Skip to main content

Genetics of Small Vessel Disease

  • Chapter
  • First Online:
Stroke Genetics

Abstract

Cerebral ‘small vessel disease’ (cSVD) refers to a mixture of clinical, cognitive, neuroimaging, and neuropathologic abnormalities that arise from different pathologic processes in cerebral perforating arteries and arterioles, capillaries and venules. A major risk for stroke, it is now also seen as the major cause for vascular dementia. Nearly every person over age 80 years displays signs of cSVD, making it one of the hallmarks of normal and abnormal ageing. cSVD has been challenging to tackle mechanistically and genetically. Studies have been constrained by technical difficulties, including visualization of small blood vessels, standardized phenotyping, and access to tissue. Several genes discovered in monogenic disorders have been implicated in cSVD, consequentially these findings have also lead to improved options in diagnosing, advising, and managing patients. The following chapter will discuss current studies and findings in the genetics of cSVD along with their therapeutic implications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wardlaw JM, Smith C, Dichgans M. Mechanisms of sporadic cerebral small vessel disease: insights from neuroimaging. Lancet Neurol. 2013;12(5):483–97.

    Article  PubMed  Google Scholar 

  2. Bailey EL, McCulloch J, Sudlow C, Wardlaw JM. Potential animal models of lacunar stroke: a systematic review. Stroke. 2009;40(6):e451–8.

    Article  PubMed  Google Scholar 

  3. Arsava EM, Ballabio E, Benner T, Cole JW, Delgado-Martinez MP, Dichgans M, et al. The causative classification of stroke system: an international reliability and optimization study. Neurology. 2010;75(14):1277–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Fazekas F, Kleinert R, Offenbacher H, Schmidt R, Kleinert G, Payer F, et al. Pathologic correlates of incidental MRI white matter signal hyperintensities. Neurology. 1993;43(9):1683–9.

    Article  CAS  PubMed  Google Scholar 

  5. Holliday EG, Maguire JM, Evans TJ, Koblar SA, Jannes J, Sturm JW, et al. Common variants at 6p21.1 are associated with large artery atherosclerotic stroke. Nat Genet. 2012;44(10):1147–51.

    Article  CAS  PubMed  Google Scholar 

  6. Ehret GB, Ferreira T, Chasman DI, Jackson AU, Schmidt EM, Johnson T, et al. The genetics of blood pressure regulation and its target organs from association studies in 342,415 individuals. Nat Genet. 2016;48(10):1171–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Carmelli D, DeCarli C, Swan GE, Jack LM, Reed T, Wolf PA, et al. Evidence for genetic variance in white matter hyperintensity volume in normal elderly male twins. Stroke. 1998;29(6):1177–81.

    Article  CAS  PubMed  Google Scholar 

  8. Turner ST, Jack CR, Fornage M, Mosley TH, Boerwinkle E, de Andrade M. Heritability of leukoaraiosis in hypertensive sibships. Hypertension. 2004;43(2):483–7.

    Article  CAS  PubMed  Google Scholar 

  9. Atwood LD, Wolf PA, Heard-Costa NL, Massaro JM, Beiser A, D'Agostino RB, et al. Genetic variation in white matter hyperintensity volume in the Framingham Study. Stroke. 2004;35(7):1609–13.

    Article  PubMed  Google Scholar 

  10. Opherk C, Peters N, Holtmannspotter M, Gschwendtner A, Muller-Myhsok B, Dichgans M. Heritability of MRI lesion volume in CADASIL: evidence for genetic modifiers. Stroke. 2006;37(11):2684–9.

    Article  PubMed  Google Scholar 

  11. Bevan S, Traylor M, Adib-Samii P, Malik R, Paul NL, Jackson C, et al. Genetic heritability of ischemic stroke and the contribution of previously reported candidate gene and genomewide associations. Stroke. 2012;43(12):3161–7.

    Article  CAS  PubMed  Google Scholar 

  12. Devan WJ, Falcone GJ, Anderson CD, Jagiella JM, Schmidt H, Hansen BM, et al. Heritability estimates identify a substantial genetic contribution to risk and outcome of intracerebral hemorrhage. Stroke. 2013;44(6):1578–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Sibon I, Coupry I, Menegon P, Bouchet JP, Gorry P, Burgelin I, et al. COL4A1 mutation in Axenfeld-Rieger anomaly with leukoencephalopathy and stroke. Ann Neurol. 2007;62(2):177–84.

    Article  PubMed  Google Scholar 

  14. Federico A, Di Donato I, Bianchi S, Di Palma C, Taglia I, Dotti MT. Hereditary cerebral small vessel diseases: a review. J Neurol Sci. 2012;322(1–2):25–30.

    Article  PubMed  Google Scholar 

  15. Joutel A, Corpechot C, Ducros A, Vahedi K, Chabriat H, Mouton P, et al. Notch3 mutations in CADASIL, a hereditary adult-onset condition causing stroke and dementia. Nature. 1996;383(6602):707–10.

    Article  CAS  PubMed  Google Scholar 

  16. Tournier-Lasserve E, Joutel A, Melki J, Weissenbach J, Lathrop GM, Chabriat H, et al. Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy maps to chromosome 19q12. Nat Genet. 1993;3(3):256–9.

    Article  CAS  PubMed  Google Scholar 

  17. Chabriat H, Joutel A, Dichgans M, Tournier-Lasserve E, Bousser MG. Cadasil. Lancet Neurol. 2009;8(7):643–53.

    Article  PubMed  Google Scholar 

  18. Dichgans M. Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy: phenotypic and mutational spectrum. J Neurol Sci 2002;203–204.

    Google Scholar 

  19. Wollenweber FA, Hanecker P, Bayer-Karpinska A, Malik R, Bazner H, Moreton F, et al. Cysteine-sparing CADASIL mutations in NOTCH3 show proaggregatory properties in vitro. Stroke. 2015;46(3):786–92.

    Article  CAS  PubMed  Google Scholar 

  20. Fukutake T. Cerebral autosomal recessive arteriopathy with subcortical infarcts and leukoencephalopathy (CARASIL): from discovery to gene identification. J Stroke Cerebrovasc Dis. 2011;20(2):85–93.

    Article  PubMed  Google Scholar 

  21. Oide T, Nakayama H, Yanagawa S, Ito N, Ikeda S, Arima K. Extensive loss of arterial medial smooth muscle cells and mural extracellular matrix in cerebral autosomal recessive arteriopathy with subcortical infarcts and leukoencephalopathy (CARASIL). Neuropathology. 2008;28(2):132–42.

    Article  PubMed  Google Scholar 

  22. Clausen T, Southan C, Ehrmann M. The HtrA family of proteases: implications for protein composition and cell fate. Mol Cell. 2002;10(3):443–55.

    Article  CAS  PubMed  Google Scholar 

  23. Nozaki H, Kato T, Nihonmatsu M, Saito Y, Mizuta I, Noda T, et al. Distinct molecular mechanisms of HTRA1 mutants in manifesting heterozygotes with CARASIL. Neurology. 2016;86(21):1964–74.

    Article  CAS  PubMed  Google Scholar 

  24. Gould DB, Phalan FC, Breedveld GJ, van Mil SE, Smith RS, Schimenti JC, et al. Mutations in Col4a1 cause perinatal cerebral hemorrhage and porencephaly. Science. 2005;308(5725):1167–71.

    Article  CAS  PubMed  Google Scholar 

  25. Jeanne M, Labelle-Dumais C, Jorgensen J, Kauffman WB, Mancini GM, Favor J, et al. COL4A2 mutations impair COL4A1 and COL4A2 secretion and cause hemorrhagic stroke. Am J Hum Genet. 2012;90(1):91–101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Verbeek E, Meuwissen ME, Verheijen FW, Govaert PP, Licht DJ, Kuo DS, et al. COL4A2 mutation associated with familial porencephaly and small-vessel disease. Eur J Human Genet. 2012;20(8):844–51.

    Article  CAS  Google Scholar 

  27. Kuo DS, Labelle-Dumais C, Gould DB. COL4A1 and COL4A2 mutations and disease: insights into pathogenic mechanisms and potential therapeutic targets. Hum Mol Genet. 2012;21(R1):R97–110.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. French CR, Seshadri S, Destefano AL, Fornage M, Arnold CR, Gage PJ, et al. Mutation of FOXC1 and PITX2 induces cerebral small-vessel disease. J Clin Invest. 2014;124(11):4877–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Grand MG, Kaine J, Fulling K, Atkinson J, Dowton SB, Farber M, et al. Cerebroretinal vasculopathy. A new hereditary syndrome. Ophthalmology. 1988;95(5):649–59.

    Article  CAS  PubMed  Google Scholar 

  30. Jen J, Cohen AH, Yue Q, Stout JT, Vinters HV, Nelson S, et al. Hereditary endotheliopathy with retinopathy, nephropathy, and stroke (HERNS). Neurology. 1997;49(5):1322–30.

