Skip to main content

Hydrogen-Evolving CNT-Photocatalysts for Effective Use of Solar Energy

  • Chapter
  • First Online:
Nanocarbons for Energy Conversion: Supramolecular Approaches

Part of the book series: Nanostructure Science and Technology ((NST))

Abstract

H2-evolving photocatalysts based on semiconducting single-walled carbon nanotubes (s-SWCNTs) were fabricated via a physical modification of s-SWCNTs using poly(amidoamine) dendrimer having C60 or an oligomethylene core. These CNT-photocatalysts possess the coaxial nanowire structure and show H2-evolving activity under visible and even NIR illumination since s-SWCNTs act as light absorbers, although H2 evolution reaction (HER) from water triggered by the photoexcitation of s-SWCNTs is quite rare. A coaxial s-SWCNT/C60 heterojunction was found to be quite useful for the construction of CNT-photocatalysts due to the efficient generation of mobile carriers, such as holes and electrons, via the exciton dissociation in SWCNT. Owing to the combination flexibility between the core-SWCNT and the shell material of CNT-photocatalysts , various types of CNT-photocatalysts can be synthesized in order to control the efficiency and the active wavelengths of photocatalytic HER. For example, by introducing a TiOx shell into the CNT-photocatalyst, apparent quantum yield (AQY) of HER reached 47% under 450-nm light illumination. SWCNT/fullerodendron nanocomposite having (8,3)tube at the core exhibited efficient H2 evolution , of which AQY was 7.3% under 1000-nm light illumination. It is notable that the CNT-photocatalysts are potentially useful to construct a Z-scheme photocatalytic system for the overall water splitting .

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chen S, Takata T, Domen K (2017) Particulate photocatalysts for overall water splitting. Nat Rev Mater 2:17050

    Article  Google Scholar 

  2. Tee SY, Win KY, Koh L-D, Liu S, Teng CP, Han M-Y (2017) Recent progress in energy-driven water splitting. Adv Sci 4:1600337

    Article  Google Scholar 

  3. Kaneko H, Minegishi T, Domen K (2017) Recent progress in the surface modification of photoelectrides toward efficient and stable overall water splitting. Chem Eur J 23:1–11

    Article  Google Scholar 

  4. Hisatomi T, Domen K (2017) Progress in the demonstration and understanding of water splitting using particulate photocatalysts. Curr Opin Electrochem 2:148–154

    Article  Google Scholar 

  5. Takata T, Pan C, Domen K (2016) Design and development of oxynitride photocatalysts for overall water splitting under visible light irradiation. ChemElectroChem 3:31–37

    Article  Google Scholar 

  6. Maeda K, Domen K (2016) Development of novel photocatalyst and cocatalyst materials for water splitting under visible light. Bull Chem Soc Jpn 89:627–648

    Article  Google Scholar 

  7. Maeda K (2011) Photocatalytic water splitting using semiconductor particles: history and recent developments. J Photochem Photobiol C: Photochem Rev 12:237–268

    Article  Google Scholar 

  8. Abe R (2011) Development of a new system for photocatalytic water splitting into H2 and O2 under visible light irradiation. Bull Chem Soc Jpn 84:1000–1030

    Article  Google Scholar 

  9. Maeda K (2013) Z-scheme water splitting using two different semiconductor photocatalysts. ACS Catal 3:1486–1503

    Article  Google Scholar 

  10. Hisatomi T, Kubota J, Domen K (2014) Recent advances in semiconductors for photocatalytic and photoelectrochemical water splitting. Chem Soc Rev 43:7520–7535

    Article  Google Scholar 

  11. Yuan Y-P, Ruan L-W, Barber J, Loo SCJ, Xue C (2014) Hetero-nanostructured suspended photocatalysts for solar-to-fuel conversion. Energy Environ Sci 7:3934–3951

    Article  Google Scholar 

  12. Wang Q, Hisatomi T, Suzuki Y, Pan Z, Seo J, Katayama M, Minegishi T, Nishiyama H, Takata T, Seki K, Kudo A, Yamada T, Domen K (2017) Particulate photocatalyst sheets based on carbon conductor layer for efficient Z-scheme pure-water splitting at ambient pressure. J Am Chem Soc 139:1675–1683

    Article  Google Scholar 

  13. Sasaki Y, Kato H, Kudo A (2013) [Co(bpy)3]3+/2+ and [Co(phen)3]3+/2+ electron mediators for overall water splitting under sunlight irradiation using Z-scheme photocatalyst system. J Am Chem Soc 135:5441–5449

    Article  Google Scholar 

  14. Arai T, Nobukuni S, Sandanayaka ASD, Ito O (2009) Zinc porphyrins covalently bound to the side walls of single-walled carbon nanotubes via flexible bonds: photoinduced electron transfer in polar solvent. J Phys Chem C 113:14493–14499

    Article  Google Scholar 

  15. Ahmmad B, Kusumoto Y, Somekawa S, Ikeda M (2008) Carbon nanotubes synergistically enhance photocatalytic activity of TiO2. Catal Commun 9:1410–1413

    Article  Google Scholar 

  16. Chai B, Peng T, Zhang X, Mao J, Li K, Zhang X (2013) Synthesis of C60-decotated SWCNTs (C60-d-CNTs) and its TiO2-based nanocomposite with enhanced photocatalytic activity for hydrogen production. Dalton Trans 42:3402–3409

    Article  Google Scholar 

  17. Murakami N, Tango Y, Miyake H, Tajima T, Nishina Y, Kurashige W, Negishi Y, Takaguchi Y (2017) SWCNT photocatalyst for hydrogen production from water upon photoexcitation of (8,3) SWCNT at 680-nm light. Sci Rep 7:43445

    Article  Google Scholar 

  18. Ishimoto K, Tajima T, Miyake H, Yamagami M, Kurashige W, Negishi Y, Takaguchi Y (2018) Photo-induced H2 evolution from water via the dissociation of excitons in water-dispersible single-walled carbon nanotube sensitizer. Chem Commun 54:393–396

    Article  Google Scholar 

  19. Kurniawan K, Murakami N, Tango Y, Izawa T, Nishikawa K, Watanabe K, Miyake H, Tajima T, Takaguchi Y (2017) H2-evolving SWCNT photocatalyst for effective use of solar energy. Proc Nat Res Soc 1:01004

    Article  Google Scholar 

  20. Kong J, Franklin NR, Zhou C, Chapline MG, Peng S, Cho K, Dai H (2000) Nanotube molecular wires as chemical sensors. Science 287:622–625

    Article  Google Scholar 

  21. Snow ES, Perkins FK, Robinson JA (2006) Chemical vaper detection using single-walled carbon nanotubes. Chem Soc Rev 35:790–798

    Article  Google Scholar 

  22. Kauffman DR, Star A (2008) Carbon nanotube gas and vapor sensors. Angew Chem Int Ed 47:6550–6570

    Article  Google Scholar 

  23. Schnorr JM, Swager TM (2011) Emerging applications of carbon nanotubes. Chem Mater 23:646–657

    Article  Google Scholar 

  24. Fennell JF Jr, Liu SF, Azzarelli JM, Weis JG, Rochat S, Mirica KA, Ravnsbæk JB, Swager TM (2016) Nanowire chemical/biological sensors: status and a roadmap for the future. Angew Chem Int Ed 55:1266–1281

    Google Scholar 

  25. Tans SJ, Verschueren ARM, Dekker C (1998) Room-temperature transistor based on a single carbon nanotube. Nature 393:49–52

    Article  Google Scholar 

  26. Collins PG, Arnold MS, Avouris P (2001) Engineering carbon nanotubes and nanotube circuits using electrical breakdown. Science 292:706–709

    Article  Google Scholar 

  27. Javey A, Guo J, Wang Q, Lundstrom M, Dai H (2003) Ballistic carbon nanotube field-effect transistors. Nature 424:654–657

    Article  Google Scholar 

  28. Hu R, Chu L, Zhang J, Li X, Huang W (2017) Carbon materials for enhancing charge transport in the advancements of perovskite solar cells. J Power Sources 361:259–275

    Article  Google Scholar 

  29. Kumar S, Nehra M, Kedia D, Dilbaghi N, Tankeshwar K, Kim K-H (2018) Carbon nanotubes: a potential material for energy conversion and storage. Prog Energy Combust Sci 64:219–253

    Article  Google Scholar 

  30. Bachilo SM, Strano MS, Kittell C, Hauge RH, Smalley RE, Weisman RB (2002) Structure-assigned optical spectra of single-walled carbon nanotubes. Science 298:2361–2366

    Article  Google Scholar 

  31. Nanot S, Hároz EH, Kim J-H, Hauge RH, Kono J (2012) Optoelectronic properties of single-walled carbon nanotubes. Adv Mater 24:4977–4994

    Article  Google Scholar 

  32. Bindl DJ, Arnold MS (2013) Efficient exciton relaxation and charge generation in nearly monochiral (7,5) carbon nanotube/C60 thin-film photovoltaics. J Phys Chem C 117:2390–2395

    Article  Google Scholar 

  33. Tune DD, Shapter JG (2013) The potential sunlight harvesting efficiency of carbon nanotube solar cells. Energy Environ Sci 6:2572–2577

    Article  Google Scholar 

  34. Blackburn JL (2017) Semiconducting single-walled carbon nanotubes in solar energy harvesting. ACS Energy Lett 2:1598–1613

    Article  Google Scholar 

  35. Ihly R, Mistry KS, Ferguson AJ, Clikeman TT, Larson BW, Reid O, Boltalina OV, Strauss SH, Rumbles G, Blackburn JL (2016) Tuning the driving force for exciton dissociation in single-walled carbon nanotube heterojunctions. Nat Chem 8:603–609

    Article  Google Scholar 

  36. Dowgiallo A-M, Mistry KS, Johnson JC, Reid OG, Blackburn JL (2016) Probing exciton diffusion and dissociation in single-walled carbon nanotube-C60 heterojunctions. Phys Chem Lett 7:1794–1799

    Article  Google Scholar 

  37. Bindl DJ, Wu M-Y, Prehn FC, Arnold MS (2011) Efficiently harvesting excitons from electronic type-controlled semiconducting carbon nanotube films. Nano Lett 11:455–460

    Article  Google Scholar 

  38. Jain RM, Howden R, Tvrdy K, Shimizu S, Hilmer AJ, McNicholas TP, Gleason KK, Strano MS (2012) Polymer-free near-infrared photovoltaics with single chirality (6,5) semiconducting carbon nanotube active layers. Adv Mater 24:4436–4439

    Article  Google Scholar 

  39. Shea MJ, Arnold MS (2013) 1% solar cells derived from ultrathin carbon nanotube photoabsorbing films. Appl Phys Lett 102:243101

    Article  Google Scholar 

  40. Ye Y, Bindl DJ, Jacobberger RM, Wu M-Y, Roy SS, Arnold MS (2014) Semiconducting carbon nanotube aerogel bulk heterojunction solar cells. Small 10:3299–3306

    Article  Google Scholar 

  41. Park J, Reid OG, Blackburn JL, Rumbles G (2015) Photoinduced spontaneous free-carrier generation in semiconducting single-walled carbon nanotubes. Nat Commun 6:8809

    Article  Google Scholar 

  42. Yuma B, Berciaud S, Besbas J, Shaver J, Santos S, Ghosh S, Weisman RB, Conget L, Gallart M, Ziegler M, Hönerlage B, Lounis B, Gilliot P (2013) Biexciton, single carrier, and trion generation dynamics in single-walled carbon nanotubes. Phys Rev B: Condens Matter Mater Phys 87:205412

    Article  Google Scholar 

  43. Santos SM, Yuma B, Berciaud S, Shaver J, Gallart M, Gilliot P, Conget L, Lounis B (2011) All-optical trion generation in single-walled carbon nanotubes. Phys Rev Lett 107:187401

    Article  Google Scholar 

  44. Takaguchi Y, Sako Y, Yanagimoto Y, Tsuboi S, Motoyoshiya J, Aoyama H, Wakahara T, Akasaka T (2003) Facile and reversible synthesis of an acidic water-soluble poly(amidoamine) fullerodendrimer. Tetrahedron Lett 44:5777–5780

    Article  Google Scholar 

  45. Takaguchi Y, Tamura M, Sako Y, Yanagimoto Y, Tsuboi S, Uchida T, Shimamura K, Kimura S, Wakahara T, Maeda Y, Akasaka T (2005) Fullerodendron-assisted dispersion of single-walled carbon nanotubes via noncovalent functionalization. Chem Lett 34:1608–1609

    Article  Google Scholar 

  46. Suzuki H, Iizumi Y, Tange M, Joung S-K, Furube A, Wada T, Tajima T, Takaguchi Y, Okazaki T (2014) Spectroscopic characterization of nanohybrids consisting of single-walled carbon nanotubes and fullerodendron. Fuller Nanotub Carbon Nanostruct 22:75–87

    Article  Google Scholar 

  47. Nakashima N, Tomonari Y, Murakami H (2002) Water-soluble single-walled carbon nanotubes via noncovalent sidewall-functionalization with a pyrene-carrying ammonium ion. Chem Lett 31:638–639

    Article  Google Scholar 

  48. Tomonari Y, Murakami H, Nakashima N (2006) Solubilization of single-walled carbon nanotubes by using polycyclic aromatic ammonium amphiphiles in water-strategy for the design of high-performance solubilizers. Chem Eur J 12:4027–4034

    Article  Google Scholar 

  49. Sandanayaka ASD, Takaguchi Y, Uchida T, Sako Y, Morimoto Y, Araki Y, Ito O (2006) Light-induced electron transfer on the single wall carbon nanotube surrounded in anthracene dendron in aqueous solution. Chem Lett 35:1188–1189

    Article  Google Scholar 

  50. Dürkop T, Getty SA, Cobas E, Fuhrer MS (2004) Extraordinary mobility in semiconducting carbon nanotubes. Nano Lett 4:35–39

    Article  Google Scholar 

  51. Sandanayaka ASD, Takaguchi Y, Sako Y, Tamura M, Ito O (2010) Photoinduced electron transfer of single walled carbon nanotubes surrounded by fullerodendrimers in aqueous media. Adv Sci Lett 3:353–357

    Article  Google Scholar 

  52. Sandanayaka ASD, Zhang H, Takaguchi Y, Sako Y, Tamura M, Araki Y, Ito O (2005) Photoinduced charge separation and charge recombination of fullerene bearing dendritic poly(amidoamine) with carboxylates at the terminal in aqueous media. Chem Commun 5160–5162

    Google Scholar 

  53. Kiwi J, Grätzel M (1979) Hydrogen evolution from water induced by visible light mediated by redox catalysis. Nature 281:657–658

    Article  Google Scholar 

  54. Tajima T, Sakata W, Wada T, Tsutsui A, Nishimoto S, Miyake M, Takaguchi Y (2011) Photosensitized hydrogen evolution from water using a single-walled carbon nanotube/fullerodendron/SiO2 coaxial nanohybrid. Avd Mater 23:5750–5754

    Article  Google Scholar 

  55. Kurniawan K, Tajima T, Kubo Y, Miyake H, Kurashige W, Negishi Y, Takaguchi Y (2017) Incorporating a TiOx shell in single-walled carbon nanotube/fullerodendron coaxial nanowires: increasing the photocatalytic evolution of H2 from water under irradiation with visible light. RSC Adv 7:31767–31770

    Article  Google Scholar 

  56. Kadib AE, Katia N, Bousmina M, Majoral JP (2012) Dendrimer-silica hybrid mesoporous materials. New J Chem 36:241–255

    Article  Google Scholar 

  57. Knecht MR, Sewell SL, Wright DW (2005) Size control of dendrimer-templated silica. Langmuir 21:2058–2061

    Article  Google Scholar 

  58. Knecht MR, Wright DW (2004) Amine-terminated dendrimers as biomimetic templates for silica nanosphere formation. Langmuir 20:4728–4732

    Article  Google Scholar 

  59. Larsen G, Lotero E (2000) Amine dendrimers as templates for amorphous silicas. J Phys Chem B 104:4840–4843

    Article  Google Scholar 

  60. Crooks RM, Zhao M, Chechick V, Yeung LK (2001) Dendrimer-encapsulated metal nanoparticles: synthesis, characterization, and applications to catalysis. Acc Chem Res 34:181–190

    Article  Google Scholar 

  61. Weir MG, Myers VS, Frenkel AI, Crooks RM (2010) In situ X-ray absorption analysis of ∼1.8 nm dendrimer-encapsulated Pt nanoparticles during electrochemical CO oxidation. ChemPhysChem 11:2942–2950

    Article  Google Scholar 

  62. Sasada Y, Tajima T, Wada T, Uchida T, Nishi M, Ohkubo T, Takaguchi Y (2013) Photosensitized hydrogen evolution from water using single-walled carbon nanotube/fullerodendron/Pt(II) coaxial nanohybrids. New J Chem 37:4214–4219

    Article  Google Scholar 

  63. Pfohl M, Graf K, Mertens A, Tune DD, Puerckhauer T, Alam A, Wei L, Chen Y, Zaumseil J, Colsmann A, Krupke R, Flavel BS (2016) Probing the diameter limit of single walled carbon nanotubes in SWCNT: fullerene solar cells. Adv Energy Mater 1600890

    Google Scholar 

  64. Perebeinos V, Tersoff J, Avouris P (2004) Scaling of excitons in carbon nanotubes. Phys Rev Lett 92:257402

    Article  Google Scholar 

  65. Miyake H, Tajima T, Takaguchi Y (2017) Synthesis and light-absorption characteristics of thiophene derivatives bearing ferrocenylthiocarbonyl groups. Chem Lett 46:48–50

    Article  Google Scholar 

  66. Murakami N, Miyake H, Tajima T, Nishikawa K, Hirayama R, Takaguchi Y (2018) Enhanced photosensitized hydrogen production by encapsulation of ferrocenyl dyes into single-walled carbon nanotubes. J Am Chem Soc (in press). https://doi.org/10.1021/jacs.7b12845

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yutaka Takaguchi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Takaguchi, Y., Tajima, T., Miyake, H. (2019). Hydrogen-Evolving CNT-Photocatalysts for Effective Use of Solar Energy. In: Nakashima, N. (eds) Nanocarbons for Energy Conversion: Supramolecular Approaches. Nanostructure Science and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-92917-0_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-92917-0_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-92915-6

  • Online ISBN: 978-3-319-92917-0

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics