Skip to main content

Analysis of the Influence of Shielding and Carrier Gases on the DED Powder Deposition Efficiency for a New Deposition Nozzle Design Solution

  • Conference paper
  • First Online:
Industrializing Additive Manufacturing - Proceedings of Additive Manufacturing in Products and Applications - AMPA2017 (AMPA 2017)

Abstract

In Direct Energy Deposition of metal parts the powder deposition efficiency is defined as the ratio of the nominal metal powder feed rate to the amount of powder directly involved in the component manufacture. Generally, the powder particles falling into the molten pool represent only a small portion of the total amount of metal particles nominally provided by the feeding system (less than 50% for most of the commercial systems), deteriorating the process performances in terms of powder waste, production time and increasing the production costs. For constant laser power, laser scan speed, and laser spot diameter, the deposition efficiency is primarily associated to the nozzle geometry, feeding system, and powder characteristics (e.g. particle size distribution, particle shape and size).

The current work focuses on the analysis and characterization of the performances of a new generation of high efficiency nozzles with an enhanced design which adopts the inert Argon gas for a double purpose of Shielding and Carrier. The proposed analysis consists in designing and executing an experimental campaign structured as a full factorial Design of Experiments to map the impact of Shielding gas, Carrier, and Ti-6Al-4V powder mass flow on the deposition efficiency by monitoring the resulting geometry of the powder flow. A numerical CFD simulation is also carried out to verify the possibility in deducing a control logic to modulate the aforementioned process parameters on a custom feeding system demonstrator. The metal powder and the benefit of the approach are assessed with regards to an industrial use case.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Thompson, S.M., Bian, L., Shamsaei, N., Yadollahi, A.: An overview of direct laser deposition for additive manufacturing; part I: transport phenomena, modeling and diagnostics. Addit. Manuf. 8, 36–62 (2015). doi:10.1016/j.addma.2015.07.001

    Article  Google Scholar 

  2. Pinkerton, A.J., Li, L., Lau, W.S.: Effect of powder geometry and composition in coaxial laser deposition of 316L steel for rapid prototyping. CIRP Ann. – Manuf. Technol. 52, 181–184 (2003). https://doi.org/10.1016/S0007-8506(07)60560-5

  3. Kakinuma, Y., Mori, M., Oda, Y., Mori, T., Kashihara, M., Hansel, A., Fujishima, M.: Influence of metal powder characteristics on product quality with directed energy deposition of Inconel 625. CIRP Ann. – Manuf. Technol. 65, 209–212 (2016). https://doi.org/10.1016/j.cirp.2016.04.058

  4. Boisselier, D., Sankaré, S.: Influence of powder characteristics in laser direct metal deposition of SS316L for metallic parts manufacturing. Phy. Proc. 39, 455–463 (2012). https://doi.org/10.1016/j.phpro.2012.10.061

  5. Pinkerton, A.J.: Advances in the modeling of laser direct metal deposition. J. Laser Appl. 27, S15001 (2015). doi:10.2351/1.4815992

    Article  Google Scholar 

  6. Huang, Y., Khamesee, M.B., Toyserkani, E.: A comprehensive analytical model for laser powder-fed additive manufacturing. Addit. Manuf. 12, 90–99 (2016). doi:10.1016/j.addma.2016.07.001

    Article  Google Scholar 

  7. Ding, Y., Dwivedi, R., Kovacevic, R.: Process planning for 8-axis robotized laser-based direct metal deposition system: a case on building revolved part. Robot Cim-Int. Manuf. 44, 67–76 (2017). doi:10.1016/j.rcim.2016.08.008

    Article  Google Scholar 

  8. Arnold, J., Volz, R.: Laser powder technology for cladding and welding. J. Therm. Spray Technol. 8, 243–248 (1999). doi:10.1007/s11666-999-0001-3

    Article  Google Scholar 

  9. Laeng, J., Stewart, J.G., Liou, F.W.: Laser metal forming processes for rapid prototyping – A review. Int. J. Prod. Res. 38, 3973–3996 (2010). doi:10.1080/00207540050176111

    Article  MATH  Google Scholar 

  10. Lin, J.: A simple model of powder catchment in coaxial laser cladding. Opt. Laser Technol. 31, 233–238 (1999). doi:10.1016/S0030-3992(99)00046-8

    Article  Google Scholar 

  11. Zhu, G., Li, D., Zhang, A., Tang, Y.: Numerical simulation of metallic powder flow in a coaxial nozzle in laser direct metal deposition. Opt. Laser Technol. 43, 106–113 (2011). doi:10.1016/j.optlastec.2010.05.012

    Article  Google Scholar 

  12. Zekovic, S., Dwivedi, R., Kovacevic, R.: Numerical simulation and experimental investigation of gas-powder flow from radially symmetrical nozzles in laser-based direct metal deposition. Int. J. Mach. Tool Manuf. 47, 112–123 (2007). doi:10.1016/j.ijmachtools.2006.02.004

    Article  Google Scholar 

  13. Zhang, B., Coddet, C.: Numerical study on the effect of pressure and nozzle dimension on particle distribution and velocity in laser cladding under vacuum base on CFD. J. Manuf. Processes 23, 54–60 (2016). doi:10.1016/j.jmapro.2016.05.019

    Article  Google Scholar 

  14. Yang, N.: Concentration model based on movement model of powder flow in coaxial laser cladding. Opt. Laser Technol. 41, 94–98 (2009). doi:10.1016/j.optlastec.2008.03.008

    Article  Google Scholar 

  15. Smurov, J., Doubenskaia, M., Zaitsev, A.: Comprehensive analysis of laser cladding by means of optical diagnostics and numerical simulation. Surf. Coat. Technol. 220, 112–121 (2013). doi:10.1016/j.surfcoat.2012.10.053

    Article  Google Scholar 

  16. Kovaleva, I., Kovalev, O., Zaitsev, A., Smurov, I.: Numerical simulation and comparison of powder jet profiles for different types of coaxial nozzles in direct material deposition. Phys. Proc. 41, 810–872 (2013). doi:10.1016/j.phpro.2013.03.160

    Article  Google Scholar 

  17. Brugnetti, I., Colla, M., Marchetti, A., Valente, A.: Nozzle apparatus for direct energy deposition. Patent pending, App Number: EP16201499 (2016)

    Google Scholar 

  18. Task 3.1 Borealis project. http://www.borealisproject.eu/project/

  19. ImageJ v1.51 k. https://imagej.nih.gov/ij/

  20. Tabernero, I., Lamikiz, A., Ukar, E., de Lacalle, L.L.N., Angulo, C., Urbikain, G.: Numerical simulation and experimental validation of powder flux distribution in coaxial laser cladding. J. Mater. Process. Technol. 210, 2125–2134 (2010). doi:10.1016/j.jmatprotec.2010.07.036

    Article  Google Scholar 

  21. Wen, S.Y., Shin, Y.C., Murthy, J.Y., Sojka, P.E.: Modeling of coaxial powder flow for the laser direct deposition process. Int. J. Heat Mass Trans. 52, 5867–5877 (2009). doi:10.1016/j.ijheatmasstransfer.2009.07.018

    Article  MATH  Google Scholar 

Download references

Acknowledgements

The research has been partially funded by European H2020 Borealis Project (Grant agreement no: 636992).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Federico Mazzucato .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this paper

Cite this paper

Mazzucato, F., Marchetti, A., Valente, A. (2018). Analysis of the Influence of Shielding and Carrier Gases on the DED Powder Deposition Efficiency for a New Deposition Nozzle Design Solution. In: Meboldt, M., Klahn, C. (eds) Industrializing Additive Manufacturing - Proceedings of Additive Manufacturing in Products and Applications - AMPA2017. AMPA 2017. Springer, Cham. https://doi.org/10.1007/978-3-319-66866-6_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-66866-6_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-66865-9

  • Online ISBN: 978-3-319-66866-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics