Skip to main content

Renal, Adrenal, and Retroperitoneal Masses

  • Chapter
  • First Online:
Diffusion Weighted Imaging of the Genitourinary System

Abstract

Imaging techniques represent clinical decision-making tools. Abdominopelvic imaging is moving from the pure anatomical imaging techniques to functional-molecular imaging or imaging-based analysis of tumor heterogeneity and complexity. The introduction of advanced imaging techniques, such as diffusion-weighted imaging (DWI), may improve our assessment of diagnosis, prognosis, planning therapy, and tumor response evaluation. This chapter will review recent developments in DWI and the evolving role of this imaging technique in the assessment of renal, adrenal, and retroperitoneal lesions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Taouli B, Beer AJ, Chenevert T, Collins D, Lehman C, Matos C, et al. Diffusion-weighted imaging outside the brain: consensus statement from an ISMRM-sponsored workshop. J Magn Reson Imaging. 2016;44:521–4.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Koh DM, Collins DJ, Orton MR. Intravoxel incoherent motion in body diffusion-weighted MRI: reality and challenges. AJR Am J Roentgenol. 2011;196:1351–61.

    Article  PubMed  Google Scholar 

  3. Rosenkrantz AB, Padhani AR, Chenevert TL, Koh DM, De Keyzer F, Taouli B, et al. Body diffusion kurtosis imaging: basic principles, applications, and considerations for clinical practice. J Magn Reson Imaging. 2015;42:1190–202.

    Article  PubMed  Google Scholar 

  4. Chandarana H, Lee VS, Hecht E, Taouli B, Sigmund EE. Comparison of biexponential and monoexponential model of diffusion weighted imaging in evaluation of renal lesions: preliminary experience. Investig Radiol. 2011;46:285–91.

    Article  Google Scholar 

  5. Ramamurthy NK, Moosavi B, McInnes MD, Flood TA, Schieda N. Multiparametric MRI of solid renal masses: pearls and pitfalls. Clin Radiol. 2015;70:304–16.

    Article  CAS  PubMed  Google Scholar 

  6. Gilet AG, Kang SK, Kim D, Chandarana H. Advanced renal mass imaging: diffusion and perfusion MRI. Curr Urol Rep. 2012;13:93–8.

    Article  PubMed  Google Scholar 

  7. Tang Y, Zhou Y, Du W, Liu N, Zhang C, Ouyang T, et al. Standard b-value versus low b-value diffusion-weighted MRI in renal cell carcinoma: a systematic review and meta-analysis. BMC Cancer. 2014;14:843.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Padhani AR, Koh DM, Collins DJ. Whole-body diffusion-weighted MR imaging in cancer: current status and research directions. Radiology. 2011;261:700–18.

    Article  PubMed  Google Scholar 

  9. Yoshida R, Yoshizako T, Maruyama M, Mori H, Ishikawa N, Tamaki Y, et al. The value of adding diffusion-weighted images for tumor detection and preoperative staging in renal pelvic carcinoma for the reader’s experience. Abdom Radiol (NY). 2017. https://doi.org/10.1007/s00261-017-1116-5. [Epub ahead of print].

  10. Sufana Iancu A, Colin P, Puech P, Villers A, Ouzzane A, Fantoni JC, et al. Significance of ADC value for detection and characterization of urothelial carcinoma of upper urinary tract using diffusion-weighted MRI. World J Urol. 2013;31:13–9.

    Article  CAS  PubMed  Google Scholar 

  11. Taouli B, Thakur RK, Mannelli L, Babb JS, Kim S, Hecht EM, et al. Renal lesions: characterization with diffusion-weighted imaging versus contrast-enhanced MR imaging. Radiology. 2009;251:398–407.

    Article  PubMed  Google Scholar 

  12. Goyal A, Sharma R, Bhalla AS, Gamanagatti S, Seth A. Pseudotumours in chronic kidney disease: can diffusion-weighted MRI rule out malignancy. Eur J Radiol. 2013;82:1870–6.

    Article  PubMed  Google Scholar 

  13. Kang SK, Zhang A, Pandharipande PV, Chandarana H, Braithwaite RS, Littenberg B. DWI for renal mass characterization: systematic review and meta-analysis of diagnostic test performance. AJR Am J Roentgenol. 2015;205:317–24.

    Article  PubMed  Google Scholar 

  14. Zhang H, Gan Q, Wu Y, Liu R, Liu X, Huang Z, et al. Diagnostic performance of diffusion-weighted magnetic resonance imaging in differentiating human renal lesions (benignity or malignancy): a meta-analysis. Abdom Radiol (NY). 2016;41:1997–2010.

    Article  PubMed  Google Scholar 

  15. Lassel EA, Rao R, Schwenke C, Schoenberg SO, Michaely HJ. Diffusion-weighted imaging of focal renal lesions: a meta-analysis. Eur Radiol. 2014;24:241–9.

    Article  CAS  PubMed  Google Scholar 

  16. Paudyal B, Paudyal P, Tsushima Y, Oriuchi N, Amanuma M, Miyazaki M, et al. The role of the ADC value in the characterisation of renal carcinoma by diffusion-weighted MRI. Br J Radiol. 2010;83:336–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Wang H, Cheng L, Zhang X, Wang D, Guo A, Gao Y, Ye H. Renal cell carcinoma: diffusion-weighted MR imaging for subtype differentiation at 3.0 T. Radiology. 2010;257:135–43.

    Article  PubMed  Google Scholar 

  18. Sevcenco S, Heinz-Peer G, Ponhold L, Javor D, Kuehhas FE, Klingler HC, et al. Utility and limitations of 3-Tesla diffusion-weighted magnetic resonance imaging for differentiation of renal tumors. Eur J Radiol. 2014;83:909–13.

    Article  CAS  PubMed  Google Scholar 

  19. Mytsyk Y, Dutka I, Borys Y, Komnatska I, Shatynska-Mytsyk I, Farooqi AA, et al. Renal cell carcinoma: applicability of the apparent coefficient of the diffusion-weighted estimated by MRI for improving their differential diagnosis, histologic subtyping, and differentiation grade. Int Urol Nephrol. 2017;49:215–24.

    Article  CAS  PubMed  Google Scholar 

  20. Agnello F, Roy C, Bazille G, Galia M, Midiri M, Charles T, et al. Small solid renal masses: characterization by diffusion-weighted MRI at 3 T. Clin Radiol. 2013;68:e301–8.

    Article  CAS  PubMed  Google Scholar 

  21. Goyal A, Sharma R, Bhalla AS, Gamanagatti S, Seth A. Diffusion-weighted MRI in inflammatory renal lesions: all that glitters is not RCC! Eur Radiol. 2013;23:272–9.

    Article  PubMed  Google Scholar 

  22. Chandarana H, Kang SK, Wong S, Rusinek H, Zhang JL, Arizono S, et al. Diffusion-weighted intravoxel incoherent motion imaging of renal tumors with histopathologic correlation. Investig Radiol. 2012;47:688–96.

    Article  Google Scholar 

  23. Rheinheimer S, Stieltjes B, Schneider F, Simon D, Pahernik S, Kauczor HU, et al. Investigation of renal lesions by diffusion-weighted magnetic resonance imaging applying intravoxel incoherent motion-derived parameters—initial experience. Eur J Radiol. 2012;81:e310–6.

    Article  CAS  PubMed  Google Scholar 

  24. Cong XY, Chen Y, Zhang J, XD Y, Ye F, WJ Y, et al. Application of diffusion-weighted intravoxel incoherent motion imaging in diagnosis of renal cell carcinoma subtypes. Zhonghua Zhong Liu Za Zhi. 2016;38:434–9.

    CAS  PubMed  Google Scholar 

  25. Gaing B, Sigmund EE, Huang WC, Babb JS, Parikh NS, Stoffel D, et al. Subtype differentiation of renal tumors using voxel-based histogram analysis of intravoxel incoherent motion parameters. Investig Radiol. 2015;50:144–52.

    Article  Google Scholar 

  26. Ding Y, Zeng M, Rao S, Chen C, Fu C, Zhou J. Comparison of biexponential and monoexponential model of diffusion-weighted imaging for distinguishing between common renal cell carcinoma and fat poor angiomyolipoma. Korean J Radiol. 2016;17:853–63.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Li H, Liang L, Li A, Hu Y, Hu D, Li Z, Kamel IR. Monoexponential, biexponential, and stretched exponential diffusion-weighted imaging models: quantitative biomarkers for differentiating renal clear cell carcinoma and minimal fat angiomyolipoma. J Magn Reson Imaging. 2016. https://doi.org/10.1002/jmri.25524. [Epub ahead of print].

  28. Feng Q, Ma Z, Zhang S, Wu J. Usefulness of diffusion tensor imaging for the differentiation between low-fat angiomyolipoma and clear cell carcinoma of the kidney. Spring. 2016;5:12.

    Article  Google Scholar 

  29. Cornelis F, Grenier N. Multiparametric magnetic resonance imaging of solid renal tumors: a practical algorithm. Semin Ultrasound CT MR. 2017;38:47–58.

    Article  PubMed  Google Scholar 

  30. Hötker AM, Mazaheri Y, Wibmer A, Karlo CA, Zheng J, Moskowitz CS, et al. Differentiation of clear cell renal cell carcinoma from other renal cortical tumors by use of a quantitative multiparametric MRI approach. AJR Am J Roentgenol. 2017;208:W85–91.

    Article  PubMed  Google Scholar 

  31. Galmiche C, Bernhard JC, Yacoub M, Ravaud A, Grenier N, Cornelis F. Is multiparametric MRI useful for differentiating oncocytomas from chromophobe renal cell carcinomas? AJR Am J Roentgenol. 2017;208:343–50.

    Article  PubMed  Google Scholar 

  32. Zhang HM, YH W, Gan Q, Lyu X, Zhu XL, Kuang M, et al. Diagnostic utility of diffusion-weighted magnetic resonance imaging in differentiating small solid renal tumors (≤4 cm) at 3.0T magnetic resonance imaging. Chin Med J. 2015;128:1444–9.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Choi YA, Kim CK, Park SY, Cho SW, Park BK. Subtype differentiation of renal cell carcinoma using diffusion-weighted and blood oxygenation level-dependent MRI. AJR Am J Roentgenol. 2014;203:W78–84.

    Article  PubMed  Google Scholar 

  34. Goyal A, Sharma R, Bhalla AS, Gamanagatti S, Seth A. Diffusion-weighted MRI in renal cell carcinoma: a surrogate marker for predicting nuclear grade and histological subtype. Acta Radiol. 2012;53:349–58.

    Article  PubMed  Google Scholar 

  35. Rosenkrantz AB, Niver BE, Fitzgerald EF, Babb JS, Chandarana H, Melamed J. Utility of the apparent diffusion coefficient for distinguishing clear cell renal cell carcinoma of low and high nuclear grade. AJR Am J Roentgenol. 2010;195:W344–51.

    Article  PubMed  Google Scholar 

  36. Yu X, Lin M, Ouyang H, Zhou C, Zhang H. Application of ADC measurement in characterization of renal cell carcinomas with different pathological types and grades by 3.0T diffusion-weighted MRI. Eur J Radiol. 2012;81:3061–6.

    Article  PubMed  Google Scholar 

  37. Sandrasegaran K, Sundaram CP, Ramaswamy R, Akisik FM, Rydberg MP, Lin C, et al. Usefulness of diffusion-weighted imaging in the evaluation of renal masses. AJR Am J Roentgenol. 2010;194:438–45.

    Article  PubMed  Google Scholar 

  38. Kierans AS, Rusinek H, Lee A, Shaikh MB, Triolo M, Huang WC, et al. Textural differences in apparent diffusion coefficient between low- and high-stage clear cell renal cell carcinoma. AJR Am J Roentgenol. 2014;203:W637–44.

    Article  PubMed  Google Scholar 

  39. Zhang YD, CJ W, Wang Q, Zhang J, Wang XN, Liu XS, et al. Comparison of utility of histogram apparent diffusion coefficient and R2* for differentiation of low-grade from high-grade clear cell renal cell carcinoma. AJR Am J Roentgenol. 2015;205:W193–201.

    Article  PubMed  Google Scholar 

  40. Shen L, Zhou L, Liu X, Yang X. Comparison of biexponential and monoexponential DWI in evaluation of Fuhrman grading of clear cell renal cell carcinoma. Diagn Interv Radiol. 2017;23:100–5.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Dai Y, Yao Q, Wu G, Wu D, Wu L, Zhu L, et al. Characterization of clear cell renal cell carcinoma with diffusion kurtosis imaging: correlation between diffusion kurtosis parameters and tumor cellularity. NMR Biomed. 2016;29:873–81.

    Article  CAS  PubMed  Google Scholar 

  42. Feng Q, Fang W, Sun XP, Sun SH, Zhang RM, Ma ZJ. Renal clear cell carcinoma: diffusion tensor imaging diagnostic accuracy and correlations with clinical and histopathological factors. Clin Radiol. 2017;72(7):560–4.

    Article  CAS  PubMed  Google Scholar 

  43. Cornelis F, Tricaud E, Lasserre AS, Petitpierre F, Bernhard JC, Le Bras Y, et al. Multiparametric magnetic resonance imaging for the differentiation of low and high grade clear cell renal carcinoma. Eur Radiol. 2015;25:24–31.

    Article  CAS  PubMed  Google Scholar 

  44. Parada Villavicencio C, Mc Carthy RJ, Miller FH. Can diffusion-weighted magnetic resonance imaging of clear cell renal carcinoma predict low from high nuclear grade tumors. Abdom Radiol (NY). 2017;42:1241–9.

    Article  Google Scholar 

  45. Yamamoto A, Tamada T, Ito K, Sone T, Kanki A, Tanimoto D, et al. Differentiation of subtypes of renal cell carcinoma: dynamic contrast-enhanced magnetic resonance imaging versus diffusion-weighted magnetic resonance imaging. Clin Imaging. 2017;41:53–8.

    Article  PubMed  Google Scholar 

  46. Nakamura T, Yoshizako T, Araki H, Maruyama M, Uchida K, Tamaki Y, et al. The relation between apparent diffusion coefficient and clinical stage of clear-cell renal cell carcinoma. Clin Imaging. 2015;39:72–5.

    Article  PubMed  Google Scholar 

  47. Akita H, Jinzaki M, Kikuchi E, Sugiura H, Akita A, Mikami S, et al. Preoperative T categorization and prediction of histopathologic grading of urothelial carcinoma in renal pelvis using diffusion-weighted MRI. AJR Am J Roentgenol. 2011;197:1130–6.

    Article  PubMed  Google Scholar 

  48. Liu J, Yang X, Li F, Wang X, Jiang X. Preliminary study of whole-body diffusion-weighted imaging in detecting pulmonary metastatic lesions from clear cell renal cell carcinoma: comparison with CT. Acta Radiol. 2011;52:954–63.

    Article  PubMed  Google Scholar 

  49. Koh DM, Blackledge M, Padhani AR, Takahara T, Kwee TC, Leach MO, Collins DJ. Whole-body diffusion-weighted MRI: tips, tricks, and pitfalls. AJR Am J Roentgenol. 2012;199:252–62.

    Article  PubMed  Google Scholar 

  50. Nishie A, Kakihara D, Asayama Y, Ishigami K, Ushijima Y, Takayama Y, et al. Apparent diffusion coefficient: an associative factor for recurrence after nephrectomy in localized renal cell carcinoma. J Magn Reson Imaging. 2016;43:166–72.

    Article  PubMed  Google Scholar 

  51. Yoshida R, Yoshizako T, Hisatoshi A, Mori H, Tamaki Y, Ishikawa N, et al. The additional utility of apparent diffusion coefficient values of clear-cell renal cell carcinoma for predicting metastasis during clinical staging. Acta Radiol Open. 2017;6:2058460116687174.

    PubMed  PubMed Central  Google Scholar 

  52. Benz MR, Vargas HA, Sala E, Functional MR. Imaging techniques in oncology in the era of personalized medicine. Magn Reson Imaging Clin N Am. 2016;24:1–10.

    Article  PubMed  Google Scholar 

  53. García-Figueiras R, Padhani AR, Baleato-González S. Therapy monitoring with functional and molecular MR imaging. Magn Reson Imaging Clin N Am. 2016;24:261–88.

    Article  PubMed  Google Scholar 

  54. Farnebo J, Suzuki C, Vargas-Paris R, Sandström P, Blomqvist L. Measurements of metastatic renal cell tumours as determined by diffusion weighted imaging or computed tomography are in close agreement, a pilot study. Eur J Radiol Open. 2017;4:45–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Desar IM, ter Voert EG, Hambrock T, van Asten JJ, van Spronsen DJ, Mulders PF, et al. Functional MRI techniques demonstrate early vascular changes in renal cell cancer patients treated with sunitinib: a pilot study. Cancer Imaging. 2012;11:259–65.

    Article  CAS  PubMed  Google Scholar 

  56. Jeon TY, Kim CK, Kim JH, Im GH, Park BK, Lee JH. Assessment of early therapeutic response to sorafenib in renal cell carcinoma xenografts by dynamic contrast enhanced and diffusion-weighted MR imaging. Br J Radiol. 2015;88:20150163.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Bharwani N, Miquel ME, Powles T, Dilks P, Shawyer A, Sahdev A, et al. Diffusion-weighted and multiphase contrast-enhanced MRI as surrogate markers of response to neoadjuvant sunitinib in metastatic renal cell carcinoma. Br J Cancer. 2014;110:616–24.

    Article  CAS  PubMed  Google Scholar 

  58. Orton MR, Messiou C, Collins D, Morgan VA, Tessier J, Young H, et al. Diffusion-weighted MR imaging of metastatic abdominal and pelvic tumours is sensitive to early changes induced by a VEGF inhibitor using alternative diffusion attenuation models. Eur Radiol. 2016;26:1412–9.

    Article  PubMed  Google Scholar 

  59. Iannuccilli JD, Grand DJ, Dupuy DE, Mayo-Smith WW. Percutaneous ablation for small renal masses-imaging follow-up. Semin Intervent Radiol. 2014;31:50–63.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Teixeira SR, Elias PC, Leite AF, de Oliveira TM, Muglia VF, Elias Junior J. Apparent diffusion coefficient of normal adrenal glands. Radiol Bras. 2016;49:363–8.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Halefoglu AM, Altun I, Disli C, Ulusay SM, Ozel BD, Basak M. A prospective study on the utility of diffusion-weighted and quantitative chemical-shift magnetic resonance imaging in the distinction of adrenal adenomas and metastases. J Comput Assist Tomogr. 2012;36:367–74.

    Article  PubMed  Google Scholar 

  62. Sandrasegaran K, Patel AA, Ramaswamy R, Samuel VP, Northcutt BG, Frank MS, et al. Characterization of adrenal masses with diffusion-weighted imaging. AJR Am J Roentgenol. 2011;197:132–8.

    Article  PubMed  Google Scholar 

  63. Miller FH, Wang Y, McCarthy RJ, Yaghmai V, Merrick L, Larson A, et al. Utility of diffusion-weighted MRI in characterization of adrenal lesions. AJR Am J Roentgenol. 2010;194:W179–85.

    Article  PubMed  Google Scholar 

  64. Hida T, Nishie A, Asayama Y, Ishigami K, Ushijima Y, Takayam Y, et al. Apparent diffusion coefficient characteristics of various adrenal tumors. Magn Reson Med Sci. 2014;13:183–9.

    Article  PubMed  Google Scholar 

  65. Cicekci M, Onur MR, Aydin AM, Gül Y, Ozkan Y, Akpolat N, et al. The role of apparent diffusion coefficient values in differentiation between adrenal masses. Clin Imaging. 2014;38:148–53.

    Article  PubMed  Google Scholar 

  66. Song J, Zhang C, Liu Q, Yu T, Jiang X, Xia Q, et al. Utility of chemical shift and diffusion-weighted imaging in characterization of hyperattenuating adrenal lesions at 3.0T. Eur J Radiol. 2012;81:2137–43.

    Article  PubMed  Google Scholar 

  67. Dong Y, Liu Q. Differentiation of malignant from benign pheochromocytomas with diffusion-weighted and dynamic contrast-enhanced magnetic resonance at 3.0 T. J Comput Assist Tomogr. 2012;36:361–6.

    Article  PubMed  Google Scholar 

  68. Isik Y, Gurses B, Tasdelen N, Kilickesmez O, Firat Z, Ordu C, et al. Diffusion tensor imaging in the differentiation of adrenal adenomas and metastases. Diagn Interv Radiol. 2012;18:189–94.

    PubMed  Google Scholar 

  69. Tsushima Y, Takahashi-Taketomi A, Endo K. Diagnostic utility of diffusion-weighted MR imaging and apparent diffusion coefficient value for the diagnosis of adrenal tumors. J Magn Reson Imaging. 2009;29:112–7.

    Article  PubMed  Google Scholar 

  70. Nakajo M, Nakajo M, Fukukura Y, Jinjuji M, Shindo T, Nakabeppu Y, et al. Diagnostic performances of FDG-PET/CT and diffusion-weighted imaging indices for differentiating benign pheochromocytoma from other benign adrenal tumors. Abdom Imaging. 2015;40:1655–65.

    Article  PubMed  Google Scholar 

  71. Umanodan T, Fukukura Y, Kumagae Y, Shindo T, Nakajo M, Takumi K, et al. ADC histogram analysis for adrenal tumor histogram analysis of apparent diffusion coefficient in differentiating adrenal adenoma from pheochromocytoma. J Magn Reson Imaging. 2017;45:1195–203.

    Article  PubMed  Google Scholar 

  72. Nishino M, Hayakawa K, Minami M, Yamamoto A, Ueda H, Takasu K. Primary retroperitoneal neoplasms: CT and MR imaging findings with anatomic and pathologic diagnostic clues. Radiographics. 2003;23:45–57.

    Article  PubMed  Google Scholar 

  73. Scali EP, Chandler TM, Heffernan EJ, Coyle J, Harris AC, Chang SD. Primary retroperitoneal masses: what is the differential diagnosis? Abdom Imaging. 2015;40:1887–903.

    Article  PubMed  Google Scholar 

  74. Sangster GP, Migliaro M, Heldmann MG, Bhargava P, Hamidian A, Thomas-Ogunniyi J. The gamut of primary retroperitoneal masses: multimodality evaluation with pathologic correlation. Abdom Radiol (NY). 2016;41:1411–30.

    Article  PubMed  Google Scholar 

  75. Osman S, Lehnert BE, Elojeimy S, Cruite I, Mannelli L, Bhargava P, et al. A comprehensive review of the retroperitoneal anatomy, neoplasms, and pattern of disease spread. Curr Probl Diagn Radiol. 2013;42:191–208.

    Article  PubMed  Google Scholar 

  76. Shanbhogue AK, Fasih N, Macdonald DB, Sheikh AM, Menias CO, Prasad SR. Uncommon primary pelvic retroperitoneal masses in adults: a pattern-based imaging approach. Radiographics. 2012;32:795–817.

    Article  PubMed  Google Scholar 

  77. Rajiah P, Sinha R, Cuevas C, Dubinsky TJ, Bush WH Jr, Kolokythas O. Imaging of uncommon retroperitoneal masses. Radiographics. 2011;31:949–76.

    Article  PubMed  Google Scholar 

  78. Vilanova JC, Baleato-Gonzalez S, Romero MJ, Carrascoso-Arranz J, Luna A. Assessment of musculoskeletal malignancies with functional MR imaging. Magn Reson Imaging Clin N Am. 2016;24:239–59.

    Article  PubMed  Google Scholar 

  79. Subhawong TK, Jacobs MA, Fayad LM. Insights into quantitative diffusion-weighted MRI for musculoskeletal tumor imaging. AJR Am J Roentgenol. 2014;203:560–72.

    Article  PubMed  Google Scholar 

  80. Dallaudière B, Lecouvet F, Vande Berg B, Omoumi P, Perlepe V, Cerny M, et al. Diffusion-weighted MR imaging in musculoskeletal diseases: current concepts. Diagn Interv Imaging. 2015;96:327–40.

    Article  PubMed  Google Scholar 

  81. Nakayama T, Yoshimitsu K, Irie H, Aibe H, Tajima T, Shinozaki K, et al. Usefulness of the calculated apparent diffusion coefficient value in the differential diagnosis of retroperitoneal masses. J Magn Reson Imaging. 2004;20:735–42.

    Article  PubMed  Google Scholar 

  82. Rosenkrantz AB, Spieler B, Seuss CR, Stifelman MD, Kim S. Utility of MRI features for differentiation of retroperitoneal fibrosis and lymphoma. AJR Am J Roentgenol. 2012;199:118–26.

    Article  PubMed  Google Scholar 

  83. Bakir B, Yilmaz F, Turkay R, Ozel S, Bilgiç B, Velioglu A, et al. Role of diffusion-weighted MR imaging in the differentiation of benign retroperitoneal fibrosis from malignant neoplasm: preliminary study. Radiology. 2014;272:438–45.

    Article  PubMed  Google Scholar 

  84. Marzi S, Stefanetti L, Sperati F, Anelli V. Relationship between diffusion parameters derived from intravoxel incoherent motion MRI and perfusion measured by dynamic contrast-enhanced MRI of soft tissue tumors. NMR Biomed. 2016;29:6–14.

    Article  PubMed  Google Scholar 

  85. Wu H, Zhang S, Liang C, Liu H, Liu Y, Mei Y, et al. Intravoxel incoherent motion MRI for the differentiation of benign, intermediate, and malignant solid soft-tissue tumors. J Magn Reson Imaging. 2017. https://doi.org/10.1002/jmri.25733. [Epub ahead of print].

  86. Du J, Li K, Zhang W, Wang S, Song Q, Liu A, et al. Intravoxel incoherent motion MR imaging: comparison of diffusion and perfusion characteristics for differential diagnosis of soft tissue tumors. Medicine (Baltimore). 2015;94:e1028.

    Article  Google Scholar 

  87. Lin C, Luciani A, Itti E, Haioun C, Violaine S, Meignan M, et al. Whole-body diffusion magnetic resonance imaging in the assessment of lymphoma. Cancer Imaging. 2012;12:403–8.

    Article  PubMed  PubMed Central  Google Scholar 

  88. Mosavi F, Laurell A, Ahlström H. Whole body MRI, including diffusion-weighted imaging in follow-up of patients with testicular cancer. Acta Oncol. 2015;54:1763–9.

    Article  PubMed  Google Scholar 

  89. Kamper L, Haage P, Brandt AS, Piroth W, Abanador-Kamper N, Roth S, et al. Diffusion-weighted MRI in the follow-up of chronic periaortitis. Br J Radiol. 2015;88:20150145.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Kamper L, Brandt AS, Ekamp H, Abanador-Kamper N, Piroth W, Roth S, et al. Diffusion-weighted MRI findings of treated and untreated retroperitoneal fibrosis. Diagn Interv Radiol. 2014;20:459–63.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

Javier Sánchez González, PhD, and Paula Montesinos Suárez de la Vega, PhD. Clinical Scientist at Philips Spain.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roberto García-Figueiras M.D., Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

García-Figueiras, R., Baleato-González, S. (2018). Renal, Adrenal, and Retroperitoneal Masses. In: Akata, D., Papanikolaou, N. (eds) Diffusion Weighted Imaging of the Genitourinary System. Springer, Cham. https://doi.org/10.1007/978-3-319-69575-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-69575-4_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-69574-7

  • Online ISBN: 978-3-319-69575-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics