Skip to main content

Advancing Clinical Research Through Natural Language Processing on Electronic Health Records: Traditional Machine Learning Meets Deep Learning

  • Chapter
  • First Online:
Clinical Research Informatics

Part of the book series: Health Informatics ((HI))

Abstract

Electronic health records (EHR) capture “real-world” disease and care processes and hence offer richer and more generalizable data for comparative effectiveness research than traditional randomized clinical trial studies. With the increasingly broadening adoption of EHR worldwide, there is a growing need to widen the use of EHR data to support clinical research. A big barrier to this goal is that much of the information in EHR is still narrative. This chapter describes the foundation of biomedical language processing and explains how traditional machine learning and the state-of-the-art deep learning techniques can be employed in the context of extracting and transforming narrative information in EHR to support clinical research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sox HC, Greenfield S. Comparative effectiveness research: a report from the Institute of Medicine. Ann Intern Med. 2009;151:203–5.

    Article  PubMed  Google Scholar 

  2. NIH VideoCasting Event Summary. http://videocast.nih.gov/summary.asp?live=8062. Accessed 18 May 2011.

  3. Clinical Research & Clinical Trials. http://www.nichd.nih.gov/health/clinicalresearch/. Accessed 17 May 2011.

  4. Sung NS, Crowley WF, Genel M, Salber P, Sandy L, Sherwood LM, et al. Central challenges facing the national clinical research enterprise. JAMA. 2003;289:1278–87.

    Article  PubMed  Google Scholar 

  5. Most physicians do not participate in clinical trials because of lack of opportunity, time, personnel support and resources. http://www.harrisinteractive.com/news/allnewsbydate.asp?NewsID=811. Accessed 31 Aug 2010.

  6. Clinical and Translational Science Awards. 2007. http://www.ncrr.nih.gov/clinical%5Fresearch%5Fresources/clinical%5Fand%5Ftranslational%5Fscience%5Fawards/. Accessed 31 Aug 2010.

  7. Garets D, Davis M. Electronic medical records vs. electronic health records: yes, there is a difference. A HIMSS analytics white paper Chicago: HIMSS Analytics. 2005.

    Google Scholar 

  8. Garets D, Davis M. Electronic patient records, EMRs and EHRs: concepts as different as apples and oranges at least deserve separate names. Healthcare Informatics online. 2005;22:53–54.

    Google Scholar 

  9. File:VistA Img.png – wikipedia, the free encyclopedia. http://en.wikipedia.org/wiki/File:VistA_Img.png. Accessed 18 Aug 2010.

  10. Walker EP. More doctors are using electronic medical records. 2010. http://www.medpagetoday.com/PracticeManagement/InformationTechnology/17862. Accessed 18 Aug 2010.

  11. Population Estimates. http://www.census.gov/popest/states/NST-ann-est.html. Accessed 17 May 2011.

  12. Hazlehurst B, Mullooly J, Naleway A, Crane B. Detecting possible vaccination reactions in clinical notes. In:AMIA annual symposium proceedings; 2005. p. 306–10.

    Google Scholar 

  13. Pakhomov S, Weston SA, Jacobsen SJ, Chute CG, Meverden R, Roger VL. Electronic medical records for clinical research: application to the identification of heart failure. Am J Manag Care. 2007;13(6 Part 1):281–8.

    PubMed  Google Scholar 

  14. Liao KP, Cai T, Gainer V, Goryachev S, Zeng-treitler Q, Raychaudhuri S, et al. Electronic medical records for discovery research in rheumatoid arthritis. Arthritis Care Res (Hoboken). 2010;62:1120–7.

    Article  Google Scholar 

  15. Brownstein JS, Murphy SN, Goldfine AB, Grant RW, Sordo M, Gainer V, et al. Rapid identification of myocardial infarction risk associated with diabetes medications using electronic medical records. Diabetes Care. 2010;33:526–31.

    Article  PubMed  Google Scholar 

  16. Reis BY, Kohane IS, Mandl KD. Longitudinal histories as predictors of future diagnoses of domestic abuse: modelling study. BMJ. 2009;339:b3677.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Wang X, Hripcsak G, Markatou M, Friedman C. Active computerized pharmacovigilance using natural language processing, statistics, and electronic health records: a feasibility study. J Am Med Inform Assoc. 2009;16:328–37.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Chute CG. The horizontal and vertical nature of patient phenotype retrieval: new directions for clinical text processing. Proc AMIA Symp. 2002:165–9.

    Google Scholar 

  19. Thadani SR, Weng C, Bigger JT, Ennever JF, Wajngurt D. Electronic screening improves efficiency in clinical trial recruitment. J Am Med Inform Assoc. 2009;16:869–73.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Embi PJ, Payne PRO. Clinical research informatics: challenges, opportunities and definition for an emerging domain. J Am Med Inform Assoc. 2009;16:316–27.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Kuehn BM. Institute of Medicine outlines priorities for comparative effectiveness research. JAMA. 2009;302:936–7.

    Article  CAS  PubMed  Google Scholar 

  22. Grishman R, Hirschman L, Nhan NT. Discovery procedures for sublanguage selectional patterns: initial experiments. Comput Linguist. 1986;12:205–15.

    Google Scholar 

  23. Harris Z. Mathematical Structures of Language. New York and London: Interscience Publishers; 1968.

    Google Scholar 

  24. Grishman R, Kittredge R. Analyzing language in restricted domains: sublanguage description and processing. Hillsdale, N.J: Lawrence Erlbaum Associates; 1986.

    Google Scholar 

  25. Johnson SB, Gottfried M. Sublanguage analysis as a basis for a controlled medical vocabulary. In:Proceedings symposium on computer applications in medical care; 1989. p. 519–23.

    Google Scholar 

  26. Bronzino JD. The biomedical engineering handbook. Florida: Springer; 2000.

    Google Scholar 

  27. Friedman C, Kra P, Rzhetsky A. Two biomedical sublanguages: a description based on the theories of Zellig Harris. J Biomed Inform. 2002;35:222–35.

    Article  CAS  PubMed  Google Scholar 

  28. Hastie T, Tibshirani R, Friedman JH. The elements of statistical learning: data mining, inference, and prediction: New York: Springer; 2001.

    Chapter  Google Scholar 

  29. Bishop C. Pattern recognition and machine learning (Information Science and Statistics): Springer; 2007. http://www.amazon.ca/exec/obidos/redirect?tag=citeulike09-20&path=ASIN/0387310738. Accessed 15 Jul 2010.

  30. Pearl J. Probabilistic reasoning in intelligent systems: networks of plausible inference: Morgan Kaufmann Publishers; 1988. http://portal.acm.org/citation.cfm?id=534975. Accessed 12 Jul 2010.

  31. Michalski RS, Carbonell JG, Mitchell TM. Machine learning: an artificial intelligence approach. Berlin Heidelberg: Springer-Verlag; 1983.

    Google Scholar 

  32. Manning CD, Schütze H. Foundations of statistical natural language processing. Cambridge, MA: MIT Press; 2000.

    Google Scholar 

  33. Bayes M, Price M. An essay towards solving a problem in the doctrine of chances. By the Late Rev. Mr. Bayes, F. R. S. Communicated by Mr. Price, in a Letter to John Canton, A. M. F. R. S. Philos Trans (1683–1775). 1763;53:370–418.

    Article  Google Scholar 

  34. Pearl J. Bayesian networks: a model of self-activated memory for evidential reasoning. In: Proceedings of the 7th Conference of the Cognitive Science Society, University of California, Irvine. 1985. p. 334, 329. http://www.amazon.com/Bayesian-networks-self-activated-evidential-University/dp/B00071DFAE. Accessed 15 Jul 2010.

  35. Verduijn M, Peek N, Rosseel PMJ, de Jonge E, De Mol BAJM. Prognostic Bayesian networks: I: rationale, learning procedure, and clinical use. J Biomed Inform. 2007;40:609–18.

    Article  PubMed  Google Scholar 

  36. Friedman N, Linial M, Nachman I, Pe’er D. Using Bayesian networks to analyze expression data. J Comput Biol. 2000;7:601–20.

    Article  CAS  PubMed  Google Scholar 

  37. Baum LE, Petrie T. Statistical inference for probabilistic functions of finite state Markov chains. Annals Math Stat. 1966;37:1554–63.

    Article  Google Scholar 

  38. Lukashin AV, Borodovsky M. GeneMark.hmm: new solutions for gene finding. Nucleic Acids Res. 1998;26:1107–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Yu L, Smith TF. Positional statistical significance in sequence alignment. J Comput Biol. 1999;6:253–9.

    Article  CAS  PubMed  Google Scholar 

  40. Kindermann R. Markov random fields and their applications (Contemporary Mathematics; V. 1). American Mathematical Society. http://www.amazon.ca/exec/obidos/redirect?tag=citeulike09-20&path=ASIN/0821850016. Accessed 16 Jul 2010.

  41. Komodakis N, Besbes A, Glocker B, Paragios N. Biomedical image analysis using Markov random fields & efficient linear programing. Conf Proc IEEE Eng Med Biol Soc. 2009;2009:6628–31.

    Google Scholar 

  42. Lee N, Laine AF, Smith RT. Bayesian transductive Markov random fields for interactive segmentation in retinal disorders. In: World congress on medical physics and biomedical engineering, September 7–12, 2009, Munich. 2009. 227–30. https://doi.org/10.1007/978-3-642-03891-4_61. Accessed 16 Jul 2010.

    Google Scholar 

  43. Quinlan JR. Induction of decision trees. Mach Learn. 1986;1:81–106.

    Google Scholar 

  44. Pavlopoulos S, Stasis A, Loukis E. A decision tree – based method for the differential diagnosis of aortic stenosis from mitral regurgitation using heart sounds. Biomed Eng Online. 2004;3:21.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Suresh A, Karthikraja V, Lulu S, Kangueane U, Kangueane P. A decision tree model for the prediction of homodimer folding mechanism. Bioinformation. 2009;4:197–205.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Pearl R, Reed LJ. A further note on the mathematical theory of population growth. Proc Natl Acad Sci USA. 1922;8:365–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Bagley SC, White H, Golomb BA. Logistic regression in the medical literature:: standards for use and reporting, with particular attention to one medical domain. J Clin Epidemiol. 2001;54:979–85.

    Article  CAS  PubMed  Google Scholar 

  48. Gareen IF, Gatsonis C. Primer on multiple regression models for diagnostic imaging research. Radiology. 2003;229:305–10.

    Article  PubMed  Google Scholar 

  49. Vapnik VN. The nature of statistical learning theory. New York: Springer-Verlag; 1995. http://portal.acm.org/citation.cfm?id=211359. Accessed 19 Jul 2010

    Book  Google Scholar 

  50. Brown MPS, Grundy WN, Lin D, Cristianini N, Sugnet CW, Furey TS, et al. Knowledge-based analysis of microarray gene expression data by using support vector machines. Proc Natl Acad Sci USA. 2000;97:262–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Polavarapu N, Navathe SB, Ramnarayanan R, Ul Haque A, Sahay S, Liu Y. Investigation into biomedical literature classification using support vector machines. In:Proceedings IEEE computational systems bioinformatics conference; 2005. p. 366–74.

    Google Scholar 

  52. Takeuchi K, Collier N. Bio-medical entity extraction using Support Vector Machines. In:Proceedings of the ACL 2003 workshop on Natural language processing in biomedicine – Volume 13. Sapporo: Association for Computational Linguistics; 2003. p. 57–64. http://portal.acm.org/citation.cfm?id=1118958.1118966. Accessed 19 Jul 2010.

    Chapter  Google Scholar 

  53. Pan C, Yan X, Zheng C. Hard Margin SVM for biomedical image segmentation. In:Advances in neural networks – ISNN 2005; 2005. p. 754–9. https://doi.org/10.1007/11427469_120. Accessed 19 Jul 2010.

    Chapter  Google Scholar 

  54. Fix E, Hodges JL. Discriminatory Analysis. Nonparametric Discrimination: Consistency Properties. International Statistical Review / Revue Internationale de Statistique. 1989;57:238–47.

    Google Scholar 

  55. Pan F, Wang B, Hu X, Perrizo W. Comprehensive vertical sample-based KNN/LSVM classification for gene expression analysis. J Biomed Inform. 2004;37:240–8.

    Article  CAS  PubMed  Google Scholar 

  56. Shanmugasundaram V, Maggiora GM, Lajiness MS. Hit-directed nearest-neighbor searching. J Med Chem. 2005;48:240–8.

    Article  CAS  PubMed  Google Scholar 

  57. Qi Y, Klein-Seetharaman J, Bar-Joseph Z. Random forest similarity for protein-protein interaction prediction from multiple sources. In:Pacific symposium on biocomputing; 2005. p. 531–42.

    Google Scholar 

  58. Barbini P, Cevenini G, Massai MR. Nearest-neighbor analysis of spatial point patterns: application to biomedical image interpretation. Comput Biomed Res. 1996;29:482–93.

    Article  CAS  PubMed  Google Scholar 

  59. McCulloch W, Pitts W. A logical calculus of the ideas immanent in nervous activity. Bull Math Biol. 1990;52:99–115.

    Article  CAS  PubMed  Google Scholar 

  60. Xue Q, Reddy BRS. Late potential recognition by artificial neural networks. Biomed Eng, IEEE Trans on. 1997;44:132–43.

    Article  CAS  Google Scholar 

  61. Khan J, Wei JS, Ringner M, Saal LH, Ladanyi M, Westermann F, et al. Classification and diagnostic prediction of cancers using gene expression profiling and artificial neural networks. Nat Med. 2001;7:673–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Jerez-Aragonés JM, Gómez-Ruiz JA, Ramos-Jiménez G, Muñoz-Pérez J, Alba-Conejo E. A combined neural network and decision trees model for prognosis of breast cancer relapse. Artif Intell Med. 2003;27:45–63.

    Article  PubMed  Google Scholar 

  63. Burke HB, Goodman PH, Rosen DB, Henson DE, Weinstein JN, FEH J, et al. Artificial neural networks improve the accuracy of cancer survival prediction. Cancer. 1997;79:857–62.

    Article  CAS  PubMed  Google Scholar 

  64. Lafferty J, McCallum A, Pereira F. Conditional random fields: Probabilistic models for segmenting and labeling sequence data. In:Machine learning-international workshop then conference; 2001. p. 282–9.

    Google Scholar 

  65. McCallum A, Freitag D, Pereira FCN. Maximum Entropy Markov models for information extraction and segmentation. In:Proceedings of the seventeenth international conference on machine learning: Morgan Kaufmann Publishers; 2000. p. 591–8. http://portal.acm.org/citation.cfm?id=658277. Accessed 20 Jul 2010.

  66. Settles B. ABNER: an open source tool for automatically tagging genes, proteins and other entity names in text. Bioinformatics. 2005;21:3191–2.

    Article  CAS  PubMed  Google Scholar 

  67. Leaman R, Gonzalez G. Banner: an executable survey of advances in biomedical named entity recognition. In: Pacific Symposium on Biocomputing. 2008. p. 652–663.

    Google Scholar 

  68. Bundschus M, Dejori M, Stetter M, Tresp V, Kriegel H-P. Extraction of semantic biomedical relations from text using conditional random fields. BMC Bioinforma. 2008;9:207.

    Article  CAS  Google Scholar 

  69. Sarafraz F, Eales J, Mohammadi R, Dickerson J, Robertson D, Nenadic G. Biomedical event detection using rules, conditional random fields and parse tree distances. In:Proceedings of the workshop on BioNLP: shared task. Boulder: Association for Computational Linguistics; 2009. p. 115–8. http://portal.acm.org/citation.cfm?id=1572340.1572359. Accessed 21 Jul 2010.

    Chapter  Google Scholar 

  70. Forgy E. Cluster analysis of multivariate data: efficiency vs. interpretability of classifications. Biometrics. 1965;21:768.

    Google Scholar 

  71. Jardine N, Sibson R. Mathematical taxonomy. Wiley; 1971.

    Google Scholar 

  72. McLachlan GJ, Basford KE. Mixture models: inference and applications to clustering. New York, N.Y.: Marcel Dekker; 1988.

    Google Scholar 

  73. Tamayo P, Slonim D, Mesirov J, Zhu Q, Kitareewan S, Dmitrovsky E, et al. Interpreting patterns of gene expression with self-organizing maps: methods and application to hematopoietic differentiation. Proc Natl Acad Sci USA. 1999;96:2907.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. De Smet F, Mathys J, Marchal K, Thijs G, De Moor B, Moreau Y. Adaptive quality-based clustering of gene expression profiles. Bioinformatics. 2002;18:735.

    Article  PubMed  Google Scholar 

  75. Sheng Q, Moreau Y, De Moor B. Biclustering microarray data by Gibbs sampling. Bioinformatics. 2003;19(2):196–205.

    Google Scholar 

  76. Schafer J, Strimmer K. An empirical Bayes approach to inferring large-scale gene association networks. Bioinformatics. 2005;21:754.

    Article  PubMed  Google Scholar 

  77. Deng L, Yu D. Deep learning: methods and applications. Found Trends Signal Process. 2014;7:197–387.

    Article  Google Scholar 

  78. Young T, Hazarika D, Poria S, Cambria E. Recent trends in deep learning based natural language processing. arXiv:170802709 [cs]. 2017. http://arxiv.org/abs/1708.02709. Accessed 6 Jul 2018.

  79. Salakhutdinov R, Mnih A, Hinton G. Restricted Boltzmann machines for collaborative filtering. In:Proceedings of the 24th international conference on machine learning. New York: ACM; 2007. p. 791–8. https://doi.org/10.1145/1273496.1273596.

    Chapter  Google Scholar 

  80. Hinton G, Osindero S, Teh Y-W. A fast learning algorithm for deep belief nets. Neural Comput. 2006;18:1527–54.

    Article  PubMed  Google Scholar 

  81. Vincent P, Larochelle H, Lajoie I, Bengio Y, Manzagol P-A. Stacked denoising autoencoders: learning useful representations in a deep network with a local denoising criterion. J Mach Learn Res. 2010;11:3371–408.

    Google Scholar 

  82. Krizhevsky A, Sutskever I, Hinton GE. Imagenet classification with deep convolutional neural networks. In: Advances in neural information processing systems. 2012. p. 1097–1105. http://papers.nips.cc/paper/4824-imagenet. Accessed 9 Feb 2015.

  83. Socher R, Lin CC, Manning C, Ng AY. Parsing natural scenes and natural language with recursive neural networks. In: Proceedings of the 28th international conference on machine learning (ICML-11). 2011. p. 129–136. http://machinelearning.wustl.edu/mlpapers/paper_files/ICML2011Socher_125.pdf. Accessed 9 Feb 2015.

  84. Iftene M, Liu Q, Wang Y. Very high resolution images classification by fine tuning deep convolutional neural networks. In: Eighth International Conference on Digital Image Processing (ICDIP 2016). International Society for Optics and Photonics; 2016. p. 100332D. https://doi.org/10.1117/12.2244339.

  85. Sager N, Friedman C, Chi E. The analysis and processing of clinical narrative. Fortschr Med. 1986;86:1101–5.

    Google Scholar 

  86. Sager N, Friedman C, Lyman MS. Medical language processing: computer management of narrative data. First Edition. Addison-Wesley; 1987.

    Google Scholar 

  87. Friedman C, Alderson PO, Austin JH, Cimino JJ, Johnson SB. A general natural-language text processor for clinical radiology. J Am Med Inform Assoc. 1994;1:161–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Gold S, Elhadad N, Zhu X, Cimino JJ, Hripcsak G. Extracting structured medication event information from discharge summaries. AMIA Annu Symp Proc. 2008;2008:237–41.

    PubMed Central  Google Scholar 

  89. Xu H, Stenner SP, Doan S, Johnson KB, Waitman LR, Denny JC. MedEx: a medication information extraction system for clinical narratives. J Am Med Inform Assoc. 2010;17:19–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Haug PJ, Koehler S, Lau LM, Wang P, Rocha R, Huff SM. Experience with a mixed semantic/syntactic parser. In:Proceedings of the annual symposium on computer application in medical care; 1995. p. 284–8.

    Google Scholar 

  91. Fiszman M, Chapman WW, Aronsky D, Evans RS, Haug PJ. Automatic detection of acute bacterial pneumonia from chest X-ray reports. J Am Med Inform Assoc. 2000;7:593–604.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Agarwal S, Yu H. Biomedical negation scope detection with conditional random fields. J Am Med Inform Assoc. 2010;17:696–701.

    Article  PubMed  PubMed Central  Google Scholar 

  93. Agarwal S, Yu H. Detecting hedge cues and their scope in biomedical literature with conditional random fields. J Biomed Inform. 2010;43(6):953–61. https://doi.org/10.1016/j.jbi.2010.08.003.

    Article  PubMed  PubMed Central  Google Scholar 

  94. Vincze V, Szarvas G, Farkas R, Mora G, Csirik J. The BioScope corpus: biomedical texts annotated for uncertainty, negation and their scopes. BMC Bioinforma. 2008;9(11):S9.

    Article  CAS  Google Scholar 

  95. Li Z, Liu F, Antieau L, Cao Y, Yu H. Lancet: a high precision medication event extraction system for clinical text. J Am Med Inform Assoc. 2010;17:563–7.

    Article  PubMed  PubMed Central  Google Scholar 

  96. Rennie J. Boosting with decision stumps and binary features. Relation. 2003;10 1.33:1666.

    Google Scholar 

  97. Cao Y, Liu F, Simpson P, Antieau L, Bennett A, Cimino JJ, et al. AskHERMES: an online question answering system for complex clinical questions. J Biomed Inform. 2011;44:277–88.

    Article  PubMed  PubMed Central  Google Scholar 

  98. Cao Y, Cimino JJ, Ely J, Yu H. Automatically extracting information needs from complex clinical questions. J Biomed Inform. In Press, Uncorrected Proof. https://doi.org/10.1016/j.jbi.2010.07.007.

    Article  PubMed  PubMed Central  Google Scholar 

  99. Liu F, Tur G, Hakkani-Tür D, Yu H. Towards spoken clinical question answering: evaluating and adapting automatic speech recognition systems for spoken clinical questions. J Am Med Inform Assoc. 2011;18:625–30.

    Article  PubMed  PubMed Central  Google Scholar 

  100. Stolcke A, Anguera X, Boakye K, Çetin Ö, A Janin Mandal A, et al. Further progress in meeting recognition: the ICSI-SRI spring 2005 speech-to-text evaluation system. 3869, LNCS, MLMI Workshop. 2005;78:463–75.

    Google Scholar 

  101. Wang Y, Wang L, Rastegar-Mojarad M, Moon S, Shen F, Afzal N, et al. Clinical information extraction applications: a literature review. J Biomed Inform. 2018;77:34–49.

    Article  PubMed  Google Scholar 

  102. Roberts K, Rink B, Harabagiu SM, Scheuermann RH, Toomay S, Browning T, et al. A machine learning approach for identifying anatomical locations of actionable findings in radiology reports. AMIA Annu Symp Proc. 2012;2012:779–88.

    PubMed  PubMed Central  Google Scholar 

  103. Li Q, Spooner SA, Kaiser M, Lingren N, Robbins J, Lingren T, et al. An end-to-end hybrid algorithm for automated medication discrepancy detection. BMC Med Inform Decis Mak. 2015;15 https://doi.org/10.1186/s12911-015-0160-8.

  104. Sarker A, Gonzalez G. Portable automatic text classification for adverse drug reaction detection via multi-corpus training. J Biomed Inform. 2015;53:196–207.

    Article  PubMed  Google Scholar 

  105. Rochefort CM, Buckeridge DL, Forster AJ. Accuracy of using automated methods for detecting adverse events from electronic health record data: a research protocol. Implement Sci. 2015;10:5.

    Article  PubMed  PubMed Central  Google Scholar 

  106. Yadav K, Sarioglu E, Smith M, Choi H-A. Automated outcome classification of emergency department computed tomography imaging reports. Acad Emerg Med. 2013;20:848–54.

    Article  PubMed  PubMed Central  Google Scholar 

  107. Barrett N, Weber-Jahnke JH, Thai V. Engineering natural language processing solutions for structured information from clinical text: extracting sentinel events from palliative care consult letters. Stud Health Technol Inform. 2013;192:594–8.

    PubMed  Google Scholar 

  108. Tang B, Cao H, Wang X, Chen Q, Xu H. Evaluating word representation features in biomedical named entity recognition tasks. Biomed Res Int. 2014;2014(240403):1–6.

    Google Scholar 

  109. Liu S, Tang B, Chen Q, Wang X. Effects of semantic features on machine learning-based drug name recognition systems: word embeddings vs. manually constructed dictionaries. Information. 2015;6:848–65.

    Article  Google Scholar 

  110. De Vine L, Zuccon G, Koopman B, Sitbon L, Bruza P. Medical semantic similarity with a neural language model. In: Proceedings of the 23rd ACM international conference on conference on information and knowledge management. ACM; 2014. p. 1819–1822. http://dl.acm.org/citation.cfm?id=2661974. Accessed 4 Jun 2016.

  111. Wu Y, Xu J, Zhang Y, Xu H. Clinical abbreviation disambiguation using neural word embeddings. In:Proceedings of the 2015 workshop on biomedical natural language processing; 2015. p. 171–6.

    Google Scholar 

  112. Liu Y, Ge T, Mathews KS, Ji H, McGuinness DL. Exploiting task-oriented resources to learn word embeddings for clinical abbreviation expansion. In:Proceedings of the 2015 workshop on biomedical natural language processing; 2015. p. 92–7.

    Google Scholar 

  113. Henriksson A, Kvist M, Dalianis H, Duneld M. Identifying adverse drug event information in clinical notes with distributional semantic representations of context. J Biomed Inform. 2015;57:333–49.

    Article  PubMed  Google Scholar 

  114. Ghassemi MM, Mark RG, Nemati S. A visualization of evolving clinical sentiment using vector representations of clinical notes. In: 2015 Computing in cardiology conference (CinC). 2015. p. 629–32.

    Google Scholar 

  115. Choi E, Bahadori MT, Searles E, Coffey C, Sun J. Multi-layer representation learning for medical concepts. In: Proceedings of 22nd ACM SIGKDD conference on knowledge discovery and data mining. 2016. http://arxiv.org/abs/1602.05568. Accessed 10 Mar 2016.

  116. Choi Y, Chiu CY-I, Sontag D. Learning low-dimensional representations of medical concepts. AMIA Jt Summits Transl Sci Proc. 2016;2016:41–50.

    PubMed  PubMed Central  Google Scholar 

  117. Jagannatha A, Yu H. Bidirectional RNN for medical event detection in electronic health records. San Diego; 2016. p. 473–82. https://www.aclweb.org/anthology/N/N16/N16-1056.pdf.

  118. Jagannatha A, Yu H. Structured prediction models for RNN based sequence labeling in clinical text. 2016. https://arxiv.org/abs/1608.00612. Accessed 28 Aug 2016.

  119. Munkhdalai T, Liu F, Yu H. Clinical relation extraction toward drug safety surveillance using electronic health record narratives: classical learning versus deep learning. JMIR Public Health Surveill. 2018;4:e29.

    Article  PubMed  PubMed Central  Google Scholar 

  120. Li R, Yu H. A hybrid neural network model for joint prediction of medical presence and period assertions in clinical notes. In: AMIA fall symposium. 2017.

    Google Scholar 

  121. Choi E, Bahadori MT, Sun J. Doctor AI. Predicting clinical events via recurrent neural networks. arXiv:151105942 [cs]. 2015. http://arxiv.org/abs/1511.05942. Accessed 9 Mar 2016.

  122. Cho K, van Merrienboer B, Gulcehre C, Bougares F, Schwenk H, Bengio Y. Learning phrase representations using rnn encoder-decoder for statistical machine translation. arXiv preprint arXiv:14061078. 2014.

    Google Scholar 

  123. Miotto R, Li L, Kidd BA, Dudley JT. Deep patient: an unsupervised representation to predict the future of patients from the electronic health records. Sci Rep. 2016;6:26094. https://doi.org/10.1038/srep26094.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Shin H-C, Lu L, Kim L, Seff A, Yao J, Summers RM. Interleaved text/image deep mining on a large-scale radiology database. In: 2015 IEEE conference on computer vision and pattern recognition (CVPR). 2015. p. 1090–9.

    Google Scholar 

  125. Wang X, Peng Y, Lu L, Lu Z, Summers RM. Tienet: text-image embedding network for common thorax disease classification and reporting in chest x-rays. In: Proceedings of the IEEE conference on computer vision and pattern recognition. 2018. p. 9049–58.

    Google Scholar 

  126. Gupta D, Saul M, Gilbertson J. Evaluation of a deidentification (De-Id) software engine to share pathology reports and clinical documents for research. Am J Clin Pathol. 2004;121:176–86.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feifan Liu PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Liu, F., Weng, C., Yu, H. (2019). Advancing Clinical Research Through Natural Language Processing on Electronic Health Records: Traditional Machine Learning Meets Deep Learning. In: Richesson, R., Andrews, J. (eds) Clinical Research Informatics. Health Informatics. Springer, Cham. https://doi.org/10.1007/978-3-319-98779-8_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-98779-8_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-98778-1

  • Online ISBN: 978-3-319-98779-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics