Skip to main content

The Motivic Spectral Sequence

  • Reference work entry
Handbook of K-Theory

Abstract

We give an overview of the search for a motivic spectral sequence: a spectral sequence connecting algebraic K-theory to motivic cohomology that is analogous to the Atiyah–Hirzebruch spectral sequence that connects topological K-theory to singular cohomology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D. Anderson, M. Karoubi, and J. Wagoner, Relations between higher algebraic K -theories, Algebraic K-theory, I: Higher K-theories (Proc. Conf., Battelle Memorial Inst., Seattle, Wash., 1972), Springer-Verlag, Berlin, 1973, pp. 73–81. Lecture Notes in Math. Vol. 341.

    Google Scholar 

  2. M.F. Atiyah and F. Hirzebruch,Vector bundles and homogeneous spaces,Proc. Sympos. Pure Math., Vol. III, American Mathematical Society, Providence, R.I., 1961, pp. 7–38.

    Google Scholar 

  3. Michael Atiyah, K-Theory Past and Present, arXiv:math.KT/0012213.

    Google Scholar 

  4. Alexander Beilinson, Letter to Christophe Soulé, January 11, 1982, K-theory Preprint Archives, http://www.math.uiuc.edu/K-theory/0694/.

    Google Scholar 

  5. Alexander Beilinson, Higher regulators and values of L -functions (in Russian), Current problems in mathematics, Vol. 24, Itogi Nauki i Tekhniki, Akad. Nauk SSSR Vsesoyuz. Inst. Nauchn. i Tekhn. Inform., Moscow, 1984, pp. 181–238.

    Google Scholar 

  6. Spencer Bloch, Algebraic cycles and higher K -theory, Adv. in Math. 61 (1986), no. 3, 267–304.

    Article  MATH  MathSciNet  Google Scholar 

  7. Spencer Bloch, The moving lemma for higher Chow groups, J. Algebraic Geom. 3 (1994), no. 3, 537–568.

    MATH  MathSciNet  Google Scholar 

  8. Spencer Bloch and Steve Lichtenbaum, A Spectral Sequence for Motivic Cohomology, http://www.math.uiuc.edu/K-theory/0062/, March 3, 1995.

    Google Scholar 

  9. Kenneth S. Brown and Stephen M. Gersten, Algebraic K -theory as generalized sheaf cohomology, Algebraic K-theory, I: Higher K-theories (Proc. Conf., Battelle Memorial Inst., Seattle, Wash., 1972), Springer-Verlag, Berlin, 1973, pp. 266–292. Lecture Notes in Math., Vol. 341.

    Google Scholar 

  10. A. D. Elmendorf, I. Kriz, M. A. Mandell, and J. P. May, Rings, modules, and algebras in stable homotopy theory, Mathematical Surveys and Monographs, vol. 47, American Mathematical Society, Providence, RI, 1997, With an appendix by M. Cole.

    MATH  Google Scholar 

  11. Eric M. Friedlander, Christian Haesemeyer, and Mark E. Walker, Techniques, computations, and conjectures for semi-topological K -theory, http://www.math.uiuc.edu/K-theory/0621/, February 20, 2003.

    Google Scholar 

  12. Eric M. Friedlander and Andrei Suslin, The spectral sequence relating algebraic K -theory to motivic cohomology, Ann. Sci. École Norm. Sup. (4) 35 (2002), no. 6, 773–875, http://www.math.uiuc.edu/K-theory/0432/.

    MATH  MathSciNet  Google Scholar 

  13. William Fulton, Intersection theory, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 2, Springer-Verlag, Berlin, 1984.

    MATH  Google Scholar 

  14. William Fulton and Serge Lang, Riemann-Roch algebra, Springer-Verlag, New York, 1985.

    MATH  Google Scholar 

  15. Steven Gersten, K-theory of a polynomial extension, preprint from Rice University, before 1972.

    Google Scholar 

  16. H. Gillet and C. Soulé, Filtrations on higher algebraic K -theory, Algebraic K-theory (Seattle, WA, 1997), Proc. Sympos. Pure Math., vol. 67, Amer. Math. Soc., Providence, RI, 1999, http://www.math.uiuc.edu/K-theory/0327/, pp. 89–148.

    Google Scholar 

  17. Daniel R. Grayson, Higher algebraic K -theory. II (after Daniel Quillen), Algebraic K-theory (Proc. Conf., Northwestern Univ., Evanston, Ill., 1976), Springer-Verlag, Berlin, 1976, pp. 217–240. Lecture Notes in Math., Vol. 551.

    Google Scholar 

  18. Daniel R. Grayson, Weight filtrations in algebraic K -theory, Motives (Seattle, WA, 1991), Amer. Math. Soc., Providence, RI, 1994, http://www.math.uiuc.edu/K-theory/0002/, pp. 207–237.

    Google Scholar 

  19. Daniel R. Grayson, Weight filtrations via commuting automorphisms, K-Theory 9 (1995), no. 2, 139–172, http://www.math.uiuc.edu/K-theory/0003/.

    Article  MATH  MathSciNet  Google Scholar 

  20. J. P. C. Greenlees and J. P. May, Generalized Tate cohomology, Mem. Amer. Math. Soc. 113 (1995), no. 543, viii+178.

    Google Scholar 

  21. A. Grothendieck, Théorie des intersections et théorème de Riemann-Roch, Springer-Verlag, Berlin, 1971, Séminaire de Géométrie Algégrique du Bois-Marie1966–1967(SGA6),DirigéparP.Berthelot,A.GrothendiecketL.Illusie. Avec la collaboration de D. Ferrand, J. P. Jouanolou, O. Jussila, S. Kleiman, M. Raynaud et J. P. Serre, Lecture Notes in Mathematics, Vol. 225.

    Google Scholar 

  22. Bruno Kahn, K -theory of semi-local rings with finite coefficients and étale cohomology, K-Theory 25 (2002), no. 2, 99–138, http://www.math.uiuc.edu/ K-theory/0537/.

    Article  MATH  MathSciNet  Google Scholar 

  23. Max Karoubi and Orlando Villamayor, Foncteurs Kn en algèbre et en topologie, C. R. Acad. Sci. Paris Sér. A-B 269 (1969), A416–A419.

    Google Scholar 

  24. Max Karoubi and Charles Weibel, Algebraic and real K -theory of real varieties, Topology 42 (2003), no. 4, 715–742, http://www.math.uiuc.edu/ K-theory/0473/.

    Article  MATH  MathSciNet  Google Scholar 

  25. Steven E. Landsburg, Some filtrations on higher K -theory and related invariants, K-Theory 6 (1992), no. 5, 431–455.

    Article  MATH  MathSciNet  Google Scholar 

  26. Marc Levine, Bloch’s higher Chow groups revisited, Astérisque (1994), no. 226, 10, 235–320, K-theory (Strasbourg, 1992).

    Google Scholar 

  27. Marc Levine, Mixed motives, American Mathematical Society, Providence, RI, 1998.

    MATH  Google Scholar 

  28. Marc Levine, Techniques of localization in the theory of algebraic cycles, J. Algebraic Geom. 10 (2001), no. 2, 299–363, http://www.math.uiuc.edu/ K-theory/0335/.

    MATH  MathSciNet  Google Scholar 

  29. Marc Levine, The homotopy coniveau filtration, http://www.math.uiuc.edu/ K-theory/0628/, April 22, 2003.

    Google Scholar 

  30. S. Lichtenbaum, Values of zeta-functions at nonnegative integers, Number theory, Noordwijkerhout 1983 (Noordwijkerhout, 1983), Springer-Verlag, Berlin, 1984, pp. 127–138.

    Google Scholar 

  31. Saunders MacLane, Homology, first ed., Springer-Verlag, Berlin, 1967, Die Grundlehren der mathematischen Wissenschaften, Band 114.

    Google Scholar 

  32. Fabien Morel and Vladimir Voevodsky, A1 -homotopy theory of schemes, Inst. Hautes Études Sci. Publ. Math. (1999), no. 90, 45–143 (2001), http://www.math.uiuc.edu/K-theory/0305/.

    Google Scholar 

  33. Michael Paluch, Topology on S−1 S for Banach algebras, Topology 35 (1996), no. 4, 887–900.

    Article  MATH  MathSciNet  Google Scholar 

  34. Claudio Pedrini and Charles Weibel, The higher K -theory of complex varieties, K-Theory 21 (2000), no. 4, 367–385, http://www.math.uiuc.edu/ K-theory/0403/.

    Article  MATH  MathSciNet  Google Scholar 

  35. Claudio Pedrini and Charles Weibel, The higher K -theory of a complex surface, Compositio Math. 129 (2001), no. 3, 239–271, http://www.math.uiuc.edu/K-theory/0328/.

    Article  MATH  MathSciNet  Google Scholar 

  36. Claudio Pedrini and Charles Weibel, The higher K -theory of real curves, K-Theory 27 (2002), no. 1, 1–31, http://www.math.uiuc.edu/K-theory/0429/.

    Article  MATH  MathSciNet  Google Scholar 

  37. Daniel Quillen, Higher algebraic K -theory. I, Algebraic K-theory, I: Higher K-theories (Proc. Conf., Battelle Memorial Inst., Seattle, Wash., 1972), Springer-Verlag, Berlin, 1973, pp. 85–147. Lecture Notes in Math., Vol. 341.

    Google Scholar 

  38. Daniel Quillen ,Higher algebraic K -theory, Proceedings of the International Congress of Mathematicians (Vancouver, B. C., 1974), Vol. 1, Canad. Math. Congress, Montreal, Que., 1975, pp. 171–176.

    Google Scholar 

  39. J. Rognes and C. Weibel, Étale descent for two-primary algebraic K -theory of totally imaginary number fields, K-Theory 16 (1999), no. 2, 101–104, http://www.math.uiuc.edu/K-theory/0266/.

    Article  MATH  MathSciNet  Google Scholar 

  40. J. Rognes and C. Weibel, Two-primary algebraic K -theory of rings of integers in number fields, J. Amer. Math. Soc. 13 (2000), no. 1, 1–54, Appendix A by Manfred Kolster. http://www.math.uiuc.edu/K-theory/0220/.

    Article  MATH  MathSciNet  Google Scholar 

  41. Andrei Suslin, On the Grayson spectral sequence, http://www.math.uiuc.edu/ K-theory/0588/, August 19, 2002.

    Google Scholar 

  42. Vladimir Voevodsky, The Milnor conjecture, http://www.math.uiuc.edu/ K-theory/0170/, December 20, 1996.

    Google Scholar 

  43. Vladimir Voevodsky, Open problems in the motivic stable homotopy theory, I, http://www. math.uiuc.edu/K-theory/0392/, March 11, 2000.

    Google Scholar 

  44. Vladimir Voevodsky, On 2-torsion in motivic cohomology, http://www.math.uiuc.edu/ K-theory/0502/, July 15, 2001.

    Google Scholar 

  45. Vladimir Voevodsky, Cancellation theorem, http://www.math.uiuc.edu/K-theory/0541/, January 28, 2002.

    Google Scholar 

  46. Vladimir Voevodsky, Motivic cohomology groups are isomorphic to higher Chow groups in any characteristic, Int. Math. Res. Not. (2002), no. 7, 351–355, http://www.math.uiuc.edu/K-theory/0378/.

    Google Scholar 

  47. Vladimir Voevodsky, A possible new approach to the motivic spectral sequence for algebraic K -theory, Recent progress in homotopy theory (Baltimore, MD, 2000), Contemp. Math., vol. 293, Amer. Math. Soc., Providence, RI, 2002, Preprint available at http://www.math.uiuc.edu/K-theory/0469/, pp. 371–379.

    Google Scholar 

  48. Vladimir Voevodsky, On motivic cohomology with Z| -coefficients, http://www.math. uiuc.edu/K-theory/0639/, July 16, 2003.

    Google Scholar 

  49. Vladimir Voevodsky, On the zero slice of the sphere spectrum, http://www.math.uiuc.edu/ K-theory/0612/, January 13, 2003.

    Google Scholar 

  50. MarkEdwardWalker,Motivic complexes and the K -theory of automorphisms, Thesis (Ph. D.), University of Illinois at Urbana-Champaign, available on microfilm from University Microfilms International, 1996.

    Google Scholar 

  51. Charles Weibel, The 2-torsion in the K -theory of the integers, C. R. Acad. Sci. Paris Sér. I Math. 324 (1997), no. 6, 615–620, http://www.math.uiuc.edu/ K-theory/0141/.

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Grayson, D. (2005). The Motivic Spectral Sequence. In: Friedlander, E., Grayson, D. (eds) Handbook of K-Theory. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-27855-9_2

Download citation

Publish with us

Policies and ethics