Skip to main content

Sperm Chromatin Structure Assay (SCSA®): Evolution from Origin to Clinical Utility

  • Chapter
  • First Online:
A Clinician's Guide to Sperm DNA and Chromatin Damage

Abstract

The pioneering sperm DNA fragmentation assay, the Sperm Chromatin Structure Assay (SCSA®), was invented in 1980. However, prior to using it in human fertility clinics, numerous experiments were done to standardize and validate the assay regarding biochemistry, stability, repeatability, significant correlations with animal fertility, and standardization between SCSA measures done on different continents in independent laboratories. From international studies, it is concluded that the SCSA is a rapid, technician-friendly, statistically robust test on 5000 sperm /sample with good predictive value for in vivo, IUI, IVF, or ICSI reproductive outcomes. The SCSA test uniquely measures two distinct populations of sperm, namely, those with sperm DNA strand breaks (%DFI) and sperm with uncondensed chromatin (%HDS: high DNA stainability). High levels of HDS sperm lead to cessation of early embryo development. Even though the exact cause and origin of sperm DNA/chromatin damage remain unknown, the established SCSA thresholds for in vivo, IUI, IVF, and ICSI success strongly support an increasingly routine use in the urology and infertility clinics.

Normal semen samples according to WHO criteria with 0–20% SCSA-defined DFI are consistent with excellent odds for in vivo or IUI conception; decreasing odds occur with 20–30% DFI at which point in vivo and IUI have very poor odds and ICSI is recommended. At >40% DFI, the odds are low for pregnancy and high for miscarriage. A >30–40% HDS leads to early cessation of embryo development. Lifestyle and medical intervention may reduce the %DFI and % HDS to better odds for a successful pregnancy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Evenson DP, Witkin S, de Harven E, Bendich A. Ultrastructure of partially decondensed human spermatozoal chromatin. J Ultrastruct Res. 1978;63:178–87.

    Article  CAS  PubMed  Google Scholar 

  2. Ringertz NR, Gledhill BL, Darzynkiewicz Z. Changes in deoxyribonucleoprotein during spermiogenesis in the bull. Sensitivity of DNA to heat denaturation. Exp Cell Res. 1970;62:204–18.

    Article  CAS  PubMed  Google Scholar 

  3. Darzynkiewicz Z, Traganos F, Sharpless T, Melamed MR. Thermal denaturation of DNA in situ as studied by acridine orange staining and automated cytofluorometry. Exp Cell Res. 1975;90:411–28.

    Article  CAS  PubMed  Google Scholar 

  4. Evenson DP, Darzynkiewicz Z, Melamed MR. Relation of mammalian sperm chromatin heterogeneity to fertility. Science. 1980;210:131–3.

    Article  Google Scholar 

  5. Avendaño C, Franchi A, Taylor S, Morshedi M, Bocca S, Oehninger S. Fragmentation of DNA in morphologically normal human spermatozoa. Fertil Steril. 2009;91:1077–84.

    Article  PubMed  Google Scholar 

  6. Wyrobek AJ. Changes in mammalian sperm morphology after x-ray and chemical exposure. Genetics. 1975;92:105–19.

    Google Scholar 

  7. Evenson DP, Higgins PH, Grueneberg D, Ballachey B. Flow cytometric analysis of mouse spermatogenic function following exposure to ethylnitrosourea. Cytometry. 1985;6:238–53.

    Article  CAS  PubMed  Google Scholar 

  8. Evenson DP, Jost LK. Utility of the sperm chromatin structure assay as a diagnostic and prognostic tool in the human fertility clinic. Hum Reprod. 1999;14:1039–49.

    Article  CAS  PubMed  Google Scholar 

  9. Evenson DP, Larson K, Jost LK. The sperm chromatin structure assay (SCSATM): clinical use for detecting sperm DNA fragmentation related to male infertility and comparisons with other techniques. Andrology Lab Corner. J Androl. 2002;23:25–43.

    Article  PubMed  Google Scholar 

  10. Evenson D. Sperm Chromatin Structure Assay (SCSA®): detailed protocol. In: Zini A, Agarwal A, editors. Sperm chromatin: biological and clinical applications in male infertility and assisted reproduction. New York: Springer Sciences; 2011. Chapter 35:487–97. PDF available: don@scsa.com.

    Google Scholar 

  11. Gawecka JE, Boaz S, Kasperson K, Nguyen H, Evenson DP, Ward WS. Luminal fluid of epididymis and vas deferens contributes to sperm chromatin fragmentation. Hum Reprod. 2015;30:2725–36.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Evenson DP. The Sperm Chromatin Structure Assay (SCSA®) and other sperm DNA fragmentation tests for evaluation of sperm nuclear DNA integrity as related to fertility. Anim Reprod Sci. 2016;169:56–75.

    Article  CAS  PubMed  Google Scholar 

  13. Mitchell LA, De Iuliis GN, Aitken RJ. The TUNEL assay consistently underestimates DNA damage in human spermatozoa and is influenced by DNA compaction and cell vitality: development of an improved methodology. Int J Androl. 2011;34:2–13.

    Article  CAS  PubMed  Google Scholar 

  14. Vu Bach P, Schlegel PN. Sperm DNA damage and its role in IVF and ICSI. Basic Clin Androl J. 2016;26:15. Review

    Article  Google Scholar 

  15. Gorczyca W, Traganos F, Jesionowska H, Darzynkiewicz Z. Presence of DNA strand breaks and increased sensitivity of DNA in situ to denaturation in abnormal human sperm cells: analogy to apoptosis of somatic cells. Exp Cell Res. 1993;207:202–5.

    Article  CAS  PubMed  Google Scholar 

  16. Sailer BL, Jost LK, Evenson DP. Mammalian sperm DNA susceptibility to in situ denaturation associated with the presence of DNA strand breaks as measured by the terminal deoxynucleotidyl transferase assay. J Androl. 1995;16:80–7.

    CAS  PubMed  Google Scholar 

  17. Jequier AM. Clinical andrology-still a major problem in the treatment of infertility. Hum Reprod. 2004;19:1245–9.

    Article  PubMed  Google Scholar 

  18. Evenson D, Tritle D. SCSA is a direct measure of sperm DNA fragmentation. Abstract. ASRM Elsevier; 2004.

    Google Scholar 

  19. Evenson DP, Jost LK, Corzett M, Balhorn R. Characteristics of human sperm chromatin structure following an episode of influenza and high fever: a case study. J Androl. 2000;21:739–46.

    CAS  PubMed  Google Scholar 

  20. Evenson DP, Darzynkiewicz Z, Jost L, Janca F, Ballachey B. Changes in accessibility of DNA to various fluorochromes during spermatogenesis. Cytometry. 1986;7:45–53.

    Article  CAS  PubMed  Google Scholar 

  21. Zini A, Phillips S, Courchesne A, Boman JM, Baazeem A, Bissonnette F, Kadoch IJ, San GM. Sperm head morphology is related to high deoxyribonucleic acid stainability assessed by sperm chromatin structure assay. Fert Steril. 2009;91:2495–500.

    Article  CAS  Google Scholar 

  22. Hamidi J, Frainais C, Amar E, Bailly E, Clément P, Menezo Y. A double-blinded comparison of in situ TUNEL and aniline blue versus flow cytometry acridine orange for the determination of sperm DNA fragmentation and nucleus decondensation state index. Zygote. 2015;23:556–62.

    Article  CAS  PubMed  Google Scholar 

  23. Hammoud SS, Nix DA, Zhang H, et al. Distinctive chromatin in human sperm packages genes for embryo development. Nature. 2009;460:473–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kazerooni T, Asadi N, Jadid L, et al. Evaluation of sperm's chromatin quality with acridine orange test, chromomycin A3 and aniline blue staining in couples with unexplained recurrent abortion. J Assist Reprod Genet. 2009;26:591–6.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Cornet D, Cohen M, Clement A, Amar E, Fournols L, Clement P, Neveux P, Ménézo Y. Association between the MTHFR-C677T isoform and structure of sperm DNA. J Assist Reprod Genet 2017. https://doi.org/10.1007/s10815-017-1015-2. [Epub ahead of print].

  26. Menezo Y, Clement P, Amar E. Evaluation of sperm DNA structure, fragmentation and decondensation: an essential tool in the assessment of male infertility. Transl Androl Urol. 2016;5:935–50.

    Article  Google Scholar 

  27. Spano M, Bonde JP, Hjollund HI, Kolstad HA, Cordelli E. Leter G sperm chromatin damage impairs human fertility. The Danish First Pregnancy Planner Study Team. Fertil Steril. 2000;73:43–50.

    Article  CAS  PubMed  Google Scholar 

  28. Oleszczuk A, Giwercman A, Bungum M. Sperm chromatin structure assay in prediction of in vitro fertilization outcome. Andrology. 2016;4:290–6.

    Article  CAS  PubMed  Google Scholar 

  29. Didion BA, Kasperson KM, Wixon R, Evenson DP. Boar fertility and sperm chromatin structure status: a retrospective report. J Androl. 2009;30:655–60.

    Article  PubMed  Google Scholar 

  30. Barratt CL, De Jonge CJ. Clinical relevance of sperm DNA assessment: an update. Fertil Steril. 2010;94:1958–9.

    Article  PubMed  Google Scholar 

  31. Ballachey BE, Saacke RG, Evenson DP. The sperm chromatin structure assay: relationship with alternate tests of sperm quality and heterospermic performance of bulls. J Androl. 1988;9:l09–15.

    Article  Google Scholar 

  32. Ballachey BE, Hohenboken WD, Evenson DP. Heterogeneity of sperm nuclear chromatin structure and its relationship to fertility of bulls. Biol Reprod. 1987. 1987;36:915–25.

    Article  CAS  PubMed  Google Scholar 

  33. Evenson DP, Thompson L, Jost L. Flow cytometric evaluation of boar semen by the sperm chromatin structure assay as related to cryopreservation and fertility. Theriogenology. 1994;41:637–51.

    Article  CAS  PubMed  Google Scholar 

  34. Ahmadi A, Ng SC. Fertilizing ability of DNA-damaged spermatozoa. J Exp Zool. 1999;284:696–704.

    Article  CAS  PubMed  Google Scholar 

  35. Borini A, Tarozzi N, Bizzaro D, Bonu MA, Fava L, Flamigni C, Coticchio G. Sperm DNA fragmentation: paternal effect on early post-implantation embryo development in ART. Hum Reprod. 2006;21:2876–81.

    Article  CAS  PubMed  Google Scholar 

  36. Evenson DP, Baer RK, Jost LK. Long term effects of triethylenemelamine exposure on mouse testis cells and sperm chromatin structure assayed by flow cytometry. Environ Mol Mutagen. 1989;14:79–89.

    Article  CAS  PubMed  Google Scholar 

  37. Evenson DP, Jost L, Baer R, Turner T, Schrader S. Individuality of DNA denaturation patterns in human sperm as measured by the sperm chromatin structure assay. Reprod Toxicol. 1991;5:115–25.

    Article  CAS  PubMed  Google Scholar 

  38. Erenpreiss J, Bungum M, Spano M, et al. Intra-individual variation in sperm chromatin structure assay parameters in men from infertile couples: clinical implications. Hum Reprod. 2006;21:2061–4.

    Article  CAS  PubMed  Google Scholar 

  39. Oleszczuk K, Giwercman A, Bungum M. Intra-individual variation of the sperm chromatin structure assay DNA fragmentation index in men from infertile couples. Hum Reprod. 2011;26:3244–8.

    Article  CAS  PubMed  Google Scholar 

  40. Aitken RJ, Gibb Z, Baker MA, Drevet J, Gharagozloo P. Causes and consequences of oxidative stress in spermatozoa. Reprod Fertil Dev. 2016;28:1–10.

    Article  CAS  PubMed  Google Scholar 

  41. Karabinus DS, Vogler CJ, Saacke RG, Evenson DP. Chromatin structural changes in bovine sperm after scrotal insulation of Holstein bulls. J Androl. 1997;18:549–55.

    CAS  PubMed  Google Scholar 

  42. Tanrikut C, Feldman AS, Altemus M, Paduch DA, Schlegel PN. Adverse effect of paroxetine on sperm. Fertil Steril. 2010;94:1021–6.

    Article  CAS  PubMed  Google Scholar 

  43. Werthman P, Wixon R, Kasperson K, Evenson DP. Significant decrease in sperm deoxyribonucleic acid fragmentation after varicocelectomy. Fertil Steril. 2008;90:1800–4.

    Article  PubMed  Google Scholar 

  44. Alhathal N, San Gabriel M, Zini A. Beneficial effects of microsurgical varicocoelectomy on sperm maturation, DNA fragmentation, and nuclear sulfhydryl groups: a prospective trial. Andrology. 2016;4:1204–8.

    Article  CAS  PubMed  Google Scholar 

  45. Sergerie M, Mieusset R, Daudin M, Thonneau P, Bujan L. Ten-year variation in semen parameters and sperm deoxyribonucleic acid integrity in a healthy fertile man. Fertil Steril. 2005;84:356–64.

    Article  Google Scholar 

  46. Evenson DP, Jost L, Gandour D, Rhodes L, Stanton B, Clausen OP, DDe Angelis P, Coico R, Daley AA, Becker K, Yopp T. Comparative sperm chromatin structure assay measurements on epiillumination and orthogonal axes flow cytometers. Cytometry. 1995;19:295–303.

    Article  CAS  PubMed  Google Scholar 

  47. Sharma R, Ahmad G, Esteves SC, Agarwal A. Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay using bench top flow cytometer for evaluation of sperm DNA fragmentation in fertility laboratories: protocol, reference values, and quality control. J Assist Reprod Genet. 2016;33:291–300.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Wyrobek AJ, Eskenazi B, Young S, Arnheim N, Tiemann-Boege I, Jabs EW, Glaser RL, Pearson F, Evenson D. Advancing age in healthy men has differential effects on DNA strand damage, chromatin integrity, gene mutations, aneuploidies and diploidies in sperm. Proc Natl Acad Sci U S A. 2006;103:9601–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Evenson DP, Brannian J., Hansen K, Kasperson K, Christianson J. Relationships between sperm DNA fragmentation, age of donors and patients and children with psychiatric disorders. ASRM abstract; 2004.

    Google Scholar 

  50. D’Onofrio BM, Rickert ME, Frans E, et al. Paternal age at childbearing and offspring psychiatric and academic morbidity. JAMA Psychiatry. 2014;71:432–8.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Evenson D, Wixon R. Meta-analysis of sperm DNA fragmentation using the sperm chromatin structure assay. Reprod Biomed Online. 2006;12:466–72.

    Article  CAS  PubMed  Google Scholar 

  52. Evenson D, Wixon R. Data analysis of two in vivo fertility studies using SCSA derived DNA fragmentation index (DFI) vs pregnancy outcome. Fertil Steril. 2008;90:1229–31.

    Article  PubMed  Google Scholar 

  53. Collins JA, Barnhart KT, Schlegel PN. Do sperm DNA integrity tests predict pregnancy with in vitro fertilization? Fertil Steril. 2008;89:823–31.

    Article  PubMed  Google Scholar 

  54. Bungum M, Humaidan P, Axmon A, Spano M, Bungum L, Erenpreiss J, Giwercman A. Sperm DNA integrity assessment in prediction of assisted reproduction technology outcome. Hum Reprod. 2007;22:174–9.

    Article  CAS  PubMed  Google Scholar 

  55. Bernie AM, Mata DA, Ramasamy R, Schlegel PN. Comparison of microdissection testicular sperm extraction, conventional testicular sperm extraction, and testicular sperm aspiration for nonobstructive azoospermia: a systematic review and meta-analysis. Fertil Steril. 2015;104:1099–103.

    Article  PubMed  Google Scholar 

  56. Agarwal A, Majzoub A, Esteves SC, et al. Clinical utility of sperm DNA fragmentation testing: practice recommendations based on clinical scenarios. Transl Androl Urol. 2016;5:935–50.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Donald P. Evenson .

Editor information

Editors and Affiliations

Additional information

This chapter is dedicated to the memory of Marcello Spano who died of a fatal heart attack in his ENEA lab in Rome, December, 2016. In 1979, Marcello invited me to his lab to set up the SCSA test. In 2000, he published a seminal paper, Sperm Chromatin Damage Impairs Human Fertility. The Danish First Pregnancy Planner Study Team. Fertil. Steril. 73:43-50. His frequent collaboration with Aleksander Giwercman and Mona Bungum in Sweden brought a wealth of valuable SCSA clinical data on sperm DNA fragmentation as related to male factor infertility. We are grateful for his excellent collaboration and warm friendship; he will be greatly missed.

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Evenson, D.P. (2018). Sperm Chromatin Structure Assay (SCSA®): Evolution from Origin to Clinical Utility. In: Zini, A., Agarwal, A. (eds) A Clinician's Guide to Sperm DNA and Chromatin Damage. Springer, Cham. https://doi.org/10.1007/978-3-319-71815-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-71815-6_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-71814-9

  • Online ISBN: 978-3-319-71815-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics