Skip to main content

Secondary Neurulation Defects-1: Thickened Filum Terminale, Retained Medullary Cord

  • Reference work entry
  • First Online:
Textbook of Pediatric Neurosurgery

Abstract

The caudal part of the spinal cord is formed by a process called secondary neurulation Secondary neurulation. Secondary neurulation begins with the formation of the medullary cord Medullary cord from pluripotent cells at the area of the primitive streak, followed by intramedullary vacuole formation and canalization, and, finally, retrogressive differentiation of the medullary cord. Thickened filum terminale Filum terminale is a common secondary neurulation defect resulting from partial regression arrest at the late stage of secondary neurulation. It may or may not cause neurological deficits. Retained medullary cord, which is rare, presumably results from a more severe and complete form of regression arrest during late secondary neurulation and is much more likely to cause injury to the conus. Both entities are discussed in light of our present knowledge of secondary neurulation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 949.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 1,299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bui CJ, Tubbs RS, Oakes WJ (2007) Tethered cord syndrome in children: a review. Neurosurg Focus 23(2):E2

    Article  PubMed  Google Scholar 

  • Bulsara KR, Zomorodi AR, Enterline DS et al (2004) The value of magnetic resonance imaging in the evaluation of fatty filum terminale. Neurosurgery 54(2):375–379; discussion 379–380

    Article  PubMed  Google Scholar 

  • Dady A, Havis E, Escriou V, Catala M, Duband JL (2014) Junctional neurulation: a unique developmental program shaping a discrete region of the spinal cord highly susceptible to neural tube defects. J Neurosci 34(39):13208–13221

    Article  PubMed  PubMed Central  Google Scholar 

  • Garceau GJ (1953) The filum terminale syndrome (the cord-traction syndrome). J Bone Joint Surg Am 35-A(3):711–716

    Article  CAS  PubMed  Google Scholar 

  • Gryspeerdt GL (1963) Myelographic assessment of occult forms of spinal dysraphism. Acta Radiol Diagn (Stockh) 1:702–717

    Article  CAS  Google Scholar 

  • Guerra LA, Pike J, Milks J et al (2006) Outcome in patients who underwent tethered cord release for occult spinal dysraphism. J Urol 176(4 Pt 2):1729–1732

    Article  PubMed  Google Scholar 

  • Hamburger V, Hamilton HL (1951) A series of normal stages in the development of the chick embryo. J Morphol 88(1):49–92

    Article  CAS  PubMed  Google Scholar 

  • Hendson G, Dunham C, Steinbok P (2016) Histopathology of the filum terminale in children with and without tethered cord syndrome with attention to the elastic tissue within the filum. Childs Nerv Syst 32(9):1683–1692

    Google Scholar 

  • Hoffman HJ, Hendrick EB, Humphreys RP (1976) The tethered spinal cord: its protean manifestations, diagnosis and surgical correction. Childs Brain 2(3):145–155

    CAS  PubMed  Google Scholar 

  • Khoury AE, Hendrick EB, McLorie GA, Kulkarni A, Churchill BM (1990) Occult spinal dysraphism: clinical and urodynamic outcome after division of the filum terminale. J Urol 144:426–428; discussion 428–429, 443–444

    Article  CAS  PubMed  Google Scholar 

  • Kulkarni AV, Pierre-Kahn A, Zerah M (2004) Conservative management of asymptomatic spinal lipomas of the conus. Neurosurgery 54(4):868–873; discussion 873–865

    Article  PubMed  Google Scholar 

  • Lee JY, Kim SP, Kim SW et al (2013) Pathoembryogenesis of terminal myelocystocele: terminal balloon in secondary neurulation of the chick embryo. Childs Nerv Syst 29(9):1683–1688

    Article  PubMed  Google Scholar 

  • McLendon RE, Oakes WJ, Heinz ER et al (1988) Adipose tissue in the filum terminale: a computed tomographic finding that may indicate tethering of the spinal cord. Neurosurgery 22(5):873–876

    Article  CAS  PubMed  Google Scholar 

  • Müller F, O’Rahilly R (1987) The development of the human brain, the closure of the caudal neuropore, and the beginning of secondary neurulation at stage 12. Anat Embryol (Berl) 176(4):413–430

    Article  Google Scholar 

  • Müller F, O'Rahilly R (2004) The primitive streak, the caudal eminence and related structures in staged human embryos. Cells Tissues Organs 177(1):2–20

    Article  PubMed  Google Scholar 

  • Nievelstein RA, Hartwig NG, Vermeij-Keers C et al (1993) Embryonic development of the mammalian caudal neural tube. Teratology 48(1):21–31

    Article  CAS  PubMed  Google Scholar 

  • Ogiwara H, Lyszczarz A, Alden TD et al (2011) Retethering of transected fatty filum terminales. J Neurosurg Pediatr 7(1):42–46

    Article  PubMed  Google Scholar 

  • O’Rahilly R, Müller F (2010) Developmental stages in human embryos: revised and new measurements. Cells Tissues Organs 192(2):73–84

    Article  PubMed  Google Scholar 

  • Palmer LS, Richards I, Kaplan WE (1998) Subclinical changes in bladder function in children presenting with nonurological symptoms of the tethered cord syndrome. J Urol 159(1):231–234

    Article  CAS  PubMed  Google Scholar 

  • Pang D (1993) Sacral agenesis and caudal spinal cord malformations. Neurosurgery 32(5):755–778; discussion 778–759

    Article  CAS  PubMed  Google Scholar 

  • Pang D, Wilberger JE Jr (1982) Tethered cord syndrome in adults. J Neurosurg 57(1):32–47

    Article  CAS  PubMed  Google Scholar 

  • Pang D, Zovickian J, Moes GS (2011) Retained medullary cord in humans: late arrest of secondary neurulation. Neurosurgery 68(6):1500–1519; discussion 1519

    Article  PubMed  Google Scholar 

  • Sapunar D, Vilovic K, England M et al (2001) Morphological diversity of dying cells during regression of the human tail. Ann Anat 183(3):217–222

    Article  CAS  PubMed  Google Scholar 

  • Selcuki M, Coskun K (1998) Management of tight filum terminale syndrome with special emphasis on normal level conus medullaris (NLCM). Surg Neurol 50(4):318–322; discussion 322

    Article  CAS  PubMed  Google Scholar 

  • Selden NR, Nixon RR, Skoog SR et al (2006) Minimal tethered cord syndrome associated with thickening of the terminal filum. J Neurosurg 105(3 Suppl):214–218

    PubMed  Google Scholar 

  • Souweidane MM, Drake JM (1998) Retethering of sectioned fibrolipomatous filum terminales: report of two cases. Neurosurgery 42(6):1390–1393

    Article  CAS  PubMed  Google Scholar 

  • Steinbok P, MacNeily AE, Hengel AR et al (2016) Filum section for urinary incontinence in children with occult tethered cord syndrome: a randomized, controlled pilot study. J Urol 195(4 Pt 2):1183–1188

    Article  PubMed  Google Scholar 

  • Thompson EM, Strong MJ, Warren G et al (2014) Clinical significance of imaging and histological characteristics of filum terminale in tethered cord syndrome. J Neurosurg Pediatr 13(3):255–259

    Article  PubMed  Google Scholar 

  • Warder DE, Oakes WJ (1994) Tethered cord syndrome: the low-lying and normally positioned conus. Neurosurgery 34(4):597–600; discussion 600

    CAS  PubMed  Google Scholar 

  • Wilson DA, Prince JR (1989) John Caffey award. MR imaging determination of the location of the normal conus medullaris throughout childhood. AJR Am J Roentgenol 152(5):1029–1032

    Article  CAS  PubMed  Google Scholar 

  • Wykes V, Desai D, Thompson DN (2012) Asymptomatic lumbosacral lipomas – a natural history study. Childs Nerv Syst 28(10):1731–1739

    Article  PubMed  Google Scholar 

  • Yamada S, Zinke DE, Sanders D (1981) Pathophysiology of “tethered cord syndrome”. J Neurosurg 54(4):494–503

    Article  CAS  PubMed  Google Scholar 

  • Yang HJ, Wang KC, Chi JG et al (2003) Neural differentiation of caudal cell mass (secondary neurulation) in chick embryos: Hamburger and Hamilton stages 16–45. Brain Res Dev Brain Res 142(1):31–36

    Article  CAS  PubMed  Google Scholar 

  • Yang HJ, Wang KC, Chi JG et al (2006) Cytokinetics of secondary neurulation in chick embryos: Hamburger and Hamilton stages 16–45. Childs Nerv Syst 22(6):567–571

    Article  PubMed  Google Scholar 

  • Yang HJ, Lee DH, Lee YJ et al (2014) Secondary neurulation of human embryos: morphological changes and the expression of neuronal antigens. Childs Nerv Syst 30(1):73–82

    Article  PubMed  Google Scholar 

  • Yundt KD, Park TS, Kaufman BA (1997) Normal diameter of filum terminale in children: in vivo measurement. Pediatr Neurosurg 27(5):257–259

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kyu-Chang Wang .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Pang, D., Chong, S., Wang, KC. (2020). Secondary Neurulation Defects-1: Thickened Filum Terminale, Retained Medullary Cord. In: Di Rocco, C., Pang, D., Rutka, J. (eds) Textbook of Pediatric Neurosurgery. Springer, Cham. https://doi.org/10.1007/978-3-319-72168-2_112

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-72168-2_112

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-72167-5

  • Online ISBN: 978-3-319-72168-2

  • eBook Packages: MedicineReference Module Medicine

Publish with us

Policies and ethics