Skip to main content

Osteoporosis in Klinefelter Syndrome

  • Chapter
  • First Online:
Male Osteoporosis

Part of the book series: Trends in Andrology and Sexual Medicine ((TASM))

  • 334 Accesses

Abstract

Osteoporosis is present in up to 40% of subjects with Klinefelter syndrome and has usually been attributed to low testosterone levels. Hypogonadism represents one of the most important causes of male osteoporosis. Testosterone regulates male bone metabolism both indirectly by aromatization to estrogens and directly through the androgen receptor on osteoblasts, promoting periosteal bone formation during puberty and reducing bone resorption during adult life. Early onset of testosterone deficiency, as observed in KS, is an important risk factor for precocious osteoporosis. However, reduced bone mass might be present also in KS men with normal testosterone levels, and testosterone replacement therapy does not always restore bone density in KS patients. Possible new determinants for osteoporosis in KS might be related to the AR function, insulin-like factor 3 (INSL3), and 25-hydroxyvitamin D levels. The CAG length and inactivation pattern of the AR in KS have been related to osteoporosis, but definitive proof is lacking. INSL3 has an anabolic role on bone metabolism by acting on osteoblasts, and INSL3 levels are low in KS. Therefore, low INSL3 concentrations might represent a possible new pathogenic mechanism for reduced bone mass in KS. Recent studies suggest that low 25-hydroxyvitamin D levels have a more critical role than low T levels in inducing low BMD in KS subjects and that vitamin D supplementation seems to be more effective than T replacement therapy alone in increasing BMD.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bojesen A, Juul S, Birkebaek NH, Gravholt CH (2006) Morbidity in Klinefelter syndrome: a Danish register study based on hospital discharge diagnoses. J Clin Endocrinol Metab 91:1254–1260

    CAS  PubMed  Google Scholar 

  2. Aksglaede L, Molgaard C, Skakkebaek NE, Juul A (2008) Normal bone mineral content but unfavourable muscle/fat ratio in Klinefelter syndrome. Arch Dis Child 93:30–34

    CAS  PubMed  Google Scholar 

  3. Breuil V, Euller-Ziegler L (2001) Gonadal dysgenesis and bone metabolism. Joint Bone Spine 68:26–33

    CAS  PubMed  Google Scholar 

  4. Van den Bergh JP, Hermus AR, Spruyt AI, Sweep CG, Corstens FH, Smals AG (2001) Bone mineral density and quantitative ultrasound parameters in patients with Klinefelter’s syndrome after long-term testosterone substitution. Osteoporos Int 12:55–62

    PubMed  Google Scholar 

  5. Luisetto G, Mastrogiacomo I, Bonanni G, Pozzan G, Botteon S, Tizian L, Galuppo P (1995) Bone mass and mineral metabolism in Klinefelter’s syndrome. Osteoporos Int 5:455–461

    CAS  PubMed  Google Scholar 

  6. Stepan JJ, Burckhardt P, Hána V (2003) The effects of three-month intravenous ibandronate on bone mineral density and bone remodeling in Klinefelter’s syndrome: the influence of vitamin D deficiency and hormonal status. Bone 33:589–596

    CAS  PubMed  Google Scholar 

  7. Foresta C, Ruzza G, Mioni R, Meneghello A, Baccichetti C (1983) Testosterone and bone loss in Klinefelter syndrome. Horm Metab Res 15:56–57

    CAS  PubMed  Google Scholar 

  8. Kubler A, Schulz G, Cordes U, Beyer J, Krause U (1992) The influence of testosterone substitution on bone mineral density in patients with Klinefelter’s syndrome. Exp Clin Endocrinol 100:129–132

    CAS  PubMed  Google Scholar 

  9. Seo JT, Lee JS, Oh TH, Joo KJ (2007) The clinical significance of bone mineral density and testosterone levels in Korean men with non-mosaic Klinefelter’s syndrome. BJU Int 99:141–146

    CAS  PubMed  Google Scholar 

  10. Delmas PD, Meunier PJ (1981) L’ostéoporose au cours du syndrome de Klinefelter. Données histologiques osseuses quantitatives dans cinq cas. Relation avec la carence hormonale. La Nouvelle Presse Médicale 10:687–690

    CAS  PubMed  Google Scholar 

  11. Wong FH, Pun KK, Wang C (1993) Loss of bone mass in patients with Klinefelter’s syndrome despite sufficient testosterone replacement. Osteoporos Int 3:3–7

    CAS  PubMed  Google Scholar 

  12. Ferlin A, Selice R, Di Mambro A, Ghezzi M, Di Nisio A, Caretta N, Foresta C (2015) Role of vitamin D levels and vitamin D supplementation on bone mineral density in Klinefelter syndrome. Osteoporos Int 26:2193–2202

    CAS  PubMed  Google Scholar 

  13. Eulry F, Bauduceau B, Lechevalier D, Magnin J, Flageat J, Gautier D (1993) Reduced spinal bone mass in Klinefelter syndrome. Computed tomography findings in sixteen cases. Rev Rhum Engl Ed 60:251–254

    Google Scholar 

  14. Choi HR, Lim SK, Lee MS (1995) Site-specific effect of testosterone on bone mineral density in male hypogonadism. J Korean Med Sci 1:431–435

    Google Scholar 

  15. Ishikawa T, Yamaguchi K, Kondo Y, Takenaka A, Fujisawa M (2008) Metabolic syndrome in men with Klinefelter’s syndrome. Urology 71:1109–1113

    PubMed  Google Scholar 

  16. Chamberlain NL, Driver ED, Miesfeld RL (1994) The length and location of CAG trinucleotide repeats in the androgen receptor N-terminal domain affect transactivation function. Nucleic Acids Res 22:3181–3186

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Zitzmann M, Brune M, Kornmann B, Gromoll J, Junker R, Nieschlag E (2001) The CAG repeat polymorphism in the androgen receptor gene affects bone density and bone metabolism in healthy males. Clin Endocrinol 55:649–657

    CAS  Google Scholar 

  18. Zitzmann M, Nieschlag E (2003) The CAG repeat polymorphism within the androgen receptor gene and maleness. Int J Androl 26:76–83

    CAS  PubMed  Google Scholar 

  19. Stiger F, Brandstrom H, Gillberg P, Melhus H, Wolk A, Michaelsson K, Kindmark A (2008) Association between repeat length of exon 1 CAG microsatellite in the androgen receptor and bone density in men is modulated by sex hormone levels. Calcif Tissue Int 82:427–435

    CAS  PubMed  Google Scholar 

  20. Grigorescu A, Klepsch I (1983) Es¸anu C, Rivera T, Popescu H. receptivity disorders in gonadal dysgeneses. i. Klinefelter’s syndrome. Endocrinologie 21:55–65

    CAS  PubMed  Google Scholar 

  21. Gautier D, Bauduceau B (1990) Syndrome de Klinefelter. Encycl Me’d Chir (Paris, France), Glandes Endocrines. Nutrition 10032:E20:6

    Google Scholar 

  22. Meurer M, Kuhnle U, Lindl U, Keller U (1993) Androgen receptors in Klinefelter’s syndrome. Lancet 341:1351

    CAS  PubMed  Google Scholar 

  23. Wikstrom AM, Hoei-Hansen CE, Dunkel L, Rajpert-De ME (2007) Immunoexpression of androgen receptor and nine markers of maturation in the testes of adolescent boys with Klinefelter syndrome: evidence for degeneration of germ cells at the onset of meiosis. J Clin Endocrinol Metab 92:714–719

    CAS  PubMed  Google Scholar 

  24. Kotula-Balak M, Bablok L, Fracki S, Jankowska A, Bilińska B (2004) Immunoexpression of androgen receptors and aromatase in testes of patient with Klinefelter’s syndrome. Folia Histochem Cytobiol 42:215–220

    PubMed  Google Scholar 

  25. Iitsuka Y, Bock A, Nguyen DD, Samango-Sprouse CA, Simpson JL, Bischoff FZ (2001) Evidence of skewed X-chromosome inactivation in 47,XXY and 48,XXYY Klinefelter patients. Am J Med Genet 98:25–31

    CAS  PubMed  Google Scholar 

  26. Zitzmann M, Depenbusch M, Gromoll J, Nieschlag E (2004) X-chromosome inactivation patterns and androgen receptor functionality influence phenotype and social characteristics as well as pharmacogenetics of testosterone therapy in Klinefelter patients. J Clin Endocrinol Metab 89:6208–6217

    CAS  PubMed  Google Scholar 

  27. Foresta C, Bettella A, Vinanzi C, Dabrilli P, Meriggiola MC, Garolla A, Ferlin A (2004) A novel circulating hormone of testis origin in humans. J Clin Endocrinol Metab 89:5952–5958

    CAS  PubMed  Google Scholar 

  28. Ferlin A, Pepe A, Gianesello L, Garolla A, Feng S, Facciolli A, Morello R, Agoulnik AI, Foresta C (2009) New roles for INSL3 in adults. Ann N Y Acad Sci 1160:215–218

    CAS  PubMed  Google Scholar 

  29. Ivell R, Anand-Ivell R (2009) Biology of insulin-like factor 3 in human reproduction. Hum Reprod Update 15:463–476

    CAS  PubMed  Google Scholar 

  30. Zimmermann S, Steding G, Emmen JM, Brinkmann AO, Nayernia K, Holstein AF, Engel W, Adham IM (1999) Targeted disruption of the Insl3 gene causes bilateral cryptorchidism. Mol Endocrinol 13:681–691

    CAS  PubMed  Google Scholar 

  31. Gorlov IP, Kamat A, Bogatcheva NV, Jones E, Lamb DJ, Truong A, Bishop CE, McElreavey K, Agoulnik AI (2002) Mutations of the GREAT gene cause cryptorchidism. Hum Mol Genet 11:2309–2318

    CAS  PubMed  Google Scholar 

  32. Bay K, Hartung S, Ivell R, Schumacher M, Jurgensen D, Jorgensen N, Holm M, Skakkebaek NE, Andersson AM (2005) Insulin-like factor 3 serum levels in 135 normal men and 85 men with testicular disorders: relationship to the luteinizing hormone-testosterone axis. J Clin Endocrinol Metab 90:3410–3418

    CAS  PubMed  Google Scholar 

  33. Ferlin A, Arredi B, Zuccarello D, Garolla A, Selice R, Foresta C (2006) Paracrine and endocrine roles of insulin-like factor 3. J Endocrinol Investig 29:657–664

    CAS  Google Scholar 

  34. Bay K, Virtanen HE, Hartung S, Ivell R, Main KM, Skakkebaek NE, Andersson AM, Nordic Cryptorchidism Study Group, Toppari J (2007) Insulin-like factor 3 levels in cord blood and serum from children: effects of age, postata hypothalamic–pituitary–gonadal axis activation, and cryptorchidism. J Clin Endocrinol Metab 92:4020–4027

    CAS  PubMed  Google Scholar 

  35. Ferlin A, Garolla A, Rigon F, Rasi Caldogno L, Lenzi A, Foresta C (2006) Changes in serum insulin-like factor 3 during normal male puberty. J Clin Endocrinol Metab 91:3426–3431

    CAS  PubMed  Google Scholar 

  36. Anand-Ivell R, Wohlgemuth J, Haren MT, Hope PJ, Hatzinikolas G, Wittert G, Ivell R (2006) Peripheral INSL3 concentrations decline with age in a large population of Australian men. Int J Androl 29:618–626

    CAS  PubMed  Google Scholar 

  37. Overbeek PA, Gorlov IP, Sutherland RW, Houston JB, Harrison WR, Boettger-Tong HL, Bishop CE, Agoulnik AI (2001) A transgenic insertion causing cryptorchidism in mice. Genesis 30:26–35

    CAS  PubMed  Google Scholar 

  38. Hsu SY, Nakabayashi K, Nishi S, Kumagai J, Kudo M, Sherwood OD, Hsueh AJ (2002) Activation of orphan receptors by the hormone relaxin. Science 295:671–674

    CAS  PubMed  Google Scholar 

  39. Kawamura K, Kumagai J, Sudo S, Chun SY, Pisarska M, Morita H, Toppari J, Fu P, Wade JD, Bathgate RA et al (2004) Paracrine regulation of mammalian oocyte maturation and male germ cell survival. Proc Natl Acad Sci U S A 101:7323–7328

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Hombach-Klonisch S, Hoang-Vu C, Kehlen A, Hinze R, Holzhausen HJ, Weber E, Fischer B, Dralle H, Klonisch T (2003) INSL-3 is expressed in human hyperplastic and neoplastic thyrocytes. Int J Oncol 22:993–1001

    CAS  PubMed  Google Scholar 

  41. Hombach-Klonisch S, Buchmann J, Sarun S, Fischer B, Klonisch T (2000) Relaxin-like factor (RLF) is differentially expressed in the normal and neoplastic human mammary gland. Cancer 89:2161–2168

    CAS  PubMed  Google Scholar 

  42. Ferlin A, Pepe A, Gianesello L, Garolla A, Feng S, Giannini S, Zaccolo M, Facciolli A, Morello R, Agoulnik AI et al (2008) Mutations in the insulin-like factor 3 receptor are associated with steoporosis. J Bone Miner Res 23:683–693

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Wikström AM, Bay K, Hero M, Andersson AM, Dunkel L (2006) Serum insulin-like factor 3 levels during puberty in healthy boys and boys with Klinefelter syndrome. J Clin Endocrinol Metab 91:4705–4708

    PubMed  Google Scholar 

  44. Battault S, Whiting SJ, Peltier SL, Sadrin S, Gerber G, Maixent JM (2013) Vitamin D metabolism, functions and needs: from science to health claims. Eur J Nutr 52:429–441

    CAS  PubMed  Google Scholar 

  45. Lips P (2001) Vitamin D deficiency and secondary hyperparathyroidism in the elderly: consequences for bone loss and fractures and therapeutic implications. Endocr Rev 22:477–501

    CAS  PubMed  Google Scholar 

  46. Choudhary D, Jansson I, Stoilov I, Sarfarazi M, Schenkman JB (2005) Expression patterns of mouse and human CYP orthologs (families 1-4) during development and in different adult tissues. Arch Biochem Biophys 436:50–61

    CAS  PubMed  Google Scholar 

  47. Blomberg Jensen M, Nielsen JE, Jørgensen A, Rajpert-De Meyts E, Kristensen DM, Jørgensen N, Skakkebaek NE, Juul A, Leffers H (2010) Vitamin D receptor and vitamin D metabolizing enzymes are expressed in the human male reproductive tract. Hum Reprod 25:1303–1311

    CAS  PubMed  Google Scholar 

  48. Ferlin A, Selice R, Carraro U, Foresta C (2013) Testicular function and bone metabolism-beyond testosterone. Nat Rev Endocrinol 9:548–554

    CAS  PubMed  Google Scholar 

  49. Ferlin A, Schipilliti M, Vinanzi C, Garolla A, Di Mambro A, Selice R, Lenzi A, Foresta C (2011) Bone mass in subjects with Klinefelter syndrome: role of testosterone levels and androgen receptor gene CAG polymorphism. J Clin Endocrinol Metab 96:739–745

    Google Scholar 

  50. Overvad S, Bay K, Bojesen A, Gravholt CH (2014) Low INSL3 in Klinefelter syndrome is related to osteocalcin, testosterone treatment and body composition, as well as measures of the hypothalamic-pituitary-gonadal axis. Andrology 2:421–427

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Selice, R. (2020). Osteoporosis in Klinefelter Syndrome. In: Ferlin, A., Migliaccio, S. (eds) Male Osteoporosis. Trends in Andrology and Sexual Medicine. Springer, Cham. https://doi.org/10.1007/978-3-319-96376-1_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-96376-1_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-96375-4

  • Online ISBN: 978-3-319-96376-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics