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Summary. Let X be a Markov process with semigroup (Pt) and m an excessive

measure of X. With m we associate the spectral radius λ
(p)
r (m) of (Pt) on Lp(m) (1 �

p � ∞) and the exit parameter λC
e (m) defined for an m-nest C =(Cn) in terms of

the corresponding first exit times (τn). We discuss the impact of these parameters
as well as their connection with other parameters of interest for the process.
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1 Introduction

When X is a transient Markov process it is sometimes possible to associate
with it a new process X̃ endowed with a conservative measure m̃. Limit the-
orems obtained for X̃ relative to m̃ provide information on the long term
behaviour of the initial process X . The process X̃ and the measure m̃ are
obtained by means of a γ-subinvariant function and a γ-subinvariant mea-
sure (to be precisely defined in the sequel), whence the interest in the classes
of γ-subinvariant functions and γ-subinvariant measures and the parameters
associated with them.

In case of Harris irreducible processes this is a well established theory,
sometimes called λ-theory (see [Ber97], [NN86], [TT79]). Related results for
processes that are not necessarily irreducible are given in [Glo88] and [Str82].

The present paper is concerned with this kind of problems and they are
considered in the context of the theory of excessive measures ([DMM92] and
[Get90]). Unless otherwise mentioned the process X is assumed to be Borel
right with state space (E, E), semigroup (Pt), resolvent (U q) and lifetime ζ.
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For any γ � 0 we consider:

Mγ(X) := {η : σ-finite measure on (E, E) such that eγtηPt � η, ∀ t � 0},
Fγ(X) := {f ∈ E∗ : f � 0 on E such that eγtPtf � f , ∀ t � 0}.

An element of Mγ(X) (resp. Fγ(X)) is called a γ-subinvariant mesure
(resp. a γ-subinvariant function). They are called γ-invariant measures (resp.
γ-invariant functions) when all the corresponding inequalities become equali-
ties. Standard candidates as members of Fγ(X) are

Φγf(x) :=
∫ ∞

0

eγtPtf(x) dt, f ∈ E∗, f � 0,

and as members of Mγ(X) the measures µΦγ provided they are σ-finite.
The following global parameters are of interest and were considered in

various contexts ([Glo88], [NN86], [Str82], [TT79]):

λπ := sup{γ � 0 : Mγ(X) �= {0}};
λϕ := sup{γ � 0 : ∃ f ∈ Fγ(X), f > 0 on E, f not identically ∞}.

When γ = 0 instead of Mγ(X) we write as usual Exc(X) and consider its
well known important subclasses:

Pur(X) := {m ∈ Exc(X) : mPt(h) → 0 when t → ∞, ∀h > 0, m(h) < ∞};
Inv(X) := {m ∈ Exc(X) : mPt = m, ∀ t � 0};

Con(X) := {m ∈ Exc(X) : m(Uh < ∞) = 0, ∀h > 0, m(h) < ∞};
Dis(X) := {m ∈ Exc(X) : m(Uh = ∞) = 0, ∀h > 0, m(h) < ∞}.

Whenever m ∈ Exc(X), each Pt, t > 0, and each qU q, q > 0, may be
thought as a contraction from Lp(m) to Lp(m) for 1 � p � ∞; also, the
semigroup (Pt) is strongly continuous on Lp(m), 1 � p � ∞ (these facts
are discussed in a more general setting in [Get99]). As usual let λ

(p)
r (m), the

spectral radius of (Pt) on Lp(m), 1 � p � ∞, be defined as

λ(p)
r (m) := lim

t→∞

{
−t−1 ln ‖Pt‖Lp(m)

}
.

The second section is devoted to the impact of λ
(p)
r (m), 1 � p � ∞, as

decay parameters. First the connection of λ
(2)
r (m) with λπis discussed. Then

under certain restrictions on the process (imposed by the application of a very
powerful result of Takeda [Tak00]) one gets that λ

(p)
r (m) are independent of

p and one identifies this common value with the decay parameter associated
with X as irreducible process. The remaining part of section 2 is concerned
exclusively with properties of λ

(1)
r (m) having in view especially the connec-

tion with λπ , λϕ. An expression of λ
(1)
r (m) in terms of the Kuznetsov measure

Qm associated with m is given. This allows to distinguish those measures m
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for which λ
(1)
r (m) > 0 among the purely excessive ones. Finally, the under-

lying construction in the classical context of quasi-stationary distributions
for irreducible processes is retrieved in the general case emphasizing the role
of λ

(1)
r (m).
Section 3 introduces the exit parameter associated with an m-nest, when

m is a dissipative measure. These are similar to some parameters considered
in [Str82] in a more specific context.

Notation. As is standard, we denote by Ee the σ-algebra generated by ex-
cessive functions and for any B ∈ Ee, TB := inf{t > 0 : Xt ∈ B}, τB := TE\B,
PBf(x) := P x{f(XTB); TB < ∞}.

2 Spectral radius as decay parameter

We start by revealing the special role played by the spectral radius in case
of some irreducible processes. Recall that the process X is said to be µ-
irreducible, with µ a σ-finite measure, if:

µ-(I) µ(B) > 0 =⇒ ∀x ∈ E, U1(x, B) > 0.

The following theorem introduces the decay parameter associated with the
irreducible process X .

Theorem 1 ([TT79]). For any Markov process X satisfying µ-(I) there exist
a µ-polar set Γ , an increasing sequence of sets (Bn) ⊆ Ee with E =

⋃
n Bn

and a parameter λ ∈ [0,∞[ such that:

(i) For any γ < λ we have Φγ(x, Bn) < ∞, ∀x /∈ Γ , n ∈ N.
(ii) For any γ > λ we have Φγ(x, B) ≡ ∞, ∀B ∈ E, µ(B) > 0.
(iii) The process is either λ-transient, i.e. (i) holds for γ = λ, or it is λ-

recurrent, i.e. (ii) holds for γ = λ.
(iv) λ = λπ = λϕ.

We recall also that the whole theory of irreducible processes is based on
the existence of a remarkable class of sets, namely:

L(µ) := {B ∈ Ee : µ(B) > 0 for which there exists a measure νB �= 0
such that U1(x, . ) � νB( . ), ∀x ∈ B}.

The impact of L(µ) comes from the fact that whenever B is in L(µ) and
Φγ(x, B) = ∞ for some x ∈ E, one has Φγ(x, A) = ∞ for any A ∈ E such
that µ(A) > 0.

The next result is concerned with the connection between λ
(2)
r (m) and λπ .
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Proposition 1. (i) For any excessive measure m we have λ
(2)
r (m) � λπ.

(ii) Suppose that the state space is locally compact with countable base and that
X is a Feller process, m-symmetric with respect to the Radon measure m.
Suppose further that m-(I) holds and that the support of m has non-empty
interior. Then λ

(2)
r (m) = λ.

Proof. (i) We shall actually show that given h ∈ E such that 0 < h � 1 and
m(h) < ∞, the parameter

λ(m; h) := lim inf
t→∞

{
−t−1 ln

(h, Pth)m

‖h‖L(2)(m)

}

satisfies λ(m; h) � λπ. This will be enough to prove (i) since λ
(2)
r (m) �

λ(m; h). To this end consider γ < λ(m; h), γ′ ∈ ]γ, λ(m; h)[ and let tγ′ be
such that (h, Pth)m � e−γ′t‖h‖L(2)(m), ∀ t � tγ′ . Then the measure νγ(g) :=
(γ′ − γ)

∫ ∞
tγ′ etγm(hPtg) dt, g ∈ E , g � 0, is in Mγ .

(ii) By (i) and m-(I) we have λ
(2)
r (m) � λπ = λ. We will next prove that

for any γ > λ
(2)
r (m) there exists a compact K such that m(K) > 0 and

Φγ1K ≡ ∞. According to Proposition 6.3.8 (ii) in [MT96], whose hypotheses
are the ones in (ii) but for the m-symmetry, any compact K such that m(K) >

0 is in L(m). This will be enough to ensure that γ � λ and thus λ � λ
(2)
r (m).

Let (Ez)z∈R be the resolution of the generator of {Pt; t > 0} on L2(m) and
let γ′ ∈ ]λ(2)

r (m), γ[. There exists a function ϕ, continuous and with compact
support such that E−γ′ϕ �= E−λ

(2)
r (m)

ϕ. Then ϕ may be written as ϕ =
∫ −λ(2)

r (m)

−γ′ dEzϕ and

(
|ϕ|, Pt|ϕ|

)
m

�
(
ϕ, Ptϕ

)
m

=
∫ −λ(2)

r (m)

−γ′
ezt d(ϕ, Ezϕ) � e−γ′t

(
ϕ, E−λ

(2)
r (m)

ϕ
)

m
.

Whence (|ϕ|, Φγ |ϕ|)m = ∞, which in turn implies (1Kϕ , Φγ1Kϕ)m = ∞, Kϕ

being the compact support of ϕ.
By m-(I) we have only two possibilities: either Φγ1Kϕ is finite up to an

m-polar set, or Φγ1Kϕ ≡ ∞. Assuming the first possibility we get an M > 0
such that m(Φγ1Kϕ � M) > 0 and therefore there exists a compact K such
that K ⊆ {Φγ1Kϕ � M}. This implies m(1KΦγ1Kϕ) � Mm(K) < ∞. On
the other hand from Kϕ ∈ L(m) and from the classical formula Φγ1K =∑∞

n=1(1 + γ)n−1U1(n)1K we have Φγ1K � νKϕ(K)(1 + γ)Φγ1Kϕ . Using this
and m-symmetry we get

(1K , Φγ1Kϕ)
m

= (1Kϕ , Φγ1K)
m

� νKϕ(K)(1 + γ)(1Kϕ , Φγ1Kϕ)
m

= ∞.

The obtained contradiction rules out the possibility that Φγ1Kϕ is finite up to
an m-polar set and thus Φγ1Kϕ ≡ ∞, the property which was to be proved. 	
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We now briefly discuss two other forms of irreducibility that will be in-
volved in the sequel. We begin with

(I) for any finely open, non-empty set Γ we have PΓ 1(x) > 0, ∀x ∈ E.

Condition (I) amounts to the property that all states communicate in the
sense of [ADR66]. Immediate consequences of it are : the fact that all excessive
measures are equivalent and the property that any ξ ∈ Exc(X) satisfies ξ-(I).

The next condition of irreducibility is the one imposed in [Tak00]. Let m
be a σ-finite measure on (E, E) and I(m) := {A ∈ E : 1APtf = Pt1Af a.e.-m
for any bounded f ∈ L2(m)}. The condition is the following:

m-(I)′ for any A ∈ I(m) we have either m(A) = 0 or m(E\A) = 0.

In what follows we consider conditions under which it is possible to relate the
three forms of irreducibility.

Lemma 1. Let m belong to Exc(X).

(i) If m is Radon and m-(I) holds, then m-(I)′ also holds.
(ii) If the process is m-symmetric, if m is a reference measure and if m-(I)′

holds, then (I) also holds.

Proof. To get (i) let A ∈ I(m) be such that m(A) > 0. For any compact
K ⊆ E\A we have m(1AU11K) = 0, implying by m-(I) that m(K) = 0,
whence m(E\A) = 0.

For (ii) let us note that by m-symmetry any absorbing set A is in I(m)
and then apply this to the set A = {U11Γ = 0} with Γ finely open, non-
empty. Taking into account that m is a reference measure, the possibility that
m(E\A) = 0 is ruled out and from m(A) = 0 we get PΓ 1(x) > 0, ∀x ∈ E. 	


We now turn to the very special case, indicated in the introduction, when
the p-independence of λ

(p)
r (m), 1 � p � ∞, occurs.

Theorem 2. Assume that the state space (E, E) is a locally compact metric
space with countable base and that X is an m-symmetric Markov process, with
m a Radon measure. Assume also that the following conditions are satisfied:

(i) m-(I)′ holds.
(ii) For each t > 0 and x ∈ E, Pt(x, . ) $ m.
(iii) For any t > 0, Ptf ∈ C0(E) whenever f ∈ C0(E), where C0(E) denotes

the space of all continuous functions vanishing at infinity.
(iv) U11 ∈ C0(E).

Then λ
(p)
r (m), 1 � p � ∞, is independent of p ∈ [1,∞] and the com-

mon value λr(m) coincides with the decay parameter λ associated with X as
irreducible process.
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Proof. The imposed conditions are precisely those in Theorem 2.3 in [Tak00]
which provides the p-independence of λ

(p)
r (m), 1 � p � ∞.

The process is subject to (I) by Lemma 1 (ii) and the equality λr(m) = λ
follows from Proposition 1 (ii), since under the present assumptions the sup-
port of m is E. 	


Remarks. 1. The conditions in Theorem 2 are met by the process (X, τD)
equal to the d-dimensional Brownian motion killed at τD, where D is a regular
domain satisfying m(D) < ∞. In this remarkable particular case we actually
have a much stronger property, namely the corresponding transition operator
P D

t , t > 0, is a compact operator and has the same eigenvalues {exp(−λk); k =
1, 2, . . . } with 0 < λ1 � λ2 � · · · < ∞, in all appropriate spaces L(p)(mD), 1 �
p < ∞, and C0(D) ([CZ95], Theorem 2.7). The decay parameter λ coincides
in this case with λ1.

2. In [Sat85], Sato studies the impact of λ∞
r as decay parameter assuming

(iii), a condition weaker than (v) in Theorem 2 and the following condition of
irreducibility: for any open set G ∈ E one has PG1(x) > 0, ∀x ∈ E. Symmetry
and absolute continuity are not assumed.

3. In [Str82], Stroock proposed for a Radon measure m

λσ(m) := sup
ϕ∈Cc(E)

ϕ�0

{
lim sup

t→∞

{
t−1 ln (ϕ, Ptϕ)m

}}

as decay parameter and shows that—under his conditions and m-symmetry—
it coincides with the right end point of the spectrum of the generator on
L2(m) (actually −λ

(2)
r (m) in that case). Here Cc(E) denotes the space of all

real valued continuous functions on E with compact support.

In what follows we turn to specific properties of λ
(1)
r (m), m ∈ Exc(X).

Let Qm and Y be the Kuznetsov measure and process associated with m.
Let also α be the birthtime of Y and H(m) := {h ∈ E : h � 0, 0 < m(h) < ∞}.

Proposition 2. For any m ∈ Exc(X) we have

λ(1)
r (m) = sup

{
γ � 0 : lim

t→∞
eγtQm

(
h(Y0); α < −t

)
= 0, ∀h ∈ H(m)

}
.

If λ
(1)
r (m) > 0, then m ∈ Pur(X).

Proof. First we note that by the Markov property of Y under Qm and the
stationarity of Qm we have for any f ∈ E , f � 0

m(Ptf) = Qm

(
PY0

(
f(Xt)

)
; α < 0

)
= Qm

(
f(Yt); α < 0

)

= Qm

(
f(Y0); α < −t

)
.

Recall now the following well known property of the spectral radius: for
any a < λ

(1)
r (m) there exists Ma � 1 such that eat‖Pt‖L1(m) � Ma. Then



Exponential decay parameters 141

put λ̃(m) := sup{γ � 0 : limt→∞ eγtmPt(h) = 0, ∀h ∈ H(m)}. To show
that λ

(1)
r (m) � λ̃(m), let γ < λ

(1)
r (m) and γ′ ∈

]
γ, λ

(1)
r (m)

[
; then there

exists Mγ′ � 1 such that eγ′tmPt(h) � Mγ′m(h), ∀h ∈ H(m), and thus
eγtmPt(h) → 0 as t → ∞, ∀h ∈ H(m). The converse inequality follows
observing that for any γ < λ̃(m), the family of bounded operators Tt := eγtPt,
t � 0, is such that supt ‖Ttf‖ < ∞, ∀ f ∈ L1(m). By the uniform boundedness
principle we have supt ‖Tt‖ < ∞, implying γ � λ

(1)
r (m).

Finally from the obtained formula we get Qm(α = −∞) = 0 when
λ

(1)
r (m) > 0, which is well known to be equivalent to m ∈ Pur(X). 	


We give now further results on λ
(1)
r (m), m ∈ Exc(X), that will be of

interest in connection with λπ , λϕ.

Proposition 3. (i) If m ∈ Mγ(X), then γ � λ
(1)
r (m). If m is γ-invariant

then λ
(1)
r (m) = γ.

(ii) For any γ < λ
(1)
r (m) there exist νγ ∈ Mγ(X) and fγ ∈ Fγ(X), fγ > 0,

such that νγ(fγ) < ∞.
(iii) For any t > 0, e−λ(1)

r (m)t is in the spectrum of Pt on L1(m).

Proof. Property (i) is checked by direct verification.
For (ii) let γ < λ

(1)
r (m), γ′ ∈

]
γ, λ

(1)
r (m)

[
and h ∈ E , h > 0, m(h) < ∞.

Let also Mγ′ � 1 be such that eγtm(Ptf) � Mγ′m(f), ∀ t > 0, ∀ f ∈ E ,
0 < m(f) < ∞. We then set:

νγ := mΦγ and fγ := Φγh

and these are the required elements in Mγ(X), respectively Fγ(X) because
we can successively check that m(fγ) � Mγ′(γ′ − γ)−1m(h) and νγ(fγ) �
[Mγ′(γ′ − γ)−1]2m(h).

Property (iii) is a consequence of a very powerful result (Theorem 7.7 in
[Dav81]) applied to the positive (in the sense that it applies non-negative
functions from L1(m) into functions of the same kind) operator Pt, t > 0.
(Unfortunately this does not ensure that any of the corresponding eigenfunc-
tions is non-negative). 	


Corollary 1. (i) λπ = supm∈Exc(X)

{
λ

(1)
r (m)

}
= supm∈Pur(X)

{
λ

(1)
r (m)

}
.

(ii) λπ = λϕ = λπ,ϕ where

λπ,ϕ := sup{γ � 0 : ∃ f ∈ Fγ(X), f > 0 on E

and ν ∈ Mγ(X) such that ν(f) < ∞}.

To further emphasize the role played by λ
(1)
r (m) we end up this section

with the construction of the process X̃ and the measure m̃ alluded to in
the introduction. This amounts to considering m ∈ Mγ(X) and h ∈ Fγ(X)
such that m(E\Eh) = 0, where Eh := {0 < h < ∞}. With h we associate
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h̃ := ↑limt↓0 eγtPth so that h̃ ∈ Fγ , h̃ � h,
{
h̃ < h

}
is a set of zero potential

and h̃ is an excessive function.
The supermartingale multiplicative functional

Mt := eγt
[
h̃(X0)

]−1

h̃(Xt)1{0<h̃(X0)<∞}1{t<T{h=0}}

defines a subprocess X̃ with state space Ẽ :=
{
0 < h̃ < ∞

}
and semigroup

P̃tf(x) := eγt
[
h̃(x)

]−1

Pt

(
h̃f

)
(x), x ∈ Ẽ, f ∈ E|Ẽ, f � 0.

The process X̃ is in turn a right Markov process ([Sha88], § 62) and m̃ := h̃m

belongs to Exc
(
X̃

)
; m̃ ∈ Inv

(
X̃

)
when m is γ-invariant.

A necessary and sufficient condition for m̃ to be in Con
(
X̃

)
(which is

a precondition for developing an ergodic theory with respect to m̃) is the
following: for any f ∈ E , f > 0 such that m(f1Ẽ) < ∞ we have m(Φγf1Ẽ <
∞) = 0. Note that when this condition is fulfilled we necessarily have γ �
λ

(1)
r (m); since m was taken from Mγ(X) we must have in fact in this case

λ
(1)
r (m) = γ.

3 Exit parameters

Theorem 1 suggests that λπ is (at least in the irreducible case) related to the
amount of time spent by the process in small sets. The parameter λπ may
be also characterized in terms of escape from such sets and we are going to
provide conditions for this. An alternative set of conditions are imposed in
[Str82] in order to obtain Radon instead of σ-finite measures.

Recall from [FG96] that an m-nest associated with m ∈ Dis(X) is de-
fined as an increasing sequence of finely open sets C =(Cn) ⊆ Ee such that
Pm(limn τn < ∞) = 0, where τn := τCn .

For each n ∈ N let (Pt,n), (U q
n) denote the semigroup and resolvent asso-

ciated with the killed process (X, τn) and

Φγ
n :=

∫ ∞

0

eγtPt,n dt =
∞∑

p=1

(1 + γ)p−1U1(p)
n f.

The m-nest (Cn) of interest for our problem will be assumed to have the
following additional property:

(∗) there exists D ∈ Ee, D ⊆ C1, such that U(x, B) > 0, ∀x ∈ E
and U1

1 (x, . ) � ν( . ), ∀x ∈ D, where ν(Γ ) := mD(Γ )[m(D)]−1.

With the m-nest C having property (∗) we associate

λC
e (m) := sup{γ � 0 : P ν(eγτn) < ∞, ∀n ∈ N}.
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Proposition 4. Let C be an m-nest satisfying condition (∗). Then λC
e (m) �

λπ.

Proof. Let γ < λC
e (m). In order to construct a measure in Mγ(X) we start by

considering the measures νn := ν Φγ
n, n ∈ N. For each n ∈ N, νn ∈ Mγ(X, τn)

and it is finite because νn(P ·(eγ′τn)) < ∞ for γ′ ∈
]
γ, λC

e (m)
[

as is easily
checked. Also, for each n ∈ N, νn(D) > 0, P νn(lim τn < ζ) = 0 and, due to
condition (∗), νn � (1 + γ)νn(D)ν.

Next let µn := [νn(D)]−1νn, n ∈ N. For each n ∈ N the measure µn is in
turn finite and such that µn ∈ Mγ(X, τn), µn(D) = 1, µn � (1 + γ)ν and
P µn(lim τn < ζ) = 0.

Let further ηn := infp�n µp, n ∈ N, define an increasing sequence of mea-
sures such that ηn ∈ Mγ(X, τn), ∀n ∈ N. For each n � 1, one has ηn(D) � 1,
ηn � (1 + γ) and

ηn(U11D) = lim
k→∞

P ηn

(∫ ∞

0

e−u1D(Xu) du

)

� lim
k→∞

ηk

(
U1

k (D)
)

� lim
k→∞

ηk(D) � 1.

Finally, let η := ↑limn→∞ ηn. Obviously η � (1 + γ)ν and it is σ-finite
because η(U11D) � 1 and U11D(x) > 0, ∀x ∈ E. It remains to show that
η ∈ Mγ(X); this follows from the fact that for any n ∈ N

eγtηn(Ptf) = eγt lim
k→∞

P ηn
(
f(Xt); t < τk

)
� lim

k→∞
ηn(f) = η(f)

for each f ∈ E , f � 0. 	


It is perhaps worth mentioning that while there exist a number of m-
nests associated with m ∈ Dis(X) (see [FG96] in his respect), condition (∗) is
quite restrictive. Among other things the very existence of a set D with the
properties involved in (∗) entails the ν-irreducibility of the process X .
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