)' also holds.
- (ii) If the process is m-symmetric, if m is a reference measure and if m-(I)' holds, then (I) also holds.

Proof. To get (i) let $A \in \mathcal{I}(m)$ be such that m(A) > 0. For any compact $K \subseteq E \backslash A$ we have $m(1_A U^1 1_K) = 0$, implying by m-(I) that m(K) = 0, whence $m(E \backslash A) = 0$.

For (ii) let us note that by m-symmetry any absorbing set A is in $\mathcal{I}(m)$ and then apply this to the set $A=\{U^11_{\varGamma}=0\}$ with \varGamma finely open, non-empty. Taking into account that m is a reference measure, the possibility that $m(E\backslash A)=0$ is ruled out and from m(A)=0 we get $P_{\varGamma}1(x)>0, \, \forall \, x\in E.$ \square

We now turn to the very special case, indicated in the introduction, when the *p*-independence of $\lambda_r^{(p)}(m)$, $1 \leq p \leq \infty$, occurs.

Theorem 2. Assume that the state space (E, \mathcal{E}) is a locally compact metric space with countable base and that X is an m-symmetric Markov process, with m a Radon measure. Assume also that the following conditions are satisfied:

- (i) m-(I)' holds.
- (ii) For each t > 0 and $x \in E$, $P_t(x, .) \ll m$.
- (iii) For any t > 0, $P_t f \in \mathcal{C}_0(E)$ whenever $f \in \mathcal{C}_0(E)$, where $\mathcal{C}_0(E)$ denotes the space of all continuous functions vanishing at infinity.
- (iv) $U^1 1 \in C_0(E)$.

Then $\lambda_r^{(p)}(m)$, $1 \leq p \leq \infty$, is independent of $p \in [1,\infty]$ and the common value $\lambda_r(m)$ coincides with the decay parameter λ associated with X as irreducible process.

Proof. The imposed conditions are precisely those in Theorem 2.3 in [Tak00] which provides the p-independence of $\lambda_r^{(p)}(m)$, $1 \leq p \leq \infty$.

The process is subject to (I) by Lemma 1 (ii) and the equality $\lambda_r(m) = \lambda$ follows from Proposition 1 (ii), since under the present assumptions the support of m is E.

Remarks. 1. The conditions in Theorem 2 are met by the process (X, τ_D) equal to the d-dimensional Brownian motion killed at τ_D , where D is a regular domain satisfying $m(D) < \infty$. In this remarkable particular case we actually have a much stronger property, namely the corresponding transition operator $P_t^D, t > 0$, is a compact operator and has the same eigenvalues $\{\exp(-\lambda_k); k = 1, 2, ...\}$ with $0 < \lambda_1 \le \lambda_2 \le \cdots < \infty$, in all appropriate spaces $L^{(p)}(m_D), 1 \le p < \infty$, and $C_0(D)$ ([CZ95], Theorem 2.7). The decay parameter λ coincides in this case with λ_1 .

- 2. In [Sat85], Sato studies the impact of λ_r^{∞} as decay parameter assuming (iii), a condition weaker than (v) in Theorem 2 and the following condition of irreducibility: for any open set $G \in \mathcal{E}$ one has $P_G 1(x) > 0$, $\forall x \in E$. Symmetry and absolute continuity are not assumed.
 - 3. In [Str82], Stroock proposed for a Radon measure m

$$\lambda_{\sigma}(m) := \sup_{\substack{\varphi \in C_c(E) \\ \varphi \geqslant 0}} \left\{ \limsup_{t \to \infty} \left\{ t^{-1} \ln \left(\varphi, P_t \varphi \right)_m \right\} \right\}$$

as decay parameter and shows that—under his conditions and m-symmetry—it coincides with the right end point of the spectrum of the generator on $L^2(m)$ (actually $-\lambda_r^{(2)}(m)$ in that case). Here $C_c(E)$ denotes the space of all real valued continuous functions on E with compact support.

In what follows we turn to specific properties of $\lambda_r^{(1)}(m), m \in \text{Exc}(X)$. Let Q_m and Y be the Kuznetsov measure and process associated with m.

Let Q_m and Y be the Kuznetsov measure and process associated with m. Let also α be the birthtime of Y and $\mathcal{H}(m) := \{h \in \mathcal{E} : h \geqslant 0, 0 < m(h) < \infty\}$.

Proposition 2. For any $m \in \text{Exc}(X)$ we have

$$\lambda_r^{(1)}(m) = \sup \Big\{ \gamma \geqslant 0 : \lim_{t \to \infty} e^{\gamma t} Q_m \big(h(Y_0); \, \alpha < -t \big) = 0, \, \forall \, h \in \mathcal{H}(m) \Big\}.$$

If
$$\lambda_r^{(1)}(m) > 0$$
, then $m \in Pur(X)$.

Proof. First we note that by the Markov property of Y under Q_m and the stationarity of Q_m we have for any $f \in \mathcal{E}$, $f \geqslant 0$

$$m(P_t f) = Q_m \left(P^{Y_0} \left(f(X_t) \right); \alpha < 0 \right) = Q_m \left(f(Y_t); \alpha < 0 \right)$$

= $Q_m \left(f(Y_0); \alpha < -t \right).$

Recall now the following well known property of the spectral radius: for any $a < \lambda_r^{(1)}(m)$ there exists $M_a \ge 1$ such that $e^{at} ||P_t||_{L^1(m)} \le M_a$. Then

put $\widetilde{\lambda}(m) := \sup\{\gamma \geqslant 0 : \lim_{t \to \infty} \mathrm{e}^{\gamma t} m P_t(h) = 0, \forall h \in \mathcal{H}(m)\}$. To show that $\lambda_r^{(1)}(m) \leqslant \widetilde{\lambda}(m)$, let $\gamma < \lambda_r^{(1)}(m)$ and $\gamma' \in]\gamma, \lambda_r^{(1)}(m)[$; then there exists $M_{\gamma'} \geqslant 1$ such that $\mathrm{e}^{\gamma' t} m P_t(h) \leqslant M_{\gamma'} m(h), \forall h \in \mathcal{H}(m)$, and thus $\mathrm{e}^{\gamma t} m P_t(h) \to 0$ as $t \to \infty$, $\forall h \in \mathcal{H}(m)$. The converse inequality follows observing that for any $\gamma < \widetilde{\lambda}(m)$, the family of bounded operators $T_t := \mathrm{e}^{\gamma t} P_t$, $t \geqslant 0$, is such that $\sup_t \|T_t f\| < \infty$, $\forall f \in L^1(m)$. By the uniform boundedness principle we have $\sup_t \|T_t\| < \infty$, implying $\gamma \leqslant \lambda_r^{(1)}(m)$.

Finally from the obtained formula we get $Q_m(\alpha = -\infty) = 0$ when $\lambda_r^{(1)}(m) > 0$, which is well known to be equivalent to $m \in Pur(X)$.

We give now further results on $\lambda_r^{(1)}(m)$, $m \in \text{Exc}(X)$, that will be of interest in connection with $\lambda_{\pi}, \lambda_{\varphi}$.

Proposition 3. (i) If $m \in \mathbf{M}^{\gamma}(X)$, then $\gamma \leqslant \lambda_r^{(1)}(m)$. If m is γ -invariant then $\lambda_r^{(1)}(m) = \gamma$.

- (ii) For any $\gamma < \lambda_r^{(1)}(m)$ there exist $\nu_{\gamma} \in \mathbf{M}^{\gamma}(X)$ and $f_{\gamma} \in \mathbf{F}^{\gamma}(X)$, $f_{\gamma} > 0$, such that $\nu_{\gamma}(f_{\gamma}) < \infty$.
- (iii) For any t > 0, $e^{-\lambda_r^{(1)}(m)t}$ is in the spectrum of P_t on $L^1(m)$.

Proof. Property (i) is checked by direct verification.

For (ii) let $\gamma < \lambda_r^{(1)}(m)$, $\gamma' \in]\gamma, \lambda_r^{(1)}(m)[$ and $h \in \mathcal{E}$, h > 0, $m(h) < \infty$. Let also $M_{\gamma'} \geq 1$ be such that $e^{\gamma t} m(P_t f) \leq M_{\gamma'} m(f)$, $\forall t > 0$, $\forall f \in \mathcal{E}$, $0 < m(f) < \infty$. We then set:

$$u_{\gamma} := m\Phi^{\gamma} \quad \text{and} \quad f_{\gamma} := \Phi^{\gamma} h$$

and these are the required elements in $\mathbf{M}^{\gamma}(X)$, respectively $\mathbf{F}^{\gamma}(X)$ because we can successively check that $m(f_{\gamma}) \leq M_{\gamma'}(\gamma' - \gamma)^{-1}m(h)$ and $\nu_{\gamma}(f_{\gamma}) \leq [M_{\gamma'}(\gamma' - \gamma)^{-1}]^2 m(h)$.

Property (iii) is a consequence of a very powerful result (Theorem 7.7 in [Dav81]) applied to the positive (in the sense that it applies non-negative functions from $L^1(m)$ into functions of the same kind) operator P_t , t > 0. (Unfortunately this does not ensure that any of the corresponding eigenfunctions is non-negative).

Corollary 1. (i)
$$\lambda_{\pi} = \sup_{m \in \operatorname{Exc}(X)} \{ \lambda_r^{(1)}(m) \} = \sup_{m \in \operatorname{Pur}(X)} \{ \lambda_r^{(1)}(m) \}.$$
 (ii) $\lambda_{\pi} = \lambda_{\varphi} = \lambda_{\pi,\varphi}$ where

$$\lambda_{\pi,\varphi} := \sup \{ \gamma \geqslant 0 : \exists f \in \mathbf{F}^{\gamma}(X), f > 0 \text{ on } E$$
 and $\nu \in \mathbf{M}^{\gamma}(X)$ such that $\nu(f) < \infty \}.$

To further emphasize the role played by $\lambda_r^{(1)}(m)$ we end up this section with the construction of the process \widetilde{X} and the measure \widetilde{m} alluded to in the introduction. This amounts to considering $m \in \mathbf{M}^{\gamma}(X)$ and $h \in \mathbf{F}^{\gamma}(X)$ such that $m(E \setminus E_h) = 0$, where $E_h := \{0 < h < \infty\}$. With h we associate

 $\widetilde{h} := \uparrow \lim_{t \downarrow 0} e^{\gamma t} P_t h$ so that $\widetilde{h} \in \mathbf{F}^{\gamma}$, $\widetilde{h} \leqslant h$, $\{\widetilde{h} < h\}$ is a set of zero potential and \widetilde{h} is an excessive function.

The supermartingale multiplicative functional

$$M_t := e^{\gamma t} \left[\widetilde{h}(X_0) \right]^{-1} \widetilde{h}(X_t) 1_{\{0 < \widetilde{h}(X_0) < \infty\}} 1_{\{t < T_{\{h=0\}}\}}$$

defines a subprocess \widetilde{X} with state space $\widetilde{E}:=\left\{0<\widetilde{h}<\infty\right\}$ and semigroup

$$\widetilde{P}_t f(x) := e^{\gamma t} \left[\widetilde{h}(x) \right]^{-1} P_t \left(\widetilde{h} f \right)(x), \qquad x \in \widetilde{E}, \ f \in \mathcal{E}_{|\widetilde{E}}, \ f \geqslant 0.$$

The process \widetilde{X} is in turn a right Markov process ([Sha88], § 62) and $\widetilde{m} := \widetilde{h}m$ belongs to $\operatorname{Exc}(\widetilde{X})$; $\widetilde{m} \in \operatorname{Inv}(\widetilde{X})$ when m is γ -invariant.

A necessary and sufficient condition for \widetilde{m} to be in $\operatorname{Con}(\widetilde{X})$ (which is a precondition for developing an ergodic theory with respect to \widetilde{m}) is the following: for any $f \in \mathcal{E}$, f > 0 such that $m(f1_{\widetilde{E}}) < \infty$ we have $m(\Phi^{\gamma}f1_{\widetilde{E}} < \infty) = 0$. Note that when this condition is fulfilled we necessarily have $\gamma \geqslant \lambda_r^{(1)}(m)$; since m was taken from $\mathbf{M}^{\gamma}(X)$ we must have in fact in this case $\lambda_r^{(1)}(m) = \gamma$.

3 Exit parameters

Theorem 1 suggests that λ_{π} is (at least in the irreducible case) related to the amount of time spent by the process in *small sets*. The parameter λ_{π} may be also characterized in terms of escape from such sets and we are going to provide conditions for this. An alternative set of conditions are imposed in [Str82] in order to obtain Radon instead of σ -finite measures.

Recall from [FG96] that an *m*-nest associated with $m \in \text{Dis}(X)$ is defined as an increasing sequence of finely open sets $\mathcal{C} = (C_n) \subseteq \mathcal{E}^e$ such that $P^m(\lim_n \tau_n < \infty) = 0$, where $\tau_n := \tau_{C_n}$.

For each $n \in \mathbb{N}$ let $(P_{t,n})$, (U_n^q) denote the semigroup and resolvent associated with the killed process (X, τ_n) and

$$\Phi_n^{\gamma} := \int_0^\infty e^{\gamma t} P_{t,n} dt = \sum_{p=1}^\infty (1+\gamma)^{p-1} U_n^{1(p)} f.$$

The *m*-nest (C_n) of interest for our problem will be assumed to have the following additional property:

(*) there exists
$$D \in \mathcal{E}^e$$
, $D \subseteq C_1$, such that $U(x, B) > 0$, $\forall x \in E$ and $U_1^1(x, .) \geqslant \nu(.)$, $\forall x \in D$, where $\nu(\Gamma) := m_D(\Gamma)[m(D)]^{-1}$.

With the m-nest C having property (*) we associate

$$\lambda_e^{\mathcal{C}}(m) := \sup\{\gamma \geqslant 0 : P^{\nu}(e^{\gamma \tau_n}) < \infty, \, \forall \, n \in \mathbb{N}\}.$$

Proposition 4. Let C be an m-nest satisfying condition (*). Then $\lambda_e^{C}(m) \leq \lambda_{\pi}$.

Proof. Let $\gamma < \lambda_e^{\mathcal{C}}(m)$. In order to construct a measure in $\mathbf{M}^{\gamma}(X)$ we start by considering the measures $\nu_n := \nu \, \Phi_n^{\gamma}, \, n \in \mathbb{N}$. For each $n \in \mathbb{N}, \, \nu_n \in \mathbf{M}^{\gamma}(X, \tau_n)$ and it is finite because $\nu_n(P^{\cdot}(\mathbf{e}^{\gamma'\tau_n})) < \infty$ for $\gamma' \in]\gamma, \lambda_e^{\mathcal{C}}(m)[$ as is easily checked. Also, for each $n \in \mathbb{N}, \, \nu_n(D) > 0, \, P^{\nu_n}(\lim \tau_n < \zeta) = 0$ and, due to condition $(*), \, \nu_n \geqslant (1+\gamma)\nu_n(D)\nu$.

Next let $\mu_n := [\nu_n(D)]^{-1}\nu_n$, $n \in \mathbb{N}$. For each $n \in \mathbb{N}$ the measure μ_n is in turn finite and such that $\mu_n \in \mathbf{M}^{\gamma}(X, \tau_n)$, $\mu_n(D) = 1$, $\mu_n \geqslant (1 + \gamma)\nu$ and $P^{\mu_n}(\lim \tau_n < \zeta) = 0$.

Let further $\eta_n := \inf_{p \geqslant n} \mu_p$, $n \in \mathbb{N}$, define an increasing sequence of measures such that $\eta_n \in \mathbf{M}^{\gamma}(X, \tau_n)$, $\forall n \in \mathbb{N}$. For each $n \geqslant 1$, one has $\eta_n(D) \leqslant 1$, $\eta_n \geqslant (1 + \gamma)$ and

$$\eta_n(U^1 1_D) = \lim_{k \to \infty} P^{\eta_n} \left(\int_0^\infty e^{-u} 1_D(X_u) du \right)$$

$$\leq \lim_{k \to \infty} \eta_k \left(U_k^1(D) \right) \leq \lim_{k \to \infty} \eta_k(D) \leq 1.$$

Finally, let $\eta := \uparrow \lim_{n\to\infty} \eta_n$. Obviously $\eta \geqslant (1+\gamma)\nu$ and it is σ -finite because $\eta(U^11_D) \leqslant 1$ and $U^11_D(x) > 0$, $\forall x \in E$. It remains to show that $\eta \in \mathbf{M}^{\gamma}(X)$; this follows from the fact that for any $n \in \mathbb{N}$

$$e^{\gamma t} \eta_n(P_t f) = e^{\gamma t} \lim_{k \to \infty} P^{\eta_n} (f(X_t); t < \tau_k) \le \lim_{k \to \infty} \eta_n(f) = \eta(f)$$

for each $f \in \mathcal{E}$, $f \geqslant 0$.

It is perhaps worth mentioning that while there exist a number of m-nests associated with $m \in \mathrm{Dis}(X)$ (see [FG96] in his respect), condition (*) is quite restrictive. Among other things the very existence of a set D with the properties involved in (*) entails the ν -irreducibility of the process X.

Acknowledgment. The results of this paper were partially obtained while the author benefited of a kind invitation from INSA-Rouen and they were presented at the Séminaire de Probabilités de Rouen.

References

[ADR66] Azéma, J., Kaplan-Duflo, M., Revuz, D.: Récurrence fine des processus de Markov. Ann. Inst. Henri Poincaré 2, 185–220 (1966).

[Ber97] Bertoin, J.: Exponential decay and ergodicity of completely asymmetric Lévy processes in a finite interval. *Ann. Appl. Probab.* **7**, 156–169 (1997).

[CZ95] Chung, K.L., Zhao, Z.: From Brownian Motion to Schrödinger's Equation. Springer, Berlin Heidelberg New York (1995).

[Dav81] Davies, E.B.: One parameter semigroups. Oxford University Press, Oxford (1981).

- [DMM92] Dellacherie, C., Maisonneuve, B., Meyer, P.A.: Probabilités et Potentiel. Ch. XVII–XXIV, Hermann, Paris (1992).
- [FG96] Fitzsimmons, P.J., Getoor, R.K.: Smooth measures and continuous additive functionals of right Markov processes. In: Ito's Stochastic Calculus and Probability Theory. Springer, Berlin Heidelberg New York (1996).
- [Get90] Getoor, R.K.: Excessive Measures. Birkhäuser, Boston (1990).
- [Get99] Getoor, R.K.: Measure perturbations of Markovian semigroups. *Potential Analysis* 11, 101–133 (1999).
- [Glo88] Glover, J.: Quasi-stationary distributions, eigenmeasures and eigenfunctions of Markov processes. In: Seminar on Stochastic Processes 1984. Birkhäuser, Boston (1986).
- [MT96] Meyn, S.P., Tweedie, R.L.: Markov Chains and Sochastic Stability. Springer, Berlin Heidelberg New York (1996).
- [NN86] Niemi, S., Nummelin, E.: On non-singular renewal kernels with applications to a semigroup of transition kernels. Stochastic Process. Appl. 22, 177–202 (1986).
- [Sat85] Sato, S.: An inequality for the spectral radius of Markov processes. *Kodai Math. J.* **8**, 5–13 (1985).
- [Sha88] Sharpe, M.J.: General Theory of Markov Processes. Academic Press, San Diego (1988).
- [Str82] Stroock, D.: On the spectrum of Markov semigoups and the existence of invariant measures. In: Function Analysis in Markov Processes. Springer, Berlin Heidelberg New York (1982).
- [Tak00] Takeda, M.: L^p -independence of the spectral radius of symmetric Markov semigroups. Canadian Math. Soc., Conference Proceedings **20**, 613–623 (2000).
- [TT79] Tuominen, P., Tweedie, R.J.: Exponential decay of general Markov processes and their discrete skeletons. Adv. Appl. Probab. 11, 784–802 (1979).
- [Yos80] Yosida, K.: Functional Analysis, 6th ed. Springer, Berlin Heidelberg New York (1980).