    Article  CAS  PubMed  Google Scholar 

  31. Storimans CW, Oosterhuis JA, van Schooneveld MJ, Bos PJ, Maaswinkel-Mooy PD. Familial vascular retinopathy. A preliminary report. Adv Ophthalmol. 1990;75(3–4):259–61.

    CAS  Google Scholar 

  32. Terwindt GM, Haan J, Ophoff RA, Groenen SM, Storimans CW, Lanser JB, et al. Clinical and genetic analysis of a large Dutch family with autosomal dominant vascular retinopathy, migraine and Raynaud's phenomenon. Brain. 1998;121(Pt 2):303–16.

    Article  PubMed  Google Scholar 

  33. Kolar GR, Kothari PH, Khanlou N, Jen JC, Schmidt RE, Vinters HV. Neuropathology and genetics of cerebroretinal vasculopathies. Brain Pathol. 2014;24(5):510–8.

    Article  CAS  PubMed  Google Scholar 

  34. Ophoff RA, DeYoung J, Service SK, Joosse M, Caffo NA, Sandkuijl LA, et al. Hereditary vascular retinopathy, cerebroretinal vasculopathy, and hereditary endotheliopathy with retinopathy, nephropathy, and stroke map to a single locus on chromosome 3p21.1-p21.3. Am J Hum Genet. 2001;69(2):447–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Richards A, van den Maagdenberg AM, Jen JC, Kavanagh D, Bertram P, Spitzer D, et al. C-Terminal truncations in human 3′-5′ DNA exonuclease TREX1 cause autosomal dominant retinal vasculopathy with cerebral leukodystrophy. Nat Genet. 2007;39(9):1068–70.

    Article  CAS  PubMed  Google Scholar 

  36. Stam AH, Kothari PH, Shaikh A, Gschwendter A, Jen JC, Hodgkinson S, et al. Retinal vasculopathy with cerebral leukoencephalopathy and systemic manifestations. Brain. 2016;139(11):2909–22.

    Article  Google Scholar 

  37. Schmidt H, Zeginigg M, Wiltgen M, Freudenberger P, Petrovic K, Cavalieri M, et al. Genetic variants of the NOTCH3 gene in the elderly and magnetic resonance imaging correlates of age-related cerebral small vessel disease. Brain. 2011;134(Pt 11):3384–97.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Rannikmae K, Davies G, Thomson PA, Bevan S, Devan WJ, Falcone GJ, et al. Common variation in COL4A1/COL4A2 is associated with sporadic cerebral small vessel disease. Neurology. 2015;84(9):918–26.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Fornage M, Debette S, Bis JC, Schmidt H, Ikram MA, Dufouil C, et al. Genome-wide association studies of cerebral white matter lesion burden: the CHARGE consortium. Ann Neurol. 2011;69(6):928–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Adib-Samii P, Rost N, Traylor M, Devan W, Biffi A, Lanfranconi S, et al. 17q25 Locus is associated with white matter hyperintensity volume in ischemic stroke, but not with lacunar stroke status. Stroke. 2013;44(6):1609–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Verhaaren BF, Debette S, Bis JC, Smith JA, Ikram MK, Adams HH, et al. Multiethnic genome-wide association study of cerebral white matter hyperintensities on MRI. Circ Cardiovasc Genet. 2015;8(2):398–409.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Traylor M, Farrall M, Holliday EG, Sudlow C, Hopewell JC, Cheng YC, et al. Genetic risk factors for ischaemic stroke and its subtypes (the METASTROKE collaboration): a meta-analysis of genome-wide association studies. Lancet Neurol. 2012;11(11):951–62.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Network NSG, International Stroke Genetics Consortium. Loci associated with ischaemic stroke and its subtypes (SiGN): a genome-wide association study. Lancet Neurol. 2015;pii:S1474-4422(15)00338-5.

    Google Scholar 

  44. Malik R, Traylor M, Pulit SL, Bevan S, Hopewell JC, Holliday EG, et al. Low-frequency and common genetic variation in ischemic stroke: the METASTROKE collaboration. Neurology. 2016;86(13):1217–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Kilarski LL, Achterberg S, Devan WJ, Traylor M, Malik R, Lindgren A, et al. Meta-analysis in more than 17,900 cases of ischemic stroke reveals a novel association at 12q24.12. Neurology. 2014;83(8):678–85.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Kubo M, Hata J, Ninomiya T, Matsuda K, Yonemoto K, Nakano T, et al. A nonsynonymous SNP in PRKCH (protein kinase C eta) increases the risk of cerebral infarction. Nat Genet. 2007;39(2):212–7.

    Article  CAS  PubMed  Google Scholar 

  47. Serizawa M, Nabika T, Ochiai Y, Takahashi K, Yamaguchi S, Makaya M, et al. Association between PRKCH gene polymorphisms and subcortical silent brain infarction. Atherosclerosis. 2008;199(2):340–5.

    Article  CAS  PubMed  Google Scholar 

  48. Wu L, Shen Y, Liu X, Ma X, Xi B, Mi J, et al. The 1425G/A SNP in PRKCH is associated with ischemic stroke and cerebral hemorrhage in a Chinese population. Stroke. 2009;40(9):2973–6.

    Article  CAS  PubMed  Google Scholar 

  49. Neurology Working Group of the Cohorts for H, Aging Research in Genomic Epidemiology C, Stroke Genetics N, International Stroke Genetics C. Identification of additional risk loci for stroke and small vessel disease: a meta-analysis of genome-wide association studies. Lancet Neurol 2016;15(7):695–707.

    Google Scholar 

  50. Reyahi A, Nik AM, Ghiami M, Gritli-Linde A, Ponten F, Johansson BR, et al. Foxf2 Is required for brain pericyte differentiation and development and maintenance of the blood-brain barrier. Dev Cell. 2015;34(1):19–32.

    Article  CAS  PubMed  Google Scholar 

  51. Woo D, Falcone GJ, Devan WJ, Brown WM, Biffi A, Howard TD, et al. Meta-analysis of genome-wide association studies identifies 1q22 as a susceptibility locus for intracerebral hemorrhage. Am J Hum Genet. 2014;94(4):511–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Radmanesh F, Falcone GJ, Anderson CD, McWilliams D, Devan WJ, Brown WM, et al. Rare coding variation and risk of intracerebral hemorrhage. Stroke. 2015;46(8):2299–301.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Schrijvers EM, Schurmann B, Koudstaal PJ, van den Bussche H, Van Duijn CM, Hentschel F, et al. Genome-wide association study of vascular dementia. Stroke. 2012;43(2):315–9.

    Article  PubMed  Google Scholar 

  54. Biffi A, Sonni A, Anderson CD, Kissela B, Jagiella JM, Schmidt H, et al. Variants at APOE influence risk of deep and lobar intracerebral hemorrhage. Ann Neurol. 2010;68(6):934–43.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Biffi A, Anderson CD, Jagiella JM, Schmidt H, Kissela B, Hansen BM, et al. APOE genotype and extent of bleeding and outcome in lobar intracerebral haemorrhage: a genetic association study. Lancet Neurol. 2011;10(8):702–9.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Phuah CL, Raffeld MR, Ayres AM, Gurol ME, Viswanathan A, Greenberg SM, et al. APOE polymorphisms influence longitudinal lipid trends preceding intracerebral hemorrhage. Neurol Genet. 2016;2(4):e81.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Gesierich B, Opherk C, Rosand J, Gonik M, Malik R, Jouvent E, et al. APOE varepsilon2 is associated with white matter hyperintensity volume in CADASIL. J Cereb Blood Flow Metab. 2016;36(1):199–203.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Chu Q, Diedrich JK, Vaughan JM, Donaldson CJ, Nunn MF, Lee KF, et al. HtrA1 proteolysis of ApoE in vitro is allele selective. J Am Chem Soc. 2016;138(30):9473–8.

    Article  CAS  PubMed  Google Scholar 

  59. Anderson CD, Biffi A, Nalls MA, Devan WJ, Schwab K, Ayres AM, et al. Common variants within oxidative phosphorylation genes influence risk of ischemic stroke and intracerebral hemorrhage. Stroke. 2013;44(3):612–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Anderson CD, Biffi A, Rahman R, Ross OA, Jagiella JM, Kissela B, et al. Common mitochondrial sequence variants in ischemic stroke. Ann Neurol. 2011;69(3):471–80.

    Article  CAS  PubMed  Google Scholar 

  61. Traylor M, Anderson CD, Hurford R, Bevan S, Markus HS. Oxidative phosphorylation and lacunar stroke: genome-wide enrichment analysis of common variants. Neurology. 2016;86(2):141–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Ganesh SK, Tragante V, Guo W, Guo Y, Lanktree MB, Smith EN, et al. Loci influencing blood pressure identified using a cardiovascular gene-centric array. Hum Mol Genet. 2013;22(8):1663–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. International Consortium for Blood Pressure Genome-Wide Association S, Ehret GB, Munroe PB, Rice KM, Bochud M, Johnson AD, et al. Genetic variants in novel pathways influence blood pressure and cardiovascular disease risk. Nature. 2011;478(7367):103–9.

    Article  Google Scholar 

  64. Bradfield JP, Qu HQ, Wang K, Zhang H, Sleiman PM, Kim CE, et al. A genome-wide meta-analysis of six type 1 diabetes cohorts identifies multiple associated loci. PLoS Genet. 2011;7(9):e1002293.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Cooper JD, Smyth DJ, Smiles AM, Plagnol V, Walker NM, Allen JE, et al. Meta-analysis of genome-wide association study data identifies additional type 1 diabetes risk loci. Nat Genet. 2008;40(12):1399–401.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Fuchsberger C, Flannick J, Teslovich TM, Mahajan A, Agarwala V, Gaulton KJ, et al. The genetic architecture of type 2 diabetes. Nature. 2016;536(7614):41–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Traylor M, Zhang CR, Adib-Samii P, Devan WJ, Parsons OE, Lanfranconi S, et al. Genome-wide meta-analysis of cerebral white matter hyperintensities in patients with stroke. Neurology. 2016;86(2):146–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. ten Dijke P, Arthur HM. Extracellular control of TGFbeta signalling in vascular development and disease. Nat Rev Mol Cell Biol. 2007;8(11):857–69.

    Article  PubMed  Google Scholar 

  69. Hynes RO. The extracellular matrix: not just pretty fibrils. Science. 2009;326(5957):1216–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Poschl E, Schlotzer-Schrehardt U, Brachvogel B, Saito K, Ninomiya Y, Mayer U. Collagen IV is essential for basement membrane stability but dispensable for initiation of its assembly during early development. Development. 2004;131(7):1619–28.

    Article  PubMed  Google Scholar 

  71. Favor J, Gloeckner CJ, Janik D, Klempt M, Neuhauser-Klaus A, Pretsch W, et al. Type IV procollagen missense mutations associated with defects of the eye, vascular stability, the brain, kidney function and embryonic or postnatal viability in the mouse, Mus musculus: an extension of the Col4a1 allelic series and the identification of the first two Col4a2 mutant alleles. Genetics. 2007;175(2):725–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Van Agtmael T, Schlotzer-Schrehardt U, McKie L, Brownstein DG, Lee AW, Cross SH, et al. Dominant mutations of Col4a1 result in basement membrane defects which lead to anterior segment dysgenesis and glomerulopathy. Hum Mol Genet. 2005;14(21):3161–8.

    Article  PubMed  Google Scholar 

  73. Firtina Z, Danysh BP, Bai X, Gould DB, Kobayashi T, Duncan MK. Abnormal expression of collagen IV in lens activates unfolded protein response resulting in cataract. J Biol Chem. 2009;284(51):35872–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Gould DB, Marchant JK, Savinova OV, Smith RS, John SW. Col4a1 mutation causes endoplasmic reticulum stress and genetically modifiable ocular dysgenesis. Hum Mol Genet. 2007;16(7):798–807.

    Article  CAS  PubMed  Google Scholar 

  75. Lemmens R, Maugeri A, Niessen HW, Goris A, Tousseyn T, Demaerel P, et al. Novel COL4A1 mutations cause cerebral small vessel disease by haploinsufficiency. Hum Mol Genet. 2013;22(2):391–7.

    Article  CAS  PubMed  Google Scholar 

  76. Joutel A, Favrole P, Labauge P, Chabriat H, Lescoat C, Andreux F, et al. Skin biopsy immunostaining with a Notch3 monoclonal antibody for CADASIL diagnosis. Lancet. 2001;358(9298):2049–51.

    Article  CAS  PubMed  Google Scholar 

  77. Joutel A, Andreux F, Gaulis S, Domenga V, Cecillon M, Battail N, et al. The ectodomain of the Notch3 receptor accumulates within the cerebrovasculature of CADASIL patients. J Clin Invest. 2000;105(5):597–605.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Monet-Lepretre M, Bardot B, Lemaire B, Domenga V, Godin O, Dichgans M, et al. Distinct phenotypic and functional features of CADASIL mutations in the Notch3 ligand binding domain. Brain. 2009;132(Pt 6):1601–12.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Opherk C, Duering M, Peters N, Karpinska A, Rosner S, Schneider E, et al. CADASIL mutations enhance spontaneous multimerization of NOTCH3. Hum Mol Genet. 2009;18(15):2761–7.

    Article  CAS  PubMed  Google Scholar 

  80. Duering M, Karpinska A, Rosner S, Hopfner F, Zechmeister M, Peters N, et al. Co-aggregate formation of CADASIL-mutant NOTCH3: a single-particle analysis. Hum Mol Genet. 2011;20(16):3256–65.

    Article  CAS  PubMed  Google Scholar 

  81. Kast J, Hanecker P, Beaufort N, Giese A, Joutel A, Dichgans M, et al. Sequestration of latent TGF-beta binding protein 1 into CADASIL-related Notch3-ECD deposits. Acta Neuropathol Commun. 2014;2:96.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Mayer M, Straube A, Bruening R, Uttner I, Pongratz D, Gasser T, et al. Muscle and skin biopsies are a sensitive diagnostic tool in the diagnosis of CADASIL. J Neurol. 1999;246(7):526–32.

    Article  CAS  PubMed  Google Scholar 

  83. Joutel A, Monet-Lepretre M, Gosele C, Baron-Menguy C, Hammes A, Schmidt S, et al. Cerebrovascular dysfunction and microcirculation rarefaction precede white matter lesions in a mouse genetic model of cerebral ischemic small vessel disease. J Clin Invest. 2010;120(2):433–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Joutel A. Pathogenesis of CADASIL: transgenic and knock-out mice to probe function and dysfunction of the mutated gene, Notch3, in the cerebrovasculature. BioEssays. 2011;33(1):73–80.

    Article  CAS  PubMed  Google Scholar 

  85. Monet-Lepretre M, Haddad I, Baron-Menguy C, Fouillot-Panchal M, Riani M, Domenga-Denier V, et al. Abnormal recruitment of extracellular matrix proteins by excess Notch3 ECD: a new pathomechanism in CADASIL. Brain. 2013;136(Pt 6):1830–45.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Capone C, Cognat E, Ghezali L, Baron-Menguy C, Aubin D, Mesnard L, et al. Reducing Timp3 or vitronectin ameliorates disease manifestations in CADASIL mice. Ann Neurol. 2016;79(3):387–403.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Hara K, Shiga A, Fukutake T, Nozaki H, Miyashita A, Yokoseki A, et al. Association of HTRA1 mutations and familial ischemic cerebral small-vessel disease. N Engl J Med. 2009;360(17):1729–39.

    Article  CAS  PubMed  Google Scholar 

  88. Pardali E, Ten Dijke P. TGFbeta signaling and cardiovascular diseases. Int J Biol Sci. 2012;8(2):195–213.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Graham JR, Chamberland A, Lin Q, Li XJ, Dai D, Zeng W, et al. Serine protease HTRA1 antagonizes transforming growth factor-beta signaling by cleaving its receptors and loss of HTRA1 in vivo enhances bone formation. PLoS One. 2013;8(9):e74094.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Shiga A, Nozaki H, Yokoseki A, Nihonmatsu M, Kawata H, Kato T, et al. Cerebral small-vessel disease protein HTRA1 controls the amount of TGF-beta1 via cleavage of proTGF-beta1. Hum Mol Genet. 2011;20(9):1800–10.

    Article  CAS  PubMed  Google Scholar 

  91. Beaufort N, Scharrer E, Kremmer E, Lux V, Ehrmann M, Huber R, et al. Cerebral small vessel disease-related protease HtrA1 processes latent TGF-beta binding protein 1 and facilitates TGF-beta signaling. Proc Natl Acad Sci U S A. 2014;111(46):16496–501.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Kawasaki K, Freimuth J, Meyer DS, Lee MM, Tochimoto-Okamoto A, Benzinou M, et al. Genetic variants of Adam17 differentially regulate TGFbeta signaling to modify vascular pathology in mice and humans. Proc Natl Acad Sci U S A. 2014;111(21):7723–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rainer Malik .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Malik, R. (2017). Genetics of Small Vessel Disease. In: Sharma, P., Meschia, J. (eds) Stroke Genetics. Springer, Cham. https://doi.org/10.1007/978-3-319-56210-0_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-56210-0_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-56208-7

  • Online ISBN: 978-3-319-56210-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics