Skip to main content

Strategies to Minimize Shunt Complications and Optimize Long-Term Outcomes

  • Chapter
  • First Online:
Hydrocephalus

Abstract

Hydrocephalus should be seen as a condition rather than a disease. Since different conditions can lead to hydrocephalus, the treatment has to be adapted and tailored to each patient. Whenever possible, the cause of hydrocephalus should be directly addressed. Tumor resection and endoscopic procedures for third ventriculostomy or cyst fenestration can often prevent the insertion of cerebrospinal fluid (CSF) shunts. There is no ideal shunt so far; therefore, every effort and measures should be taken to avoid shunt insertion. It is so important to treat every hydrocephalous patient as individual case, and strategic planning should be made for a lifelong management.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Nulsen FE, Spitz EB. Treatment of hydrocephalus by direct shunt from ventricle to jugular vein. Surg Forum. 1952;2:399–403.

    Google Scholar 

  2. Drake JM, Kestle JRW, Milner R. Randomized trial of cerebrospinal fluid shunt valve design in pediatric hydrocephalus. Neurosurgery. 1998;43:294–305.

    Article  CAS  PubMed  Google Scholar 

  3. Drake JM, Kulkarni AV. Cerebrospinal fluid shunt infections. Neurosurg Q. 1993;3:283–94.

    Google Scholar 

  4. Walters BC, Hoffman HJ, Hendrick EB, et al. Cerebrospinal fluid shunt infection. Influences on initial management and subsequent outcome. J Neurosurg. 1984;60:1014–21.

    Article  CAS  PubMed  Google Scholar 

  5. Ammirati M, Raimondi AJ. Cerebrospinal fluid shunt infections in children. A study on the relationship between the etiology of the hydrocephalus, age at the time of shunt placement, and infection rate. Childs Nerv Syst. 1987;3:106–9.

    Article  CAS  PubMed  Google Scholar 

  6. Serlo W, Fernell E, Heikkinen E, et al. Functions and complications of shunts in different etiologies of childhood hydrocephalus. Childs Nerv Syst. 1990;6:92–4.

    Article  CAS  PubMed  Google Scholar 

  7. Renier D, Lacombe J, Pierre-Kahn A, et al. Factors causing acute shunt infection. Computer analysis of 1174 operations. J Neurosurg. 1984;61:1072–8.

    Article  CAS  PubMed  Google Scholar 

  8. Kestle JRW, Hoffman HJ, Soloniuk D, et al. A concerted effort to prevent shunt infection. Childs Nerv Syst. 1993;9:163–5.

    CAS  PubMed  Google Scholar 

  9. Kontny U, Hofling B, Gutjahr P, et al. CSF shunt infections in children. Infection. 1993;21:89–92.

    Article  CAS  PubMed  Google Scholar 

  10. Welch K. Residual shunt infection in a program aimed at its prevention. Z Kinderchir. 1979;28:374–7.

    CAS  Google Scholar 

  11. Abhaya AV, Drake JM, et al. Cerebrospinal fluid shunt infection: a prospective study of risk factors. J Neurosurg. 2001;94:195–201.

    Article  Google Scholar 

  12. Rekate HL. Chapter 7: Treatment of hydrocephalus. In: Albright AL, Pollack IF, Adelson PD, editors. Principles and practice of pediatric neurosurgery. New York: Thieme. p. 94–130.

    Google Scholar 

  13. Jindal A, Mahapatra AK. Correlation of ventricular size and transcranial Doppler findings before and after ventricular peritoneal shunt in patients with hydrocephalus: prospective study of 35 patients. J Neurol Neurosurg Psychiatry. 1998;65:269–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Rainov NG, Weise JB, Burkert W. Transcranial Doppler sonography in adult hydrocephalic patients. Neurosurg Rev. 2000;23:34–8.

    Article  CAS  PubMed  Google Scholar 

  15. McGirt MJ, Leveque JC, Wellons JC III, et al. Cerebrospinal fluid shunt survival and etiologies of failures: a seven-year institutional experience. Pediatr Neurosurg. 2002;36(5):248–55.

    Article  PubMed  Google Scholar 

  16. Shapiro S, Boaz J, et al. Origin of organisms infecting ventricular shunts. Neurosurgery. 1988;22:868–75.

    Article  CAS  PubMed  Google Scholar 

  17. Duhaime AC, Bonner K, McGowan KL, et al. Distribution of bacteria in the operating room environment and its relation to ventricular shunt infections: a prospective study. Childs Nerv Syst. 1991;7:211–4.

    Article  CAS  PubMed  Google Scholar 

  18. Caldarelli M, Di Rocco C, La Marca F. Shunt complications in the first postoperative year in children with meningomyelocele. Childs Nerv Syst. 1996;12(12):748–54.

    Article  CAS  PubMed  Google Scholar 

  19. Centers for Disease Control and Prevention. Guideline for Prevention of Surgical Site Infection. 1999. http://www.cdc.gov/ncidod/dhqp/pdf/guidelines/SSI.pdf.

  20. Climo MW, Sepkowitz KA, Zuccotti G, et al. The effectiveness of daily bathing with chlorhexidine on the acquisition of methicillin-resistant Staphylococcus aureus, vancomycin- resistant Enterococcus, and healthcare-associated bloodstream infections: results of a quasi-experimental multicenter trial. Crit Care Med. 2009;37:1858–65.

    Article  CAS  PubMed  Google Scholar 

  21. Darouiche RO, Wall MJ, Itani KMF, et al. Chlorhexidine–alcohol versus povidone–iodine for surgical-site antisepsis. N Engl J Med. 2010;362:18–26.

    Article  CAS  PubMed  Google Scholar 

  22. Vernon MO, Hayden MK, et al. Chlorhexidine gluconate to cleanse patients in a medical intensive care unit: the effectiveness of source control to reduce the bioburden of vancomycin-resistant enterococci. Arch Intern Med. 2006;166(3):306–12.

    Article  CAS  PubMed  Google Scholar 

  23. Zywiel MG, Daley JA, Delanois RE, et al. Advance pre-operative chlorhexidine reduces the incidence of surgical site infections in knee arthroplasty. Int Orthop. 2011;35(7):1001–6.

    Article  PubMed  Google Scholar 

  24. Eiselt D. Presurgical skin preparation with a novel 2% chlorhexidine gluconate cloth reduces rates of surgical site infection in orthopaedic surgical patients. Orthop Nurs. 2009;28(3):141–5.

    Article  PubMed  Google Scholar 

  25. McLone DG. Care of the neonate with a myelomeningocele. Neurosurg Clin N Am. 1998;9(1):111–20.

    CAS  PubMed  Google Scholar 

  26. Ratilal B, Costa J, Sampaio C. Antibiotic prophylaxis for surgical introduction of intracranial ventricular shunts. Cochrane Database Syst Rev. 2006;(3):CD005365.

    Google Scholar 

  27. Ratilal B, Costa J, Sampaio C. Antibiotic prophylaxis for surgical introduction of intracranial ventricular shunts: a systematic review. J Neurosurg Pediatr. 2008;1(1):48–56.

    Article  PubMed  Google Scholar 

  28. Tanner J, Woodings D, Moncaster K. Preoperative hair removal to reduce surgical site infection. Cochrane Database Syst Rev. 2006;(2):CD004122.

    Google Scholar 

  29. Horgan MA, Piatt JH Jr. Shaving of the scalp may increase the rate of infection in CSF shunt surgery. Pediatr Neurosurg. 1997;26:180–4.

    Article  CAS  PubMed  Google Scholar 

  30. Swenson BR, Hedrick TL, Metzger R, et al. Effects of preoperative skin preparation on postoperative wound infection rates: a prospective study of 3 skin preparation protocols. Infect Control Hosp Epidemiol. 2009;30(10):964–71.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Macias JH, Arreguin V, Munoz JM, et al. Chlorhexidine is a better antiseptic than povidone iodine and sodium hypochlorite because of its substantive effect. Am J Infect Control. 2013;41(7):634–7.

    Article  CAS  PubMed  Google Scholar 

  32. Fairclough JA, Johnson D, Mackie I. The prevention of wound contamination by skin organisms by the pre-operative application of an iodophor impregnated plastic adhesive drape. J Int Med Res. 1986;14(2):105–9.

    Article  CAS  PubMed  Google Scholar 

  33. Edminston CE Jr, Seabrook GR, Cambria RA, et al. Molecular epidemiology of microbial contamination in the operating room environment: is there a risk for infection? Surgery. 2005;138(4):573–9. discussion 579-82

    Article  Google Scholar 

  34. Ragel BT, Browd SR, Schmidt RH. Surgical shunt infection: significant reduction when using intraventricular and systemic antibiotic agents. J Neurosurg. 2006;105(2):242–7.

    Article  PubMed  Google Scholar 

  35. Parker SL, Anderson WN, Lilienfield S, et al. Cerebrospinal shunt infection in patients receiving antibiotic-impregnated versus standard shunts. J Neurosurg Pediatr. 2011;8(3):259–65.

    Article  PubMed  Google Scholar 

  36. Klimo P Jr, Thompson CJ, Baird LC, et al. Pediatric hydrocephalus: systematic literature review and evidence-based guidelines. Part 7: antibiotic-impregnated shunt systems versus conventional shunts in children: a systematic review and meta-analysis. J Neurosurg Pediatr. 2014;14(Suppl 1):53–9.

    Article  PubMed  Google Scholar 

  37. Attenello FJ, Garces_Ambrossi GL, Zaidi HA, et al. Hospital costs associated with shunt infections in patients receiving antibiotic-impregnated shunt catheters versus standard shunt catheters. Neurosurgery. 2010;66(2):284–9. discussion 289

    Article  PubMed  Google Scholar 

  38. Kulkarni AV, Drake JM, Lamberti-Pasculli M. Cerebrospinal fluid shunt infection: a prospective study of risk factors. J Neurosurg. 2001;94:195–201.

    Article  CAS  PubMed  Google Scholar 

  39. Faillace WJ. A no-touch technique protocol to diminish cerebrospinal fluid shunt infection. Surg Neurol. 1995;43:344–50.

    Article  CAS  PubMed  Google Scholar 

  40. Alexander JW, Solomkin JS, Edwards MJ. Updated recommendations for control of surgical site infections. Ann Surg. 2011;253(6):1082–93.

    Article  PubMed  Google Scholar 

  41. Lind CR, Tsai AM, Law AJ, et al. Ventricular catheter placement accuracy in non-stereotactic shunt surgery for hydrocephalus. J Clin Neurosci. 2009;16(7):918–20.

    Article  PubMed  Google Scholar 

  42. Price S, Santarius T, Richards H, et al The accuracy of ventricular catheter placement: does it influence shunt revision rates? Annual Meeting of the Society for Research into Hydrocephalus and Spina Bifida Cambridge, UK. 30 August–2 September 2006.

    Google Scholar 

  43. Dickerman RD, McConarthy WJ, Morgan J, et al. Failure rate of frontal versus parietal approaches for proximal catheter placement in ventriculoperitoneal shunts: revisited. J Clin Neurosci. 2005;12(7):781–3.

    Article  CAS  PubMed  Google Scholar 

  44. Lind CR, Tsai AM, Law AJ, et al. Ventricular catheter trajectories from traditional shunt approaches: a morphometric study in adults with hydrocephalus. J Neurosurg. 2008;108(5):930–3.

    Article  PubMed  Google Scholar 

  45. Hayhurst C, Beems T, Jenkinson MD, et al. Effect of electromagnetic-navigated shunt placement on failure rates: a prospective multicenter study. J Neurosurg. 2010;113(6):1273–8.

    Article  PubMed  Google Scholar 

  46. Theodosopoulos PV, Abosch A, McDermott MW. Intraoperative fiber-optic endoscopy for ventricular catheter insertion. Can J Neurol Sci. 2001;28(1):56–60.

    Article  CAS  PubMed  Google Scholar 

  47. Wilson TJ, Stetler WR Jr, Al-Holou WN, Sullivan SE. Comparison of the accuracy of ventricular catheter placement using freehand placement, ultrasonic guidance, and stereotactic neuronavigation. J Neurosurg. 2013;119:66–70.

    Article  PubMed  Google Scholar 

  48. Sekula RF Jr, Marchan EM, Oh MY, et al. Laparoscopically assisted peritoneal shunt insertion for hydrocephalus. Br J Neurosurg. 2009;23(4):439–42.

    Article  PubMed  Google Scholar 

  49. Sosin M, Sofat S, Felbaum DR, et al. Laparoscopic-assisted peritoneal shunt insertion for ventriculoperitoneal and lumboperitoneal shunt placement: an institutional experience of 53 consecutive cases. Surg Laparosc Endosc Percutan Tech. 2015;25(3):235–7.

    Article  PubMed  Google Scholar 

  50. Baird LC, Mazzola CA, Auguste KI, et al. Pediatric hydrocephalus: systematic literature review and evidence-based guidelines. Part 5: effect of valve type on cerebrospinal fluid shunt efficacy. J Neurosurg Pediatr. 2014;14(Suppl 1):35–43.

    Article  PubMed  Google Scholar 

  51. Whitehead WE, Riva-Cambrin J, Wellons JC, et al. Factors associated with ventricular catheter movement and inaccurate catheter location: post hoc analysis of the hydrocephalus clinical research network ultrasound-guided shunt placement study. J Neurosurg Pediatr. 2014;14(2):173–8.

    Article  PubMed  Google Scholar 

  52. Kemp J, Flannery AM, Tamber MS, Duhaime AC. Pediatric hydrocephalus: systematic literature review and evidence-based guidelines. Part 9: effect of ventricular catheter entry point and position. J Neurosurg Pediatr. 2014;14(Suppl 1):72–6.

    Article  PubMed  Google Scholar 

  53. Nakahara K, Shimizu S, Utsuki S, et al. Shortening of ventricular shunt catheter associated with cranial growth: effect of the frontal and parieto-occipital access route on long-term shunt patency. Childs Nerv Syst. 2009;25(1):91–4.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dominic Venne M.D., M.Sc., F.R.C.S.C. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Venne, D. (2017). Strategies to Minimize Shunt Complications and Optimize Long-Term Outcomes. In: Ammar, A. (eds) Hydrocephalus. Springer, Cham. https://doi.org/10.1007/978-3-319-61304-8_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-61304-8_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-61303-1

  • Online ISBN: 978-3-319-61304-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics