Skip to main content

Applications of Soft Computing in Intelligent Transportation Systems

  • Chapter
  • First Online:
Soft Computing Based Optimization and Decision Models

Part of the book series: Studies in Fuzziness and Soft Computing ((STUDFUZZ,volume 360))

Abstract

Intelligent Transportation Systems emerged to meet the increasing demand for more efficient, reliable and safer transportation systems. These systems combine electronic, communication and information technologies with traffic engineering to respond to the former challenges. The benefits of Intelligent Transportation Systems have been extensively proved in many different facets of transport and Soft Computing has played a major role in achieving these successful results. This book chapter aims at gathering and discussing some of the most relevant and recent advances of the application of Soft Computing in four important areas of Intelligent Transportation Systems as autonomous driving, traffic state prediction, vehicle route planning and vehicular ad hoc networks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Road safety in the European union trends, statistics and main challenges. Technical report, European Commission: General Mobility and Transport, Unit C.4 Road Safety (2015)

    Google Scholar 

  2. Alheeti, K.M.A., Gruebler, A., McDonald-Maier, K.D.: An intrusion detection system against malicious attacks on the communication network of driverless cars. In: 2015 12th Annual IEEE Consumer Communications and Networking Conference (CCNC), pp. 916–921 (2015)

    Google Scholar 

  3. Alinaghian, M., Naderipour, M.: A novel comprehensive macroscopic model for time-dependent vehicle routing problem with multi-alternative graph to reduce fuel consumption: a case study. Comput. Ind. Eng. 99, 210–222 (2016)

    Article  Google Scholar 

  4. Allström, A., Ekström, J., Gundlegård, D., Ringdahl, R., Rydergren, C., Bayen, A., Patire, A.: Hybrid approach for short-term traffic state and travel time prediction on highways. Trans. Res. Rec. 2554, 60–68 (2016)

    Google Scholar 

  5. Ario, T., Sugimachi, T., Fukao, T., Kawashima, H.: Evaluation of fuzzy inference-based self-tuning of steering control gains for heavy-duty trucks. Int. J. Intell. Trans. Syst. Res. 14(2), 92–100 (2016)

    Google Scholar 

  6. Baños, R., Ortega, J., Gil, C., Fernández, A., de Toro, F.: A simulated annealing-based parallel multi-objective approach to vehicle routing problems with time windows. Expert Syst. Appl. 40(5), 1696–1707 (2013)

    Article  Google Scholar 

  7. Barman, B., Kanjilal, R., Mukhopadhyay, A.: Neuro-fuzzy controller design to navigate unmanned vehicle with construction of traffic rules to avoid obstacles. Int. J. Uncertain. Fuzziness Knowl. Based Syst. 24(3), 433–449 (2016)

    Article  Google Scholar 

  8. Belk, R.: You are what you can access: sharing and collaborative consumption online. J. Bus. Res. 67(8), 1595–1600 (2014)

    Article  Google Scholar 

  9. Bentez, A., Casillas, J.: Multi-objective genetic learning of serial hierarchical fuzzy systems for large-scale problems. Soft Comput. 17(1), 165–194 (2013)

    Article  Google Scholar 

  10. Bitam, S., Mellouk, A., Zeadally, S.: HyBR: A hybrid bio-inspired bee swarm routing protocol for safety applications in vehicular ad hoc networks (VANETs). J. Syst. Archit. 59(10), 953–967 (2013)

    Article  Google Scholar 

  11. Bonnefon, J.F., Shariff, A., Rahwan, I.: Autonomous vehicles need experimental ethics: are we ready for utilitarian cars? arXiv preprint. arXiv:1510.03346 (2015)

  12. Brito, J., Martínez, F.J., Moreno, J.A., Verdegay, J.L.: An ACO hybrid metaheuristic for close-open vehicle routing problems with time windows and fuzzy constraints. Appl. Soft Comput. 32, 154–163 (2015)

    Article  Google Scholar 

  13. Brynjolfsson, E., McAfee, A.: Race Against the Machine. Digital Frontier, Lexington, MA (2011)

    Google Scholar 

  14. Carrabs, F., Cordeau, J.F., Laporte, G.: Variable neighborhood search for the pickup and delivery traveling salesman problem with lifo loading. Inf. J. Comput. 19(4), 618–632 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  15. Chen, C., Seff, A., Kornhauser, A., Xiao, J.: Deepdriving: learning affordance for direct perception in autonomous driving. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2722–2730 (2015)

    Google Scholar 

  16. Chiang, W.C., Russell, R.A.: Simulated annealing metaheuristics for the vehicle routing problem with time windows. Ann. Oper. Res. 63(1), 3–27 (1996)

    Article  MATH  Google Scholar 

  17. Chouraqui, S., Selma, B.: Unmanned vehicle trajectory tracking by neural networks. Int. Arab J. Inf. Technol. 13(3), 272–275 (2016)

    Google Scholar 

  18. Dimitrakopoulos, G., Demestichas, P.: Intelligent transportation systems. IEEE Veh. Technol. Mag. 5(1), 77–84 (2010)

    Article  Google Scholar 

  19. Du, X., Htet, K., Tan, K.: Development of a genetic-algorithm-based nonlinear model predictive control scheme on velocity and steering of autonomous vehicles. IEEE Trans. Ind. Electron. 63(11), 6970–6977 (2016)

    Article  Google Scholar 

  20. ERTRAC: Multi-annual implementation plan for Horizon 2020. Tech. rep. (2013). http://www.ertrac.org/uploads/documentsearch/id20/ertrac-map-h2020_67.pdf

  21. Escobar, J.W., Linfati, R., Toth, P., Baldoquin, M.G.: A hybrid granular tabu search algorithm for the multi-depot vehicle routing problem. J. Heuristics 20(5), 483–509 (2014)

    Article  Google Scholar 

  22. Faddel, S., Mohamed, A., Mohammed, O.: Fuzzy logic-based autonomous controller for electric vehicles charging under different conditions in residential distribution systems. Electr. Power Syst. Res. 148, 48–58 (2017)

    Article  Google Scholar 

  23. Figueiredo, L., Jesus, I., Machado, J., Ferreira, J., Martins de Carvalho, J.: Towards the development of intelligent transportation systems. In: Proceedings of the 2001 IEEE Intelligent Transportation Systems, pp. 1206–1211 (2001)

    Google Scholar 

  24. Fusco, G., Colombaroni, C., Isaenko, N.: Comparative analysis of implicit models for real-time short-term traffic predictions. IET Intell. Trans. Syst. 10(4), 270–278 (2016)

    Article  Google Scholar 

  25. Galaviz-Mosqueda, A., Villarreal-Reyes, S., Galeana-Zapien, H., Rubio-Loyola, J., Rivera-Rodriguez, R.: Genetic tuning of fuzzy rule-based systems for multi-hop broadcast protocols for VANETs. Telecommun. Syst. 63(3), 399–420 (2016)

    Article  Google Scholar 

  26. García-Nieto, J., Toutouh, J., Alba, E.: Automatic tuning of communication protocols for vehicular ad hoc networks using metaheuristics. Eng. Appl. Artif. Intell. 23(5), 795–805 (2010)

    Article  Google Scholar 

  27. Geem, Z.W., Kim, J.H., Loganathan, G.: A new heuristic optimization algorithm: harmony search. Simulation 76(2), 60–68 (2001)

    Article  Google Scholar 

  28. Ghannadpour, S.F., Noori, S., Tavakkoli-Moghaddam, R.: Multiobjective dynamic vehicle routing problem with fuzzy travel times and customers satisfaction in supply chain management. IEEE Trans. Eng. Manag. 60(4), 777–790 (2013)

    Article  Google Scholar 

  29. Ghannadpour, S.F., Noori, S., Tavakkoli-Moghaddam, R., Ghoseiri, K.: A multi-objective dynamic vehicle routing problem with fuzzy time windows: model, solution and application. Appl. Soft Comput. 14, 504–527 (2014)

    Article  Google Scholar 

  30. Hafeez, K.A., Zhao, L., Liao, Z., Ma, B.N.W.: A fuzzy-logic-based cluster head selection algorithm in VANETs. In: 2012 IEEE International Conference on Communications (ICC), pp. 203–207 (2012)

    Google Scholar 

  31. Hang, Su, Zhang, Xi: Clustering-based multichannel MAC protocols for QoS provisionings over vehicular ad hoc networks. IEEE Trans. Veh. Technol. 56(6), 3309–3323 (2007)

    Article  Google Scholar 

  32. Hartenstein, H., Laberteaux, K.P.: A tutorial survey on vehicular ad hoc networks. IEEE Commun. Mag. 46(6), 164–171 (2008)

    Article  Google Scholar 

  33. Hatcher, G., Burnier, C., Greer, E., Hardesty, D., Hicks, D., Jacobi, A., Lowrance, C., Mercer, M.: Intelligent transportation systems benefits, costs, and lessons learned: 2014 update report. In: Technical report, U.S. Department of Transportation, ITS Joint Program Office (2014). https://trid.trb.org/view.aspx?id=1334694

  34. Huang, W., Wu, Q., Ma, Y.L., Chu, X.M.: Design of speed controller of small intelligent vehicle based on visual navigation. J. Wuhan Univ. Technol. 32(6), 103–106 (2010)

    Google Scholar 

  35. Jati, G.K., Suyanto: Evolutionary discrete firefly algorithm for travelling salesman problem. In: Proceedings of the Adaptive and Intelligent Systems: Second International Conference, pp. 393–403 (2011)

    Google Scholar 

  36. Jia, B., Feng, W., Zhu, M.: Obstacle detection in single images with deep neural networks. Signal, Image Video Process. 10(6), 1033–1040 (2016)

    Article  Google Scholar 

  37. Kala, R., Warwick, K.: Reactive planning of autonomous vehicles for traffic scenarios. Electronics 4(4), 739–762 (2015)

    Article  Google Scholar 

  38. Kang, M.J., Kang, J.W., Wang, X., Larochelle, H., Vincent, P., Bengio, S.: Intrusion detection system using deep neural network for in-vehicle network security. PLOS ONE 11(6), e0155, 781 (2016)

    Google Scholar 

  39. Karakatič, S., Podgorelec, V.: A survey of genetic algorithms for solving multi depot vehicle routing problem. Appl. Soft Comput. 27, 519–532 (2015)

    Article  Google Scholar 

  40. Killat, M., Hartenstein, H.: Vehicular ad hoc networks: how to show the impact on traffic safety? In: 2007 IEEE 65th Vehicular Technology Conference—VTC2007, Spring, pp. 659–663 (2007)

    Google Scholar 

  41. Koesdwiady, A., Soua, R., Karray, F.: Improving traffic flow prediction with weather information in connected cars: a deep learning approach. IEEE Trans. Veh. Technol. 65(12), 9508–9517 (2016)

    Article  Google Scholar 

  42. Kumar, K., Parida, M., Katiyar, V.: Short term traffic flow prediction in heterogeneous condition using artificial neural network. Transport 30(4), 397–405 (2015)

    Article  Google Scholar 

  43. Laporte, G.: The traveling salesman problem: an overview of exact and approximate algorithms. Eur. J. Oper. Res. 59(2), 231–247 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  44. Laporte, G.: The vehicle routing problem: an overview of exact and approximate algorithms. Eur. J. Oper. Res. 59(3), 345–358 (1992)

    Article  MATH  Google Scholar 

  45. Lopez-Garcia, P., Onieva, E., Osaba, E., Masegosa, A.D., Perallos, A.: A hybrid method for short-term traffic congestion forecasting using genetic algorithms and cross entropy. IEEE Trans. Intell. Trans. Syst. 17(2), 557–569 (2016)

    Google Scholar 

  46. Lopez-Garcia, P., Osaba, E., Onieva, E., Masegosa, A.D., Perallos, A.: Short-term traffic congestion forecasting using hybrid metaheuristics and rule-based methods: a comparative study. In: Luaces, O., Gámez, J.A., Barrenechea, E., Troncoso, A., Galar, M., Quintián, H., Corchado, E. (eds.) Advances in Artificial Intelligence: 17th Conference of the Spanish Association for Artificial Intelligence, CAEPIA 2016, pp. 290–299. Springer International Publishing (2016)

    Google Scholar 

  47. Malek, M., Guruswamy, M., Pandya, M., Owens, H.: Serial and parallel simulated annealing and tabu search algorithms for the traveling salesman problem. Ann. Oper. Res. 21(1), 59–84 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  48. Masegosa, A.D., de la Iglesia, I., Hernandez-Jayo, U., Diez, L.E., Bahillo, A., Onieva, E.: Solutions based on soft computing for the sustainability and climate change. In: A New Approach for Information Dissemination in VANETs Based on Covering Location and Metaheuristics, pp. 1–24. Springer International Publishing (2017). In press

    Google Scholar 

  49. OECD: Improving Reliability on Surface Transport Networks. OECD Publishing (2010). URL http://www.oecd-ilibrary.org/transport/improving-reliability-on-surface-transport-networks_9789282102428-en

  50. Oh, S.D., Kim, Y.J., Hong, J.S.: Urban traffic flow prediction system using a multifactor pattern recognition model. IEEE Trans. Intell. Trans. Syst. 16(5), 2744–2755 (2015)

    Article  Google Scholar 

  51. Onieva, E., Godoy, J., Villagrá, J., Milanés, V., Pérez, J.: On-line learning of a fuzzy controller for a precise vehicle cruise control system. Expert Syst. Appl. 40(4), 1046–1053 (2013)

    Article  Google Scholar 

  52. Onieva, E., Hernandez-Jayo, U., Osaba, E., Perallos, A., Zhang, X.: A multi-objective evolutionary algorithm for the tuning of fuzzy rule bases for uncoordinated intersections in autonomous driving. Inf. Sci. 321, 14–30 (2015)

    Article  Google Scholar 

  53. Onieva, E., Lopez-Garcia, P., Masegosa, A.D., Osaba, E., Perallos, A.: A comparative study on the performance of evolutionary fuzzy and crisp rule based classification methods in congestion prediction. Trans. Res. Proced. 14, 4458–4467 (2016)

    Google Scholar 

  54. Osaba, E., Carballedo, R., Yang, X.S., Diaz, F.: An Evolutionary Discrete Firefly Algorithm with Novel Operators for Solving the Vehicle Routing Problem with Time Windows, pp. 21–41. Springer International Publishing, Cham (2016)

    Google Scholar 

  55. Osaba, E., Yang, X.S., Diaz, F., Lopez-Garcia, P., Carballedo, R.: An improved discrete bat algorithm for symmetric and asymmetric traveling salesman problems. Eng. Appl. Artif. Intell. 48, 59–71 (2016)

    Article  Google Scholar 

  56. Osaba, E., Yang, X.S., Diaz, F., Onieva, E., Masegosa, A.D., Perallos, A.: A discrete firefly algorithm to solve a rich vehicle routing problem modelling a newspaper distribution system with recycling policy. Soft Comput. 1–14 (2016)

    Google Scholar 

  57. Papadimitratos, P., La Fortelle, A., Evenssen, K., Brignolo, R., Cosenza, S.: Vehicular communication systems: enabling technologies, applications, and future outlook on intelligent transportation. IEEE Commun. Mag. 47(11), 84–95 (2009)

    Article  Google Scholar 

  58. Pérez, J., Gajate, A., Milanés, V., Onieva, E., Santos, M.: Design and implementation of a neuro-fuzzy system for longitudinal control of autonomous vehicles. In: International Conference on Fuzzy Systems, pp. 1–6 (2010)

    Google Scholar 

  59. Pérez, J., Milanés, V., Godoy, J., Villagrá, J., Onieva, E.: Cooperative controllers for highways based on human experience. Expert Syst. Appl. 40(4), 1024–1033 (2013)

    Article  Google Scholar 

  60. Pisinger, D., Ropke, S.: Large neighborhood search In: Handbook of Metaheuristics, pp. 399–419 (2010)

    Google Scholar 

  61. Precup, R.E., David, R.C., Petriu, E.M., Preitl, S., Rădac, M.B.: Fuzzy logic-based adaptive gravitational search algorithm for optimal tuning of fuzzy-controlled servo systems. IET Control Theory Appl. 7(1), 99–107 (2013)

    Article  MathSciNet  Google Scholar 

  62. Precup, R.E., David, R.C., Petriu, E.M., Radac, M.B., Preitl, S.: Adaptive GSA-based optimal tuning of PI controlled servo systems with reduced process parametric sensitivity, robust stability and controller robustness. IEEE Trans. Cybern. 44(11), 1997–2009 (2014)

    Article  Google Scholar 

  63. Reed, M., Yiannakou, A., Evering, R.: An ant colony algorithm for the multi-compartment vehicle routing problem. Appl. Soft Comput. 15, 169–176 (2014)

    Article  Google Scholar 

  64. Rodriguez-Castao, A., Heredia, G., Ollero, A.: High-speed autonomous navigation system for heavy vehicles. Appl. Soft Comput. J. 43, 572–582 (2016)

    Article  Google Scholar 

  65. Sarasola, B., Doerner, K.F., Schmid, V., Alba, E.: Variable neighborhood search for the stochastic and dynamic vehicle routing problem. Ann. Oper. Res. 236(2), 425–461 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  66. Schmidhuber, J.: Deep learning in neural networks: an overview. Neural Netw. 61, 85–117 (2015)

    Article  Google Scholar 

  67. Shea, C., Hassanabadi, B., Valaee, S.: Mobility-based clustering in VANETs using affinity propagation. In: GLOBECOM 2009—2009 IEEE Global Telecommunications Conference, pp. 1–6 (2009)

    Google Scholar 

  68. Soua, R., Koesdwiady, A., Karray, F.: Big-data-generated traffic flow prediction using deep learning and dempster-shafer theory. In: 2016 International Joint Conference on Neural Networks (IJCNN), pp. 3195–3202 (2016)

    Google Scholar 

  69. Souza, A.B., Celestino, J., Xavier, F.A., Oliveira, F.D., Patel, A., Latifi, M.: Stable multicast trees based on ant colony optimization for vehicular ad hoc networks. In: The International Conference on Information Networking 2013 (ICOIN), pp. 101–106 (2013)

    Google Scholar 

  70. Taha, A., Hachimi, M., Moudden, A.: Adapted bat algorithm for capacitated vehicle routing problem. Int. Rev. Comput. Softw. 10(6), 610–619 (2015)

    Google Scholar 

  71. Tang, J., Pan, Z., Fung, R.Y., Lau, H.: Vehicle routing problem with fuzzy time windows. Fuzzy Sets and Syst. 160(5), 683–695 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  72. Torres, I., Cruz, C., Verdegay, J.L.: Solving the truck and trailer routing problem with fuzzy constraints. Int. J. Comput. Intell. Syst. 8(4), 713–724 (2015)

    Article  Google Scholar 

  73. Toutouh, J., Garcia-Nieto, J., Alba, E.: Intelligent OLSR routing protocol optimization for VANETs. IEEE Trans. Veh. Technol. 61(4), 1884–1894 (2012)

    Article  Google Scholar 

  74. Van Laarhoven, P.J.M., Aarts, E.H.L.: Simulated annealing. In: Simulated Annealing: Theory and Applications, pp. 7–15 (1987)

    Google Scholar 

  75. Verdegay, J.L., Yager, R.R., Bonissone, P.P.: On heuristics as a fundamental constituent of soft computing. Fuzzy Sets and Syst. 159(7), 846–855 (2008)

    Article  MathSciNet  Google Scholar 

  76. Verma, M., Manoj, M., Verma, A.: Analysis of aspiration for owning a car among youths in a city of a developing country, India. Trans. Dev. Econ. 3(1), 7 (2017)

    Article  Google Scholar 

  77. Vidal, T., Crainic, T.G., Gendreau, M., Prins, C.: A hybrid genetic algorithm with adaptive diversity management for a large class of vehicle routing problems with time-windows. Comput. Oper. Res. 40(1), 475–489 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  78. Wu, C., Ohzahata, S., Kato, T.: VANET broadcast protocol based on fuzzy logic and lightweight retransmission mechanism. IEICE Trans. Commun. E95-B(2), 415–425 (2012)

    Google Scholar 

  79. Xidias, E., Zacharia, P., Nearchou, A.: Path planning and scheduling for a fleet of autonomous vehicles. Robotica 34(10), 2257–2273 (2016)

    Article  Google Scholar 

  80. Xu, D.W., Wang, Y.D., Jia, L.M., Qin, Y., Dong, H.H.: Real-time road traffic state prediction based on arima and kalman filter. Front. Inf. Technol. Electron. Eng. 18(2), 287–302 (2017)

    Article  Google Scholar 

  81. Xu, Y., Kong, Q.J., Klette, R., Liu, Y.: Accurate and interpretable bayesian mars for traffic flow prediction. IEEE Trans. Intell. Trans. Syst. 15(6), 2457–2469 (2014)

    Article  Google Scholar 

  82. Yan, S., Chen, C.Y., Chang, S.C.: A car pooling model and solution method with stochastic vehicle travel times. IEEE Trans. Intell. Trans. Syst. 15(1), 47–61 (2014)

    Article  Google Scholar 

  83. Yang, J.Y., Chou, L.D., Tung, C.F., Huang, S.M., Wang, T.W.: Average-speed forecast and adjustment via VANETs. IEEE Trans. Veh. Technol. 62(9), 4318–4327 (2013)

    Article  Google Scholar 

  84. Yang, X.S.: Nature-inspired metaheuristic algorithms. Luniver press (2008)

    Google Scholar 

  85. Yang, X.S.: A new metaheuristic bat-inspired algorithm. In: Nature Inspired Cooperative Strategies for Optimization (NICSO 2010), pp. 65–74 (2010)

    Google Scholar 

  86. Yang, X.S., He, X.: Bat algorithm: literature review and applications. Int. J. Bio-Inspir. Comput. 5(3), 141–149 (2013)

    Article  Google Scholar 

  87. Yang, X.S., He, X.: Firefly algorithm: recent advances and applications. Int. J. Swarm Intell. 1(1), 36–50 (2013)

    Article  Google Scholar 

  88. Yang, Y., Luo, H., Xu, H., Wu, F.: Towards real-time traffic sign detection and classification. IEEE Trans. Intell. Trans. Syst. 17(7), 2022–2031 (2016)

    Article  Google Scholar 

  89. Yao, B., Yu, B., Hu, P., Gao, J., Zhang, M.: An improved particle swarm optimization for carton heterogeneous vehicle routing problem with a collection depot. Ann. Oper. Res. 242(2), 303–320 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  90. Yu, X., Xiong, S., He, Y., Wong, W., Zhao, Y.: Research on campus traffic congestion detection using BP neural network and Markov model. J. Inf. Secur. Appl. 31, 54–60 (2016)

    Google Scholar 

  91. Zhang, D., Li, S., Yang, Q., Liu, L.: Optimization based trajectory planning of parallel parking with multiple constraints. SAE Int. J. Passeng. Cars Electron. Electr. Syst. 8(2), 413–418 (2015)

    Article  Google Scholar 

  92. Zhang, J., Wang, F.Y., Wang, K., Lin, W.H., Xu, X., Chen, C.: Data-driven intelligent transportation systems: a survey. IEEE Trans. Intell. Trans. Syst. 12(4), 1624–1639 (2011)

    Article  Google Scholar 

  93. Zhang, X., Onieva, E., Lee, V., Liu, K.: Congestion prediction by means of fuzzy logic and genetic algorithms. In: Intelligent Transport Systems: Technologies and Applications, pp. 189–205 (2015)

    Google Scholar 

  94. Zhang, X., Onieva, E., Perallos, A., Osaba, E., Lee, V.: Hierarchical fuzzy rule-based system optimized with genetic algorithms for short term traffic congestion prediction. Trans. Res. Part C: Emerg. Technol. 43, 127–142 (2014)

    Article  Google Scholar 

  95. Zhou, Y., Luo, Q., Xie, J., Zheng, H.: A hybrid bat algorithm with path relinking for the capacitated vehicle routing problem. In: Yang, X.S., Bekdaş, G., Nigdeli, S.M. (eds.) Metaheuristics and Optimization in Civil Engineering, pp. 255–276. Springer International Publishing, Cham (2016)

    Chapter  Google Scholar 

  96. Zrar Ghafoor, K., AbuBakar, K., van Eenennaam, M., Khokhar, R.H., Gonzalez, A.J.: A fuzzy logic approach to beaconing for vehicular ad hoc networks. Telecommun. Syst. 52(1), 139–149 (2013)

    Google Scholar 

Download references

Acknowledgements

This work has been supported by the research projects TEC2013-45585-C2-2-R and TIN2014-56042-JIN from the Spanish Ministry of Economy and Competitiveness, and TIMON project which received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 636220.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio D. Masegosa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Masegosa, A.D., Onieva, E., Lopez-Garcia, P., Osaba, E. (2018). Applications of Soft Computing in Intelligent Transportation Systems. In: Pelta, D., Cruz Corona, C. (eds) Soft Computing Based Optimization and Decision Models. Studies in Fuzziness and Soft Computing, vol 360. Springer, Cham. https://doi.org/10.1007/978-3-319-64286-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-64286-4_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-64285-7

  • Online ISBN: 978-3-319-64286-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics