Skip to main content

Treatment Goals in Diabetic Nephropathy

  • Chapter
  • First Online:
Diabetic Nephropathy

Abstract

Diabetic nephropathy is clinically characterised by albuminuria and progressive loss of kidney function (GFR) in patients with type 1 as well as type 2 diabetes. Optimal therapy is needed to prevent progression of diabetic renal and associated cardiovascular disease. A combined, aggressive approach (optimal blood pressure, glucose and lipid management in addition to lifestyle changes) is needed to improve the prognosis of patients with diabetic nephropathy, taking into account the disadvantages in frailty patients. Therefore one has to adapt treatment goals to the individual needs and characteristics of patients, depending on age, comorbidity, vascular complications and life expectancy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hemmelgarn BR, Manns BJ, Lloyd A, et al. Relation between kidney function, proteinuria, and adverse outcomes. JAMA. 2010;303:423–9.

    Article  CAS  Google Scholar 

  2. van der Velde M, Matsushita K, Coresh J, et al. Lower estimated glomerular filtration rate and higher albuminuria are associated with all- cause and cardiovascular mortality. A collaborative meta-analysis of high-risk population cohorts. Kidney Int. 2011;79:1341–52.

    Article  Google Scholar 

  3. Mogensen CE. Microalbuminuria predicts clinical proteinuria and early mortality in maturity-onset diabetes. N Engl J Med. 1984;310:356–60.

    Article  CAS  Google Scholar 

  4. Groop P-H, Thomas MC, Moran JL, Wadèn J, Thorn LM, Mäkinen V-P, Rosengård-Bärlund M, Saraheimo M. The presence and severity of chronic kidney disease predicts all-cause mortality in type 1 diabetes. Diabetes. 2009;58:1651–8.

    Article  CAS  Google Scholar 

  5. Molitch ME, Steffes M, Sun W, et al. Development and progression of renal insufficiency with and without albuminuria in adults with type 1 diabetes in the diabetes control and complications trial and the epidemiology of diabetes interventions and complications study. Diabetes Care. 2010;33:1536–43.

    Article  CAS  Google Scholar 

  6. Amin AP, Whaley-Connell AT, Li S, et al. The synergistic relationship between estimated GFR and microalbuminuria in predicting long-term progression to ESRD or death in patients with diabetes: results from the kidney early evaluation program (KEEP). Am J Kidney Dis. 2013;61(4 Suppl 2):S12–23.

    Article  Google Scholar 

  7. Adler AI, Stevens RJ, Manley SE, et al. Development and progression of nephropathy in type 2 diabetes: the United Kingdom prospective diabetes study (UKPDS 64). Kidney Int. 2003;63:225–32.

    Article  Google Scholar 

  8. So WY, Kong AP, Ma RC, et al. Glomerular filtration rate, cardiorenal end points, and all-cause mortality in type 2 diabetic patients. Diabetes Care. 2006;29:2046–52.

    Article  Google Scholar 

  9. Guideline Development Group. Clinical practice guideline on management of patients with diabetes and chronic kidney disease stage 3b or higher (eGFR<45 mL/min). Nephrol Dial Transplant. 2015;30:ii1–ii142.

    Article  Google Scholar 

  10. KDOQI. Clinical practice guideline for diabetes and CKD: 2012 update. Am J Kidney Dis. 2012;60:850–86.

    Article  Google Scholar 

  11. Molitch ME, Adler AI, Flyvbjerg A, et al. Diabetic kidney disease: a clinical update form kidney disease: improving global outcomes. Kidney Int. 2015;87:20–30.

    Article  Google Scholar 

  12. Alicic RZ, Rooney MT, Tuttle KR. Diabetic kidney disease: challenges, progress, and possibilities. Clin J Am Soc Nephrol. 2017;12:2032–45.

    Article  Google Scholar 

  13. Coffey JT, Brandle M, Zhou H, et al. Valuing health-related quality of life in diabetes. Diabetes Care. 2002;25:2238–43.

    Article  Google Scholar 

  14. Viberti G, Mogensen CE, Groop LC, Pauls JF. Effect of captopril on progression to clinical proteinuria in patients with insulin-dependent diabetes mellitus and microalbuminuria. European Microalbuminuria Captopril Study Group. JAMA. 1994;271:275–9.

    Article  CAS  Google Scholar 

  15. Lewis EJ, Hunsicker LG, Bain RP, Rohde RD. The effect of angiotensin-converting-enzyme inhibition on diabetic nephropathy. The collaborative study group. N Engl J Med. 1993;329:1456–62.

    Article  CAS  Google Scholar 

  16. Hebert LA, Bain RP, Verme D, et al. Remission of nephrotic range proteinuria in type 1 diabetes. Collaborative Study Group. Kidney Int. 1994;46:1688–93.

    Article  CAS  Google Scholar 

  17. Adler AI, Stratton IM, Ha N, et al. Association of systolic blood pressure with macrovascular and microvascular complications in type 2 diabetes (UKPDS 36): prospective observational study. BMJ. 2000;321:412–9.

    Article  CAS  Google Scholar 

  18. de Galan BE, Perkovic V, Ninomiya T, ADVANCE Collaborative Group, et al. Lowering blood pressure reduces renal events in type 2 diabetes. J Am Soc Nephrol. 2009;20:883–92.

    Article  Google Scholar 

  19. Bakris GL, Weir MR, Shanifar S, RENAAL Study Group, et al. Effects of blood pressure level on progression of diabetic nephropathy: results from the RENAAL study. Arch Intern Med. 2003;163:1555–65.

    Article  Google Scholar 

  20. Pohl MA, Blumenthal S, Cordonnier DJ, et al. Independent and additive impact of blood pressure control and angiotensin II receptor blockade on renal outcomes in the irbesartan diabetic nephropathy trial: clinical implications and limitations. J Am Soc Nephrol. 2005;16:3027–37.

    Article  CAS  Google Scholar 

  21. Brenner BM, Cooper ME, de Zeeuw D, et al. Effects of losartan on renal and cardiovascular outcomes in patients with type 2 diabetes mellitus and overt nephropathy. N Engl J Med. 2001;345:861–9.

    Article  CAS  Google Scholar 

  22. Fried LF, Emanuele N, Zhang JH, et al. Combined angiotensin inhibition for the treatment of diabetic nephropathy. N Engl J Med. 2013;369:1892–903.

    Article  CAS  Google Scholar 

  23. SPRINT Research Group, Wright JT Jr, Williamson JD, Whelton PK, et al. A randomized trial of intensive versus standard blood-pressure control. N Engl J Med. 2015;373:2103–16.

    Article  Google Scholar 

  24. Perkovic V, Rodgers A. Redefining blood-pressure targets-SPRINT starts the marathon. N Engl J Med. 2015;373:2175–8.

    Article  Google Scholar 

  25. Cushman WC, Evans GW, Byington RP, ACCORD study group, et al. Effects of intensive blood-pressure control in type 2 diabetes mellitus. N Engl J Med. 2010;362:1575–85.

    Article  Google Scholar 

  26. Obi Y, Kalantar-Zadeh K, Shintani A, Kovesdy CP, Hamano T. Estimated glomerular filtration rate and the risk-benefit profile of intensive blood pressure control amongst nondiabetic patients: a post hoc analysis of a randomized clinical trial. J Intern Med. 2018;283:314–27. https://doi.org/10.1111/joim.12701. [Epub ahead of print]

    Article  CAS  PubMed  Google Scholar 

  27. Doshi SM, Friedman AN. Diagnosis and management of type 2 diabetic kidney disease. Clin J Am Soc Nephrol. 2017;12:1366–73.

    Article  Google Scholar 

  28. Tong L, Adler SG. Diabetic kidney disease. Clin J Am Soc Nephrol. 2018;13:335–8 pii: CJN.04650417. [Epub ahead of print]. https://doi.org/10.2215/CJN.04650417.

    Article  PubMed  Google Scholar 

  29. The Diabetes Control and Complications (DCCT) Research Group. Effect of intensive therapy on the development and progression of diabetic nephropathy in the diabetes control and complications trial. Kidney Int. 1995;47:1703–20.

    Article  Google Scholar 

  30. Nathan DM, The Epidemiology of Diabetes Interventions and Complications (EDIC) Study. Sustained effect of intensive treatment of type 1 diabetes mellitus on development and progression of diabetic nephropathy. JAMA. 2003;290:2159–67.

    Article  Google Scholar 

  31. Nathan DM, DCCT/EDIC Research Group. The diabetes control and complications trial/epidemiology of diabetes interventions and complications study at 30 years: overview. Diabetes Care. 2014;37:9–16.

    Article  CAS  Google Scholar 

  32. DCCT/EDIC Research Group, de Boer IH, Sun W, Clearly PA, et al. Intensive diabetes therapy and glomerular filtration rate in type 1 diabetes. N Engl J Med. 2011;365:2366–76.

    Article  Google Scholar 

  33. UK Prospective Diabetes Study (UKPDS) Group. Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33). Lancet. 1998;352:837–53.

    Article  Google Scholar 

  34. Holman RR, Paul SK, Bethel MA, et al. 10-year follow-up of intensive glucose control in type 2 diabetes. N Engl J Med. 2008;359:1577–89.

    Article  CAS  Google Scholar 

  35. Bilous R. Microvascular disease: what does the UKPDS tell us about diabetic nephropathy? Diabet Med. 2008;25(Suppl 2):25–9.

    Article  Google Scholar 

  36. Reidy K, Kang HM, Hostetter T, Susztak K. Molecular mechanisms of diabetic kidney disease. J Clin Invest. 2014;124:2333–40.

    Article  CAS  Google Scholar 

  37. Khullar M, Cheema BS, Raut S. Emerging evidence of epigenetic modifications in vascular complication of diabetes. Front Endocrinol. 2017;8:237. https://doi.org/10.3389/fendo.2017.00237.

    Article  Google Scholar 

  38. Duckworth W, Abraira C, Moritz T, VADT Investigators, et al. Glucose control and vascular complications in veterans with type 2 diabetes. N Engl J Med. 2009;360:129–39.

    Article  CAS  Google Scholar 

  39. Perkovic V, Heersprink HL, Chalmers J, ADVANCE Collaborative Group, et al. Intensive glucose control improves kidney outcomes in type 2 diabetes. Kidney Int. 2013;83:517–23.

    Article  CAS  Google Scholar 

  40. Ismail-Beigi F, Craven T, Banerji MA, ACCORD trial group, et al. Effect of intensive treatment of hyperglycaemia on microvascular outcomes in type 2 diabetes: An analysis of the ACCORD randomised trial. Lancet. 2010;376:419–30.

    Article  Google Scholar 

  41. Fioretto P, Steffes MW, Sutherland DE, et al. Reversal of lesions of diabetic nephropathy after pancreas transplantation. N Engl J Med. 1998;339:69–75.

    Article  CAS  Google Scholar 

  42. Fioretto P, Sutherland DE, Najafian B, Mauer M. Remodelling of renal interstitial and tubular lesions in pancreas transplant recipients. Kidney Int. 2006;69:907–12.

    Article  CAS  Google Scholar 

  43. Fioretto P, Zambon A, Rossato M, Busetto L, Vettor R. SGLT2 inhibitors and the diabetic kidney. Diabetes Care. 2016;39(Suppl 2):S165–71.

    Article  CAS  Google Scholar 

  44. Anders H-J, Davis JM, Thurau K. Nephron protection in diabetic kidney disease. N Engl J Med. 2016;375:2096–8.

    Article  Google Scholar 

  45. Tonneijck L, Muskiet MHA, Smits MM, et al. Glomerular hyperfiltration in diabetes: mechanisms, clinical significance, and treatment. J Am Soc Nephrol. 2017;28:1023–39.

    Article  Google Scholar 

  46. Wanner C, Inzucchi SE, Lachin JM, EMPA-REG OUTCOME Investigators, et al. Empagliflozin and progression of kidney disease in type 2 diabetes. N Engl J Med. 2016;375:323–34.

    Article  CAS  Google Scholar 

  47. Neal B, Perkovic V, Mahaffey KW, for the CANVAS Program Collaborative Group, et al. Canagliflozin and cardiovascular and renal events in type 2 diabetes. N Engl J Med. 2017;377:644–57.

    Article  CAS  Google Scholar 

  48. Muskiet MH, Tonneijck L, Smits MM, et al. GLP-1 and the kidney: from physiology to pharmacology and outcomes in diabetes. Nat Rev Nephrol. 2017;13:605–28.

    Article  CAS  Google Scholar 

  49. Marso SP, Daniels GH, Brown-Frandsen K, LEADER Steering Committee; Leader Trail Investigators, et al. Liraglutide and cardiovascular outcomes in type 2 diabetes. N Engl J Med. 2016;375:311–22.

    Article  CAS  Google Scholar 

  50. Marso SP, Bain SC, Consoli A, SUSTAIN-6 Investigators, et al. Semaglutide and cardiovascular outcomes in patients with type 2 diabetes. N Engl J Med. 2016;375:1834–44.

    Article  CAS  Google Scholar 

  51. Chapman MJ, Ginsberg HN, Amarenco P, et al. Triglyceride-rich lipoproteins and high-density lipoprotein cholesterol in patients at high risk of cardiovascular disease: evidence and guidance for management. Eur Heart J. 2011;32:1345–61.

    Article  CAS  Google Scholar 

  52. Schwab KO, Doerfer J, Hecker W, DPV Initiative of the German Working Group for Pediatric Diabetology, et al. Spectrum and prevalence of atherogenic risk factors in 27,358 children, adolescents, and young adults with type 1 diabetes: cross-sectional data from the German diabetes documentation and quality management system (DPV). Diabetes Care. 2006;29:218–25.

    Article  Google Scholar 

  53. Chen SC, Hung CC, Kuo MC, et al. Association of dyslipidemia with renal outcomes in chronic kidney disease. PLoS One. 2013;8:e55643.

    Article  CAS  Google Scholar 

  54. Cases A, Coll E. Dyslipidemia and the progression of renal disease in chronic renal failure patients. Kidney Int Suppl. 2005;99:S87–93.

    Article  CAS  Google Scholar 

  55. Kassimatis TI, Konstantinopoulos PA. The role of stains in chronic kidney disease (CKD); friend or foe? Pharmacol Ther. 2009;122:312–23.

    Article  CAS  Google Scholar 

  56. American Diabetes Association. Standards of Medical Care in Diabetes-2017. Diabetes Care. 2017;40(Suppl 1):S4–5.

    Google Scholar 

  57. Tonelli M, Wanner C, for the Kidney Disease: Improving Global Outcomes Lipid Guideline Development Work Group Members. Lipid management in chronic kidney disease: synopsis of the kidney disease: improving global outcomes 2013 clinical practice guideline. Ann Intern Med. 2014;160:182–9.

    Article  Google Scholar 

  58. Gaede P, Vedel P, Parving HH, Pedersen O. Intensified multifactorial intervention in patients with type 2 diabetes and microalbuminuria: the Steno type 2 randomised study. Lancet. 1999;353:617–22.

    Article  CAS  Google Scholar 

  59. Gaede P, Vedel P, Larsen N, et al. Multifactorial intervention and cardiovascular disease in patients with type 2 diabetes. N Engl J Med. 2003;348:383–93.

    Article  Google Scholar 

  60. Oellgaard J, Gaede P, Rossing P, et al. Intensified multifactorial intervention in type 2 diabetics with microalbuminuria leads to long-term renal benefits. Kindey Int. 2017;91:982–8.

    Article  Google Scholar 

  61. Upadhyay A, Earley A, Lamont JL, Haynes S, Wanner C, Balk EM. Lipid-lowering therapy in persons with chronic kidney disease: a systematic review and meta-analysis. Ann Intern Med. 2012;157:251–62.

    Article  Google Scholar 

  62. Jun M, Zhu B, Tonelli M, et al. Effects of fibrates in kidney disease: a systematic review and meta-analysis. J Am Coll Cardiol. 2012;60:2061–71.

    Article  CAS  Google Scholar 

  63. Parving HH, Hommel E, Jensen BR, Hansen HP. Long-term beneficial effect of ACE inhibition on diabetic nephropathy in normotensive type 1 diabetic patients. Kidney Int. 2001;60:228–34.

    Article  CAS  Google Scholar 

  64. Lewis EJ, Hunsicker LG, Clarke WR, et al. Renoprotective effect of angiotensin-receptor antagonist irbesartan in patients with nephropathy due to type 2 diabetes. N Engl J Med. 2001;345:851–60.

    Article  CAS  Google Scholar 

  65. Atkins RC, Briganti EM, Lewis JB, et al. Proteinuria reduction and progression to renal failure in patients with type 2 diabetes and overt nephropathy. Am J Kidney Dis. 2005;45:281–7.

    Article  Google Scholar 

  66. Keane WF, Brenner BM, de Zeeuw D, et al. The risk of developing end-stage renal disease in patients with type 2 diabetes and nephropathy: the RENAAL study. Kidney Int. 2003;63:1499–507.

    Article  Google Scholar 

  67. de Zeeuw D, Remuzzi G, Parving HH, et al. Proteinuria, a target for renoprotection in patients with type 2 diabetic nephropathy: lessons from RENAAL. Kidney Int. 2004;65:2309–20.

    Article  Google Scholar 

  68. Eijkelkamp WB, Zang Z, Remuzzi G, et al. Albuminuria is a target for renoprotective therapy independent from blood pressure in patients with type 2 diabetic nephropathy: post hoc analysis from the reduction of endpoints in NIDDM with the angiotensin II antagonist losartan (RENAAL) trial. J Am Soc Nephrol. 2007;18:1540–6.

    Article  CAS  Google Scholar 

  69. Mauer M, Zinman B, Gardiner R, et al. Renal and retinal effects of enalapril and losartan in type 1 diabetes. N Engl J Med. 2009 Jul 2;361(1):40–51.

    Article  CAS  Google Scholar 

  70. Macisaac RJ, Jerums G. Diabetic kidney disease with and without albuminuria. Curr Opi Nephrol Hypertens. 2011;20:246–57.

    Article  CAS  Google Scholar 

  71. de Boer IH, Rue TC, Cleary PA, Diabetes Control and Complications Trial/Epidemiology of Diabetes Interventions and Complications Study Research Group, et al. Long-term renal outcomes of patients with type 1 diabetes mellitus and microalbuminuria: an analysis of the diabetes control and complications trial/epidemiology of diabetes interventions and complications cohort. Arch Intern Med. 2011;171:412–20.

    Article  Google Scholar 

  72. Parving HH, Persson F, Lewis JB, et al. Aliskiren combined with losartan in type 2 diabetes en nephropathy. N Engl J Med. 2008;358:2433–46.

    Article  CAS  Google Scholar 

  73. Dixon BS. Is change in albuminuria a surrogate marker for cardiovascular and renal outcomes in type 1 diabetes? Clin J Am Soc Nephrol. 2016;11:1921–023.

    Article  CAS  Google Scholar 

  74. Sato A, Hayashi K, Naruse M, Saruta T. Effectiveness of aldosterone blockade in patients with diabetic nephropathy. Hypertension. 2003;41:64–8.

    Article  CAS  Google Scholar 

  75. Schoedt KJ, Rossing K, Juhl TR, et al. Beneficial impact of spironolactone in diabetic nephropathy. Kidney Int. 2005;68:2829–36.

    Article  Google Scholar 

  76. Bakris GL, Agarwal R, Chan JC, et al. Effect of finerenone on albuminuria in patients with diabetic nephropathy: a randomized clinical trial. JAMA. 2015;314:884–94.

    Article  CAS  Google Scholar 

  77. van den Meiracker AH, Baggen RG, Pauli S, et al. Spironolacton in type 2 diabetic nephropathy: effects on proteinuria, blood pressure and renal function. J Hypertens. 2006;24:2285–92.

    Article  Google Scholar 

  78. Waanders F, de Vries LV, van Goor H, et al. Aldosteron, from (patho)physiology to treatment in cardiovascular and renal damage. Curr Vasc Pharmacol. 2011;9:594–605.

    Article  CAS  Google Scholar 

  79. Sun L-J, Sun Y-N, Shan J-P, Jian G-R. Effects of mineralocorticoid receptor antagonists on the progression of diabetic nephropathy. J Diabetes Investig. 2017;8:609–18.

    Article  CAS  Google Scholar 

  80. Vogt L, Waanders F, Boomsma F, de Zeeuw D, Navis G. Effects of dietary sodium and hydrochlorothiazide on the proteinuric efficacy of losartan. J Am Soc Nephrol. 2008;19:999–1007.

    Article  CAS  Google Scholar 

  81. Slagman MC, Waanders F, Hemmelder MH, et al. Moderate dietary sodium restriction added to angiotensin converting enzyme inhibition compared with dual blockade in lowering proteinuria and blood pressure: randomised controlled trial. BMJ. 2011;343:d4366.

    Article  Google Scholar 

  82. Humalda JK, Navis G. Dietary sodium restriction: a neglected therapeutic opportunity in chronic kidney disease. Curr Opin Nephrol Hypertens. 2014;23:533–40.

    Article  CAS  Google Scholar 

  83. Esnault VL, Ekhlas A, Delcroix C, et al. Diuretic and enhanced sodium restriction results in improved antiproteinuric response to RAS blocking agents. J Am Soc Nephrol. 2005;16:474–81.

    Article  CAS  Google Scholar 

  84. Robertson L, Waugh N, Robertson A. Protein restriction for diabetic renal disease. Cochrane Database Syst Rev. 2007;4:CD002181.

    Google Scholar 

  85. Obi Y, Qader H, Kovesdy CP, Kalantar-Zadeha K. Latest consensus and update on protein energy-wasting in chronic kidney disease. Curr Opin Clin Nutr Metab Care. 2015;18:254–62.

    Article  CAS  Google Scholar 

  86. Maric-Bilkan C. Obesity and diabetic kidney disease. Med Clin North Am. 2013;97:59–74.

    Article  Google Scholar 

  87. Morales E, Valero MA, León M, et al. Beneficial effects of weight loss in overweight patients with chronic proteinuric nephropathies. Am J Kidney Dis. 2003;41:319–27.

    Article  Google Scholar 

  88. Yumuka V, Tsigosb C, Fried M, et al. For the obesity management task force of the European Association for the Study of obesity. Eur Guid Obes Manage Adults Obes Facts. 2015;8:402–24.

    Google Scholar 

  89. van Gaal L. Weight management in type 2 diabetes: current and emerging approaches to treatment. Diabetes Care. 2015;38:1161–72.

    Article  Google Scholar 

  90. Thorn L, Harjutsalo V, Forsblom C, et al. Smoking and progression of diabetic nephropathy in patients with type 1 diabetes. Acta Diabetol. 2016;53:525–33.

    Article  Google Scholar 

  91. Chuahirun T, Wesson DE. Cigarette smoking predicts faster progression of type 2 established diabetic nephropathy despite ACE inhibition. Am J Kidney Dis. 2002;39:376–82.

    Article  Google Scholar 

  92. van Huffel L, Tomson C, Ruige J, et al. Dietary restriction and exercise for diabetic patients with chronic kidney disease: a systemic review. PLoS One. 2014;9:e113667.

    Article  Google Scholar 

  93. Manto A, Cotroneo P, Marra G, et al. Effect of intensive treatment on diabetic nephropathy in patients with type I diabetes. Kidney Int. 1995;47:231–5.

    Article  CAS  Google Scholar 

  94. Vijan S, Sussman JB, Yudkin JS, Hayward RA. Effect of patients’ risks and preferences on health gains with plasma glucose level lowering in type 2 diabetes mellitus. JAMA Intern Med. 2014;174:1227–34.

    Article  Google Scholar 

  95. Choukroun G, Renou M, Lecaque C, Jauréguy M. TREAT or not to treat: Anemia in type 2 diabetes and chronic kidney disease at stages 3 and 4. Nephrol Ther. 2011;7:2–9.

    Article  Google Scholar 

  96. Kidney Disease: Improving Global Outcomes (KDIGO) Anemia Work Group. KDIGO clinical practice guideline for anemia in chronic kidney disease. Kidney Int Suppl. 2012;2:279–335.

    Article  Google Scholar 

  97. KDIGO. 2017 clinical practice guideline update for the diagnosis, evaluation, prevention, and treatment of chronic kidney disease–mineral and bone disorder (CKD-MBD). Kidney Int Suppl. 2017;7:1–59.

    Article  Google Scholar 

  98. Staude H, Jeske S, Schmitz K, Warncke G, Fischer DC. Cardiovascular risk and mineral bone disorder in patients with chronic kidney disease. Kidney Blood Press Res. 2013;37:68–83.

    Article  CAS  Google Scholar 

  99. Chen W, Abramowitz MK. Treatment of metabolic acidosis in patients with CKD. Am J Kidney Dis. 2014 Feb;63:311–7.

    Article  CAS  Google Scholar 

  100. Yang W, Chen J, Drawz P, CRIC Investigators, et al. Association of serum bicarbonate with risk of renal and cardiovascular outcomes in CKD: a report from the chronic renal insufficiency cohort (CRIC) study. Am J Kidney Dis. 2013;62:670–8.

    Article  Google Scholar 

  101. Shah SN, Abramowitz M, Hostetter TH, Melamed ML. Serum bicarbonate levels and the progression of kidney disease: a cohort study. Am J Kidney Dis. 2009;54:270–7.

    Article  CAS  Google Scholar 

  102. de Brito-Ashurst I, Varagunam M, Raftery MJ, Yaqoob MM. Bicarbonate supplementation slows progression of CKD and improves nutritional status. J Am Soc Nephrol. 2009;20:2075–84.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerald Vervoort .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Vervoort, G. (2019). Treatment Goals in Diabetic Nephropathy. In: Roelofs, J., Vogt, L. (eds) Diabetic Nephropathy. Springer, Cham. https://doi.org/10.1007/978-3-319-93521-8_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-93521-8_25

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-93520-1

  • Online ISBN: 978-3-319-93521-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics