Skip to main content

Transgenic Crops: Status, Potential, and Challenges

  • Chapter
  • First Online:
Biotechnologies of Crop Improvement, Volume 2

Abstract

Since the commercialization of the first GM crop in mid-1990s, agricultural biotechnology has enjoyed remarkable growth in product development, commercialization, and global adoption. Areas planted with GM crops in the last 20 years have increased more than 100-fold, making crop biotechnology one of the fastest adopted agricultural technologies. World population is 7.3 billion today and is expected to reach 9.5 billion in 2050. To sustain this ever-growing population, we will be required to produce 70% more food than what we produce today (Headrick Res Technol Manag 59:3, 2016). Agricultural biotechnology has been and will continue to play an important role in meeting the challenge. This chapter covers a brief overview of agricultural biotechnology, starting with the development of Agrobacterium and gene gun-mediated transformation technologies. Input, output, and agronomic biotechnology traits are discussed with emphasis on the major crops being cultivated around the world. A brief overview of the next generation of precision transformation technologies is given with emphasis on site-specific nucleases, i.e., meganucleases, ZFNs (zinc finger nucleases), TALENs (transcription activator-like effector nucleases), and CRISPR/Cas (clustered regulatory interspaced short palindromic repeats/CRISPR-associated). Specific examples of the use of these technologies resulting in commercially important traits are discussed. Lastly, challenges associated with further adoption of GM crops are discussed with an emphasis on risk assessment of GM crops and food, perception of risk and benefits, regulation of GM products and policy development, international trade concerns and policy decisions, and social concerns.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anderson K (2010) Economic impacts of policies affecting crop biotechnology and trade. New Biotechnol 27:558–564

    Article  CAS  PubMed  Google Scholar 

  • Baltazar BM et al (2015) Pollen-mediated gene flow in maize: implications for isolation requirements and coexistence in Mexico, the center of origin of Maize. PLoS One 10(7):e0131549

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baltes NJ, Voytas DF (2014) Enabling plant synthetic biology through genome engineering. Trends Biotechnol 33:1–12

    Google Scholar 

  • Barfoot P, Brookes G (2014) Key global environmental impacts of genetically modified (GM) crops use 1996-2012. GM Crops Food 5:149–160

    Article  PubMed  PubMed Central  Google Scholar 

  • Braun AC (1958) A physiological basis for autonomous growth of the crown gall tumor cell. PNAS 44:344–349

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brookes G, Barfoot P (2015) Global income and production impacts of using GM crop technology 1996-2013. GM Crops Food 6:13–46

    Article  PubMed  PubMed Central  Google Scholar 

  • Carpenter JE (2010) Peer-reviewed surveys indicate positive impact of commercialized GM crops. Nat Biotechnol 28:319–321

    Article  CAS  PubMed  Google Scholar 

  • Carpenter JE (2011) Impact of GM crops on biodiversity. GM Crops 2:7–23

    Article  PubMed  Google Scholar 

  • Carpenter JE (2013) The socio-economic impacts of currently commercialised genetically engineered crops. Int J Biotechnol 12:249–268

    Article  Google Scholar 

  • Castiglioni P, Warner D, Bensen RJ, Anstrom DC, Harrison J, Stoecker M, Abad M, Kumar G, Salvador S, D’Ordine R, Navarro S, Back S, Fernandes M, Targolli J, Dasgupta S, Bonin C, Luethy MH, Heard JE (2008) Bacterial RNA chaperones confer abiotic stress tolerance in plants and improved grain yield in maize under water-limited conditions. Plant Physiol 147:446–455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • CBD (Convention on Biological Diversity) (2000) Cartagena protocol on biosafety. Montreal. https://www.cbd.int/doc/legal/cartagena-protocol-en.pdf

  • Cernadas RA, Doyle EL, Nino-Liu DO, Wilkins KE, Bancroft T, Wang L, Schmidt CL, Caldo R, Yang B, White FF, Nettleton D, Wise RP, Bogdanove AJ (2014) Code assisted discovery of TAL effector targets in bacterial leaf streak of rice reveals contrast with bacterial blight and a novel susceptibility gene. PLoS Pathog 10(2):1–24

    Article  CAS  Google Scholar 

  • Chandrasegaran S, Carroll D (2016) Origins of programmable nucleases for genome engineering. J Mol Biol 428(5):963–989

    Article  CAS  PubMed  Google Scholar 

  • Chilton MD, Drummond MH, Merlo DJ, Sciaky D, Montoya AL, Gordon MP, Nester EW (1977) Stable incorporation of plasmid DNA into higher plant cells: the molecular basis of crown gall tumorigenesis. Cell 11:263–271

    Article  CAS  PubMed  Google Scholar 

  • Clasen BM, Stoddard TJ, Luo S, Demorest ZL, Li J, Cedrone F, Tibeby R, Davison S, Ray EE, Daulhac A, Coffman A, Yabandith A, Retterath A, Haun W, Baltes NJ, Mathis L, Voytas DF, Zhang F (2016) Improved cold storage and processing traits in potato through targeted gene knockout. Plant Biotechnol J 14:169–176

    Article  CAS  PubMed  Google Scholar 

  • Codex Alimentarius Commission (Codex) (2003a) Principles for the risk analysis of food derived from modern biotechnology. Food and Agriculture Organization of the United Nations/World Health Organization

    Google Scholar 

  • Codex Alimentarius Commission (Codex) (2003b) Guideline for the conduct of food safety assessment of foods produced using recombinant-DNA plants. Food and Agriculture Organization of the United Nations/World Health Organization

    Google Scholar 

  • DeFrancesco L (2013) How safe does transgenic food need to be? Nat Biotechnol 31:794–802

    Article  CAS  PubMed  Google Scholar 

  • Diakun GP, Fairall L, Klug A (1986) EXAFS study of the zinc binding sites in the protein transcription factor IIIA. Nature 324:698–699

    Article  CAS  PubMed  Google Scholar 

  • Djukanovic V, Smith J, Lowe K, Yang M, Gao H, Jones S, Nicholson MG, West A, Lape J, Bidney D, Falco SC, Jantz D, Lyznik LA (2013) Male-sterile maize plants produced by targeted mutagenesis of the cytochrome P450-like gene (MS26) using a re-designed I- I homing endonuclease. The Plant Journal 76 (5):888–899

    Article  CAS  PubMed  Google Scholar 

  • Eriksson GA (1969) The waxy character. Hereditas 63(1–2):180–204

    Google Scholar 

  • FDA (1992) Statement of policy: foods derived from new plant varieties. Federal Register 57:22–984

    Google Scholar 

  • FDA (2015) Guidance for industry: voluntary labeling indicating whether foods have or have not been derived from genetically engineered plants. https://www.fda.gov/Food/GuidanceRegulation/GuidanceDocumentsRegulatoryInformation/LabelingNutrition/ucm059098.htm

  • Feng PCC, Qi Y, Chiu T, Stoecker MA, Schuster CL, Johnson SC, Fonseca AE, Huang J (2014) Improving hybrid seed production in corn with glyphosate-mediated male sterility. Pest Manag Sci 70:212–218

    Article  CAS  PubMed  Google Scholar 

  • Fernandez-Cornejo J, Wechsler SJ, Livingston M, Mitchell L (2014) Genetically engineered crops in the United States. United States Department of Agriculture-Economic Research Service, Washington, DC

    Google Scholar 

  • Finer JJ, Vain P, Jones MW, McMullen MD (1992) Development of the particle inflow gun for DNA delivery to plant cells. Plant Cell Rep 11:232–238

    Article  Google Scholar 

  • Freestone D, Hey E (1996) Origins and development of the precautionary principle. In: Freestone D, Hey E (eds) The precautionary principle and international law. Kluwer Law International, The Hague, pp 3–15

    Google Scholar 

  • Gaj T, Gersbach CA, Barbas CF (2013) ZFN, TALEN and CRISPR/Cas based methods for genome engineering. Trends Biotechnol 31(7):397–405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gaskell G et al (2004) GM foods and the misperception of risk perception. Risk Anal 24:185–194

    Article  PubMed  Google Scholar 

  • Gaskell G et al (2010) Europeans and biotechnology in 2010: winds of change? A report to the European Commission’s Directorate-General for Research

    Google Scholar 

  • Gruére G, Sengupta D (2009) Biosafety decisions and perceived commercial risks. IFPRI Discussion Paper 00847

    Google Scholar 

  • Haun W, Coffman A, Clasen BM et al (2014) Improved soybean oil quality by targeted mutagenesis of the fatty acid desaturase 2 gene family. Plant Biotechnol J 12:934–940

    Article  CAS  PubMed  Google Scholar 

  • Headrick D (2016) Rethinking mealtime for 9 billion. Res Technol Manag 59(2):3

    Google Scholar 

  • Heap I (2014) Global perspective of herbicide-resistant weeds. Pest Manag Sci 70(9):1306–1315

    Article  CAS  PubMed  Google Scholar 

  • Huang F, Andow DA, Buschman LL (2011) Success of the high-dose/refuge resistance management strategy after 15 years of Bt crop use in North America. Entomol Exp Appl 140:1–16

    Article  Google Scholar 

  • ISAAA (2016) Global status of commercialized biotech/GM crops 2016. http://www.isaaa.org/resources/publications/briefs/52/download/isaaa-brief-52-2016.pdf

  • ISAAA Brazil (International Service for the Acquisition of Agri-Biotech Applications) (2017) Biotech country facts & trends, Brazil. http://www.isaaa.org/. Accessed March 2017

  • ISAAA Crop (International Service for the Acquisition of Agri-Biotech Applications) (2017) Biotech crop annual updates. http://www.isaaa.org/. Accessed March 2017

  • Jackson DA, Symons RH, Berg P (1972) Biochemical method for inserting new genetic information into DNA of simian virus 40: circular SV40 DNA molecule containing lambda phage genes and the galactose operon of Escherichia coli. PNAS 69(10):2904–2909

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • James C (1997) Global status of transgenic crops in 1997. ISAAA Briefs No. 5:13

    Google Scholar 

  • James C (2010) A global overview of biotech (GM) crops: adoption, impact and future prospects. GM Crops 1:8–12

    Article  PubMed  Google Scholar 

  • James C (2015) 20th anniversary (1996 to 2015) of the global commercialization of biotech crops and biotech crop highlights in 2015. ISAAA brief no. 51. ISAAA, Ithaca

    Google Scholar 

  • Jayaraman K, Jia H (2012) GM phobia spreads in South Asia. Nat Biotechnol 30:1017–1019

    Article  CAS  PubMed  Google Scholar 

  • Jia H (2010) Chinese green light for GM rice and maize prompts outcry. Nat Biotechnol 28:390–391

    Article  CAS  PubMed  Google Scholar 

  • Jia H, Pang Y, Chen X, Fang R (2006) Removal of the selectable marker gene from transgenic tobacco plants by expression of cre recombinase from a tobacco mosaic virus vector through agroinfection. Transgenic Res 15:375–384

    Article  CAS  PubMed  Google Scholar 

  • Khatodia S, Bhatotia K, Passricha N, Khurana SMP, Tuteja N (2016) The CRISPR/Cas genome-editing tool: application in improvement of crops. Front Plant Sci 7:1–13

    Article  Google Scholar 

  • Klein TM, Wolf ED, Wu R, Sanford JC (1987) High velocity microprojectiles for delivering nucleic acids into living cells. Nature 327:70–73

    Article  CAS  Google Scholar 

  • Li B, Li N, Duan X, Wei A, Yang A, Zhang J (2010) Generation of marker free transgenic maize with improved salt tolerance using the FLP/FRT recombination system. J Biotechnol 145(2):206–213

    Article  CAS  PubMed  Google Scholar 

  • Li T, Liu B, Spalding MH, Weeks DP, Yang B (2012) High efficiency TALEN based gene editing produces disease resistant rice. Nat Biotechnol 30:390–392

    Article  CAS  PubMed  Google Scholar 

  • Li Y et al (2016) The development and status of Bt rice in China. Plant Biotechnol J 14:839–848

    Article  PubMed  Google Scholar 

  • Lucas D, Glenn K, Bu J-Y (2004) Petition for determination of nonregulated status for Lysine Maize LY038. USDA https://www.aphis.usda.gov/brs/aphisdocs/04_22901p.pdf

  • Luo H, Kausch AP (2002) Application of FLP/FRT site specific DNA recombination system in plants. Genet Eng 24:1–16

    CAS  Google Scholar 

  • McCabe D, Christou P (1993) Direct DNA transfer using electrical discharge particle acceleration (Accell technology) plant cell tissue organ. Culture 33:227–236

    CAS  Google Scholar 

  • McDougall P (2011) The cost and time involved in the discovery, development and authorization of a new plant biotechnology derived trait: a consultancy study for CropLife International. Phillips McDougall, Midlothian

    Google Scholar 

  • McHughen A (2016) A critical assessment of regulatory triggers for products of biotechnology: product vs. process. GM Crops Food 7:125–158

    Article  PubMed  PubMed Central  Google Scholar 

  • Menage A, Morel G (1964) Sur la presence doctopine dans les tissue de crown gall. C R Acad Sci Paris 259:4795–4796

    PubMed  CAS  Google Scholar 

  • Mullis K, Faloona F, Scharf S, Saiki R, Horn G, Erlich H, (1986) Specific Enzymatic Amplification of DNA In Vitro: The Polymerase Chain Reaction. Cold Spring Harbor Symposia on Quantitative Biology 51 (0):263–273

    Article  CAS  PubMed  Google Scholar 

  • Nagy A (2000) Cre recombinase: the universal reagent for genome tailoring. Gebesus 26:99–109

    CAS  Google Scholar 

  • NAS (National Academies of Sciences, Engineering, and Medicine) (2016) Genetically engineered crops: experiences and prospects. The National Academies Press, Washington, DC. https://doi.org/10.17226/23395

    Book  Google Scholar 

  • National Academies of Sciences, E., and Medicine (2016) Genetically engineered crops: experiences and prospects. The National Academies Press, Washington, DC

    Google Scholar 

  • Nekrasov V, Wang C, Win J, Lanz C, Weigel D, Kamoun S (2017) Rapid generation of a transgene free powdery mildew resistant tomato by genome deletion. Sci Rep 7:1–6

    Article  Google Scholar 

  • Nemudryi AA, Valetdinova KR, Medvedev SP, Zakian SM (2014) TALEN and CRISPR/Cas genome editing systems: tools of discovery. Acta Nat 3(22):19–40

    Google Scholar 

  • Nicolia A et al (2013) An overview of the last 10 years of genetically engineered crop safety research. Crit Rev Biotechnol 34:77–88

    Article  CAS  PubMed  Google Scholar 

  • Organization for Economic Cooperation and Development (OECD) (1986) Recombinant DNA safety consideration. OECD Publications and Information Centre, Washington, DC

    Google Scholar 

  • Osakabe Y, Osakabe K (2015) Genome editing with engineered nucleases in plants. Plant Cell Physiol 56(3):389–400

    Article  CAS  PubMed  Google Scholar 

  • Parisi C, Tillie P, Rodriguez-Cerezo E (2016) The global pipeline of GM crops out to 2020. Nat Biotechnol 34:31–36

    Article  CAS  PubMed  Google Scholar 

  • Piffanelli P, Ransay L, Waugh R, Benabdelmouna A, D’Hont A, Hollricher K, Jorgensen JH, Lefert P, Panstruga R (2004) A barley cultivation-associated polymorphism conveys resistance to powdery mildew. Nature 430:887–891

    Article  CAS  PubMed  Google Scholar 

  • Qaim M (2009) The economics of genetically modified crops. Ann Rev Resour Econ 1:665–693

    Article  Google Scholar 

  • Qaim M, Kouser S (2013) Genetically modified crops and food security. PLoS One 8:e64879

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qaim M et al (2008) Economic and social considerations in the adoption of Bt crops. In: Romeis J, Shelton AS, Kennedy GG (eds) Integration of insect-resistant genetically modified crops within IPM programs. Springer, New York

    Google Scholar 

  • Que Q, Chilton MDM, Fontes CM, He C, Nuccio M, Zhu T, Wu Y, Chen JS, Shi L (2010) Trait stacking in transgenic crops, challenges and opportunities. GM Crops 1(4):220–229

    Article  PubMed  Google Scholar 

  • Quist D, Chapela IH (2001) Transgenic DNA introgressed into traditional maize landraces in Oaxaca, Mexico. Nature 414:541–543

    Article  CAS  PubMed  Google Scholar 

  • Rinaldo AR, Ayliffe M (2015) Gene targeting and editing in crop plants: a new era of precision opportunities. Mol Breed 35:1–15

    Article  CAS  Google Scholar 

  • Sanford JC, Wolf ED, Allen NK (1991) Method for transporting substances into living cells and tissues and apparatus therefor. United States Patent number 5036006

    Google Scholar 

  • Schaart JG, Krens FA, Pelgrom KT, Mendes O, Rouwendal GJ (2004) Effective production of marker free transgenic strawberry plants using inducible site specific recombination and a bifunctional selectable marker gene. Plant Biotechnol J 2:233–240

    Article  CAS  PubMed  Google Scholar 

  • Shan Q, Zhang Y, Chen K, Zhang K, Gao C (2015) Creation of fragrant rice by targeted knockout of the gene using TALEN technology. Plant Biotechnology Journal 13(6):791–800

    Article  CAS  PubMed  Google Scholar 

  • Shani Z, Dekel M, Cohen B, Barimboim N, Kolosovski N, Safranuvitch A, Cohen O, Shoseyov O (2003) Cell wall modification for the enhancement of commercial eucalyptus species. In: Sundberg B (ed) IUFRO tree biotechnology. Umea Plant Science Center, Umea, pp S10–S26

    Google Scholar 

  • Shelton AM et al (2002) Economic, ecological, food safety, and social consequences of the deployment of Bt transgenic plants. Annu Rev Entomol 47:845–881

    Article  CAS  PubMed  Google Scholar 

  • Silva G, Poirot L, Galetto R, Smith J, Montoya G, Duchateau P, Paques F (2011) Meganucleases and other tools for targeted genome engineering perspectives and challenges for gene therapy. Curr Gene Ther 11:11–27

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smith EF, Townsend CO (1907) A plant tumor of bacterial origin. Science 25:671

    Article  CAS  PubMed  Google Scholar 

  • Stemke D (2004) Genetically modified organisms: biosafety and bioethical issues. In: The GMO handbook: genetically modified animals, microbes, and plants in biotechnology. Humana Press, Totowa

    Google Scholar 

  • Sternberg N (1978) Demonstration and analysis of P1 site specific recombination using ʎ-P1 hybrid phages constructed in vitro. Cold Spring Harb Symp Quant Biol 43:1143–1146

    Article  Google Scholar 

  • Stone GD, Glover D (2017) Disembedding grain: golden Rice, the green revolution, and heirloom seeds in the Philippines. Agric Hum Values 34(1):87–102

    Article  Google Scholar 

  • Storer NP, Thompson GD, Head GP (2012) Application of pyramided traits against Lepidoptera in insect resistance management for Bt crops. GM Crops Food 3(3):154–162

    Article  PubMed  Google Scholar 

  • Sun Y, Zhang X, Wu C, He Y, Ma Y, Hour H et al (2016) Engineering herbicide resistant rice plants through CRISPR/Cas9-mediated homologous recombination of acetolactate synthase. Mol Plant 9:628–631

    Article  CAS  PubMed  Google Scholar 

  • Sun XH et al (2017) Altered expression of maize PLASTOCHRON1 enhances biomass and seed yield by extending cell division duration. Nat Commun 8:14752

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tang G et al (2012) β-Carotene in Golden Rice is as good as b-carotene in oil at providing vitamin A to children. Am J Clin Nutr 96:658–664

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thompson PB (2000) Bioethics issues in a biobased economy. In: Eaglesham A, Brown WF, Hardy RW (eds) The biobased economy of the twenty-first century: agriculture expanding into health, energy, chemicals, and materials. National Agricultural Biotechnology Council, Ithaca

    Google Scholar 

  • Urbanchuk JM, Kowalski DJ, Dale B, Kim S (2009) Corn amylase: improving the efficiency and environmental footprint of corn to ethanol through plant biotechnology. AgBioforum 12(2):149–154

    Google Scholar 

  • US National Academy of Science (1987) Introduction of recombinant DNA-engineered organisms into the environment. The National Academies Press, Washington, DC

    Google Scholar 

  • USDA (2016) Re-Request for confirmatin that transgene-free, CRISPR-edited mushroomis not a regulated article. https://www.aphis.usda.gov/biotechnology/downloads/reg_loi/15-321-01_air_response_signed.pdf

  • USDA (2017) World agricultural supply and demand estimates. USDA. http://usda.mannlib.cornell.edu/usda/waob/wasde//2010s/2017/wasde-03-09-2017.pdf

  • USDA FAS (2015) Francophone West Africa Biotechnology Report

    Google Scholar 

  • USDA FAS (2016a) China moving towards commercialization of its own biotechnology crops. GAIN Report Number: CH16065

    Google Scholar 

  • USDA FAS (2016b) Australia agricultural biotechnology annual. GAIN Report Number: AS1619

    Google Scholar 

  • USDA FAS (2016c) Philippine agricultural biotechnology situation and outlook. GAIN Report Number: RP1617

    Google Scholar 

  • USDA FAS (2016d) EU-28 agricultural biotechnology annual. GAIN Report Number: FR1624

    Google Scholar 

  • USDA FAS (2016e) Mexico agriculture biotechnology annual. GAIN Report Number: MX6044

    Google Scholar 

  • USDA-ERS (United States Department of Agriculture – Economic Research Service) 2016. Adoption of genetically engineered crops in the U.S. recent trends in GE adoption. https://www.ers.usda.gov/data-products/adoption-of-genetically-engineered-crops-in-the-us/recent-trends-in-ge-adoption/ Last updated November 2016

  • Vergunst AC, Hooykaas PJ (1998) Cre/lox-mediated site specific integration of Agrobacterium T-DNA in Arabidopsis thaliana by transient expression of cre. Plant Mol Biol 38:393–406

    Article  CAS  PubMed  Google Scholar 

  • Verma SR (2013) Genetically modified plants: public and scientific perceptions. ISRN Biotechnol 2013:1–11

    Article  CAS  Google Scholar 

  • Wafula D, Gruére G (2013) Genetically modified organisms, exports, and regional integration in Africa. In: IFPRI book chapters,in: Falck-Zepeda, Benjamin J, Gruare, Guillaume P, Sithole-Niang I (eds) Chap. 5: Genetically modified crops in Africa: Economic and policy lessons from countries south of the Sahara. International Food Policy Research Institute (IFPRI), pp 143–157

    Google Scholar 

  • Walsh TA et al (2016) Canola engineered with a microalgal polyketide synthase-like system produces oil enriched in docosahexaenoic acid. Nat Biotechnol 34(8):881

    Article  CAS  PubMed  Google Scholar 

  • Waltz E (2016) Gene edited CRISPR mushroom escapes US regulation. Nature 532:293

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Yau YY, Balding DP, Thomson JG (2011) Recombinase technology: applications and possibilities. Plant Cell Rep 30:267–285

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Cheng X, Shan Q, Zhang Y, Liu J, Gao C, Qiu JL (2014) Simultaneous editing of three homoeoalleles in hexaploid bread wheat confers heritable resistance to powdery mildew. Nat Biotechnol 32:947–951

    Article  CAS  PubMed  Google Scholar 

  • White PR, Braun AC (1942) A cancerous neoplasm of plants. Autonomous bacteria free crown gall tissue. Proc Am Phil Soc 86:467–469

    Google Scholar 

  • White House, Office of Science and Technology Policy (1986) Coordinated framework for regulation of biotechnology. https://www.aphis.usda.gov/brs/fedregister/coordinated_framework.pdf

  • Wolt JD, Wang K, Yang B (2016) The regulatory status of genome edited crops. Plant Biotechnol J 14:510–518

    Article  CAS  PubMed  Google Scholar 

  • World Health Organization (2005) Modern food biotechnology, human health, and development: an evidence-based study. World Health Organization, Geneva

    Google Scholar 

  • Wu F (2006) Mycotoxin reduction in Bt Corn: potential economic, health, and regulatory impacts. Transgenic Res 15(3):277–289

    Article  CAS  PubMed  Google Scholar 

  • Wu Y, Fox TW, Trimnell MR, Wang L, Xu R-J, Cigan AM, Huffman GA, Garnaat CW, Hershey H, Albertsen MC (2016) Development of a novel recessive genetic male sterility system for hybrid seed production in maize and other cross-pollinating crops. Plant Biotechnol J 14:1046–1054

    Article  CAS  PubMed  Google Scholar 

  • Ye X, Al-Bbili S, Kloti A, Zhang J, Lucca P, Beyer P, Potrykus I (2000) Engineering the Provitamin A (β-Carotene) biosynthetic pathway into (carotenoid-free) Rice endosperm. Science. 14 Jan 2000 287:303–305

    Article  CAS  PubMed  Google Scholar 

  • Zaenen I, Van N, Teuchy H, Van M, Schell J (1974) Supercoiled circular DNA in crown gall inducing Agrobacterium strains. J Mol Biol 86:109–127

    Article  CAS  PubMed  Google Scholar 

  • Zhou H, Berg JD, Blank SE, Chay CA, Chen G, Eskelsen SR, Fry JE, Hoi S, Hu T, Isakson PJ, Lawton MB, Metz SG, Rempel CB, Ryerson DK, Sansone AP, Shook AL, Starke RJ, Tichota JM, Valenti SA (2003) Field efficacy assessment of transgenic roundup ready wheat roundup and roundup ready are trademarks of Monsanto company. Crop Sci 43:1072–1075

    Article  CAS  Google Scholar 

  • Zilberman D et al (2013) Continents divided: understanding differences between Europe and North America in acceptance of GM crops. GM Crops Food 4:202–208

    Article  PubMed  Google Scholar 

Download references

Disclaimer

The views and opinions expressed in this article are drawn from scientific literature and the author’s professional experience. These are views of the authors and do not reflect the official views or policy of Dow AgroSciences or any other organization.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tejinder Mall .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mall, T., Han, L., Tagliani, L., Christensen, C. (2018). Transgenic Crops: Status, Potential, and Challenges. In: Gosal, S., Wani, S. (eds) Biotechnologies of Crop Improvement, Volume 2. Springer, Cham. https://doi.org/10.1007/978-3-319-90650-8_16

Download citation

Publish with us

Policies and ethics