Skip to main content

Energetics of the Antarctic Silverfish, Pleuragramma antarctica, from the Western Antarctic Peninsula

  • Chapter
  • First Online:
The Antarctic Silverfish: a Keystone Species in a Changing Ecosystem

Part of the book series: Advances in Polar Ecology ((AVPE,volume 3))

Abstract

The nototheniid Pleuragramma antarctica, commonly known as the Antarctic silverfish, dominates the pelagic fish biomass in most regions of coastal Antarctica. In this chapter, we provide shipboard oxygen consumption and nitrogen excretion rates obtained from P. antarctica collected along the Western Antarctic Peninsula and, combining those data with results from previous studies, develop an age-dependent energy budget for the species. Routine oxygen consumption of P. antarctica fell in the midrange of values for notothenioids, with a mean of 0.057 ± 0.012 ml O2 g−1 h−1 (χ ± 95% CI). P. antarctica showed a mean ammonia-nitrogen excretion rate of 0.194 ± 0.042 μmol NH4-N g−1 h−1 (χ ± 95% CI). Based on current data, ingestion rates estimated in previous studies were sufficient to cover the metabolic requirements over the year classes 0–10. Metabolism stood out as the highest energy cost to the fish over the age intervals considered, initially commanding 89%, gradually declining to 67% of the annual energy costs as the fish aged from 0 to 10 years. Overall, the budget presented in the chapter shows good agreement between ingested and combusted energy, and supports the contention of a low-energy lifestyle for P. antarctica, but it also resembles that of other pelagic species in the high percentage of assimilated energy devoted to metabolism. It differs from more temperate coastal pelagic fishes in its large investment in reproduction and its pattern of slow steady growth throughout a relatively long lifespan.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ainley DG, DeMaster DP (1990) The upper trophic levels in polar marine ecosystems. In: Smith WO Jr (ed) Polar oceanography, part B, chemistry, biology, and geology. Academic, San Diego, pp 599–630

    Chapter  Google Scholar 

  • Barham EG (1971) Deep-sea fishes: lethargy and vertical orientation. In: Farquhar GB (ed) Proceedings of an international symposium on biological sound scattering in the ocean US Government Printing Office, Washington, DC, pp 100–118

    Google Scholar 

  • Boyce S (1999) Nitrogenous excretion in the Antarctic plunderfish. J Fish Biol 54:72–81

    Article  CAS  Google Scholar 

  • Brett J, Groves T (1979) Physiological energetics. In: Hoar WS, Randall DJ, Brett JR (eds) Fish physiology, vol 8. Academic, New York, pp 279–352

    Google Scholar 

  • Brett J, Shelbourn JE, Shoop CT (1969) Growth rate and body composition of fingerling sockeye salmon, Oncorhynchus nerka, in relation to temperature and ration size. J Fish Res Board Can 26:2363–2394

    Article  Google Scholar 

  • Butler J, Granados M, Barnes J et al (1996) Age composition, growth, and maturation of the Pacific sardine (Sardinops sagax) during 1994. Calif Coop Oceanic Fish Invest Rep 37:152–159

    Google Scholar 

  • Childress J, Somero G (1979) Depth-related enzymic activities in muscle, brain and heart of deep-living pelagic marine teleosts. Mar Biol 52:273–283

    Article  CAS  Google Scholar 

  • Childress JJ, Nygaard MH (1973) The chemical composition of midwater fishes as a function of depth of occurence off southern California. Deep-Sea Res Oceanogr Abstr 20(12):1043–1143

    Article  Google Scholar 

  • Cullins TL, Devries AL, Torres JJ (2011) Antifreeze proteins in pelagic fishes from Marguerite Bay (Western Antarctica). Deep Sea Res Part 2 Top Stud Oceanogr 58:1690–1694

    Article  CAS  Google Scholar 

  • Daniels RA (1982) Feeding ecology of some fishes of the Antarctic peninsula. Fish Bull 80:575–588

    Google Scholar 

  • Daniels RA, Lipps JH (1982) Distribution and ecology of fishes of the Antarctic peninsula. J Biogeogr 9:1–9

    Article  Google Scholar 

  • DeVries AL, Eastman JT (1978) Lipid sacs as a buoyancy adaptation in an Antarctic fish. Nature 271:352–353

    Article  Google Scholar 

  • De Witt HH (1970) The character of the midwater fish fauna of the Ross Sea, Antarctica. In: Holdgate MW (ed) Antarctic ecology, vol 1. Academic, London, pp 305–314

    Google Scholar 

  • De Witt HH, Hopkins T (1977) Aspects of the diet of the Antarctic silverfish, Pleuragramma antarcticum. In: Llano GA (ed) Adaptations within Antarctic ecosystems. Gulf Publishing CO, Houston, pp 557–568

    Google Scholar 

  • Donnelly J, Torres JJ (2008) Pelagic fishes in the Marguerite Bay region of the West Antarctic Peninsula continental shelf. Deep Sea Res Part 2 Top Stud Oceanogr 55:523–539

    Article  Google Scholar 

  • Donnelly J, Torres JJ, Hopkins T et al (1994) Chemical composition of Antarctic zooplankton during austral fall and winter. Polar Biol 14:171–183

    Article  Google Scholar 

  • Donnelly J, Torres JJ, Sutton T et al (2004) Fishes of the eastern Ross Sea, Antarctica. Polar Biol 27:637–650

    Article  Google Scholar 

  • Duhamel G, Kock K-H, Balguerias E et al (1993) Reproduction in fish of the Weddell Sea. Polar Biol 13:193–200

    Article  Google Scholar 

  • Durbin E, Durbin A (1981) Assimilation efficiency and nitrogen excretion of a filter-feeding planktyvore, the Atlantic menhaden, Brevoortia tyrannus (Pisces: Clupeidae). Fish Bull U.S 79:601–616

    Google Scholar 

  • Eastman JT, DeVries AL (1982) Buoyancy studies of notothenioid fishes in McMurdo Sound. Antarctica Copeia:385–393

    Google Scholar 

  • Eastman JT, DeVries AL (1989) Ultrastructure of the lipid sac wall in the Antarctic notothenioid fish Pleuragramma antarcticum. Polar Biol 9:333–335

    Article  Google Scholar 

  • Eastman JT, Witmer LM, Ridgely RC et al (2014) Divergence in skeletal mass and bone morphology in antarctic notothenioid fishes. J Morphol 275:841–861

    Article  Google Scholar 

  • Elliot J (1975a) The growth rate of brown trout (Salmo trutta L.) fed on maximum rations. J Anim Ecol 44:805–821

    Article  Google Scholar 

  • Elliot J (1975b) The growth rate of brown trout (Salmo trutta L.) fed on reduced rations. J Anim Ecol 44:823–842

    Article  Google Scholar 

  • Elliott JM, Davison W (1975) Energy equivalents of oxygen consumption in animal energetics. Oecologia 19:195–201

    Google Scholar 

  • Faleeva TI, Gerasimchuk V (1990) Features of reproduction in the Antarctic sidestripe, Pleuragramma antarcticum (Nototheniidae). J Ichthyol 30:67–79

    Google Scholar 

  • Forster M, Franklin C, Taylor H et al (1987) The aerobic scope of an Antarctic fish, Pagothenia borchgrevinki and its significance for metabolic cold adaptation. Polar Biol 8:155–159

    Article  Google Scholar 

  • Fuiman L, Davis R, Williams T (2002) Behavior of midwater fishes under the Antarctic ice: observations by a predator. Mar Biol 140:815–822

    Article  Google Scholar 

  • Gartner JV (1993) Patterns of reproduction in the dominant lanternfish species (Pisces: Myctophidae) of the eastern Gulf of Mexico, with a review of reproduction among tropical-subtropical Myctophidae. Bull Mar Sci 52:721–750

    Google Scholar 

  • Gartner JRJ, Crabtree RE, Sulak KJ (1997) Feeding at depth. In: Randall D, Farrell A (eds) Deep-sea fishes. Academic, New York, pp 115–193

    Chapter  Google Scholar 

  • Gerasimchuk V (1986) Characteristics of Antarctic silverfish, Pleuragramma antarcticum (Nototheniidae), from Olaf-Pruds Bay (Commonwealth Sea, eastern Antarctica) with notes on the identification of the species. J Ichthyol 26:10–17

    Google Scholar 

  • Gerasimchuk V (1987) On the fecundity of the Antarctic silverfish Pleuragramma antarcticum. Voproci Ikhtiologii 27:858–860

    Google Scholar 

  • Gerasimchuk V (1992) A brief outline of the biology of the Antarctic silverfish, Pleuragramma antarcticum Boulenger, 1902 (Nototheniidae) from the Antarctic Indian Ocean. Document WG-FSA-92/11 rev. 1. CCAMLR, Hobart, p 53

    Google Scholar 

  • Ghigliotti L, Gerasimchuk VV, Kock H-K et al (2017) Reproductive strategies of the Antarctic silverfish: known knowns, known unknowns and unknown unknowns. In: Vacchi M, Pisano E, Ghigliotti L (eds) The Antarctic silverfish. A keystone species in a changing ecosystem. Advances in Polar Ecology 3. doi: 10.1007/978-3-319-55893-6_9

  • Greely TM, Gartner JV, Torres JJ (1999) Age and growth of Electrona Antarctica (Pisces: Myctophidae), the dominant mesopelagic fish of the Southern Ocean. Mar Biol 133:145–158

    Article  Google Scholar 

  • Guidetti P, Ghigliotti L, Vacchi M (2015) Insights on spatial distribution patterns of early stages of the Antarctic silverfish, Pleuragramma antarctica, in the platelet ice of Terra Nova Bay, Antarctica. Polar Biol 38(3):333–342. doi:10.1007/s00300-014-1589-4

    Article  Google Scholar 

  • Hagen W, Kattner G, Friedrich C (2000) The lipid compositions of high-Antarctic notothenioid fish species with different life strategies. Polar Biol 23:785–791

    Article  Google Scholar 

  • Hagen W, Kattner G (2017) The role of lipids in the life history of the Antarctic silverfish Pleuragramma antarctica. In: Vacchi M, Pisano E, Ghigliotti L (eds) The Antarctic silverfish. A keystone species in a changing ecosystem. Adv Polar Ecol 3. doi:10.1007/978-3-319-55893-6_7

  • Handy R, Poxoxton M (1993) Nitrogen pollution in mariculture: toxicity and excretion of nitrogenous compounds by marine fish. Rev Fish Biol Fish 3:205–241

    Article  Google Scholar 

  • Hemmingsen EA, Douglas EL (1970) Respiratory characteristics of the hemoglobin-free fish Chaenocephalus aceratus. Comp Biochem Physiol 33:733–744

    Article  CAS  Google Scholar 

  • Holeton GF (1970) Oxygen uptake and circulation by a hemoglobinless Antarctic fish (Chaenocephalus aceratus Lonnberg) compared with three red-blooded Antartic fish. Comp Biochem Physiol 34:457–471

    Article  CAS  Google Scholar 

  • Hopkins T, Torres JJ (1988) The zooplankton community in the vicinity of the ice edge, western Weddell Sea, march 1986. Polar Biol 9:79–87

    Article  Google Scholar 

  • Hubold G (1982) Eggs and larvae of Engraulis anchoita Hubbs and Marini, 1935 in the Southwest Atlantic between 25°S S and 40°S. Meeresforschung 29(4):208–218

    Google Scholar 

  • Hubold G (1984) Spatial distribution of Pleuragramma antarcticum (Pisces: Nototheniidae) near the Filchner-and Larsen ice shelves (Weddell Sea/Antarctica). Polar Biol 3:231–236

    Article  Google Scholar 

  • Hubold G (1985) The early life-history of the high-Antarctic silverfish, Pleuragramma antarcticum. In: Siegfried WR, Condy PR, Laws RM (eds) Antarctic nutrient cycles and food webs. Springer, Berlin, pp 445–451

    Chapter  Google Scholar 

  • Hubold G (1992) Ecology of Weddell Sea fishes. Ber Polarforsch 103:1–157

    Google Scholar 

  • Hubold G, Ekau W (1987) Midwater fish fauna of the Weddell Sea, Antarctica. Proc 5th Congr Eur Ichthyol, Stockholm 1985, pp 391–396

    Google Scholar 

  • Hubold G, Hagen W (1997) Seasonality of feeding and lipid content in juvenile Pleuragramma antarcticum (Pisces: Nototheniidae) from the southern Weddell Sea. In: Battaglia B, Valencia J, Walton WH (eds) Antarctic communities. Species, structure and survival. Cambridge University Press, New York, pp 277–283

    Google Scholar 

  • Hubold G, Tomo A (1989) Age and growth of Antarctic silverfish Pleuragramma antarcticum Boulenger, 1902, from the southern Weddell Sea and Antarctic peninsula. Polar Biol 9:205–212

    Article  Google Scholar 

  • James A, Probyn T, Hutchings L (1989) Laboratory-derived carbon and nitrogen budgets for the omnivorous planktivore Engraulis Capensis Gilchrist. J Exp Mar Biol Ecol 131:125–145

    Article  Google Scholar 

  • Jones RD (1991) An improved fluorescence method for the determination of nanomolar concentrations of ammonium in natural waters. Limnol Oceanogr 36:814–819

    Article  CAS  Google Scholar 

  • Kellermann A (1987) Food and feeding ecology of postlarval and juvenile Pleuragramma antarcticum (Pisces; Notothenioidei) in the seasonal pack ice zone off the Antarctic peninsula. Polar Biol 7:307–315

    Article  Google Scholar 

  • Klink JM, Hofmann EE, Beardsley R C et al (2004) Water-mass properties and circulation on the west Antarctic Peninsula Continental Shelf in Austral Fall and Winter 2001. Deep Sea Res Part 2 Top Stud Oceanogr 51:1925–1946

    Google Scholar 

  • Kock K-H (1992) Antarctic fish and fisheries. Cambridge University Press, Cambridge University

    Google Scholar 

  • Kock K-H, Kellermann A (1991) Reproduction in Antarctic notothenioid fish. Antarct Sci 3:125–150

    Article  Google Scholar 

  • Koubbi P, Vallet C, Razouls S et al (2007) Condition and diet of larval Pleuragramma antarcticum (Nototheniidae) from Terre Adélie (Antarctica) during summer. Cybium 31:67–76

    Google Scholar 

  • La Mesa M, Eastman JT (2012) Antarctic silverfish: life strategies of a key species in the high-Antarctic ecosystem. Fish Fish 13:241–266

    Article  Google Scholar 

  • La Mesa M, Riginella E, Mazzoldi C et al (2014) Reproductive resilience of ice-dependent Antarctic silverfish in a rapidly changing system along the western Antarctic peninsula. Mar Ecol 36(2):235–245

    Article  Google Scholar 

  • Lancraft TM, Torres JJ, Hopkins TL (1989) Micronekton and macrozooplankton in the open waters near Antarctic ice edge zones (AMERIEZ 1983 and 1986). Polar Biol 9:225–233

    Article  Google Scholar 

  • Lancraft TM, Reisenbichler KR, Robison BH et al (2004) A krill-dominated micronekton and macrozooplankton community in Croker Passage, Antarctica with an estimate of fish predation. Deep Sea Res Part 2 Top Stud Oceanogr 51:2247–2260

    Article  Google Scholar 

  • Lasker R (1970) Utilization of zooplankton energy by a Pacific sardine population in the California current. In: Steele JH (ed) Marine food chains. Oliver and Boyd, Edinburgh, pp 265–284

    Google Scholar 

  • MacDonald J, Montgomery J, Wells R (1987) Comparative physiology of Antarctic fishes. Adv Mar Biol 24:321–388

    Article  Google Scholar 

  • Marshall NB (1971) Explorations in the life of fishes. Cambridge, Harvard University Press

    Book  Google Scholar 

  • Masserini RT, Fanning KA (2000) A sensor package for the simultaneous determination of nanomolar concentrations of nitrite, nitrate, and ammonia in seawater by fluorescence detection. Mar Chem 68:323–333

    Article  CAS  Google Scholar 

  • McCarthy JJ, Whitledge TE (1972) Nitrogen Excretion by Anchovy Engraulis mordax and E. ringens and Jack Mackerel (Trahurus symmetricus). Fish Bull U.S 70:395–401

    Google Scholar 

  • Moreno C, Rueda T, Asencio G (1986) Nicho trófico de Pleuragramma antarcticum en la región del estrecho Bransfield, con una comparación cuantitativa con otras áreas del Océano Antártico. Inst Antárt Chileno Ser Cien:145–169

    Google Scholar 

  • Morris D, North A (1984) Oxygen consumption of five species of fish from South Georgia. J Exp Mar Biol Ecol 78:75–86

    Article  Google Scholar 

  • Near TJ, Jones CD, Eastman JT (2009) Geographic intraspecific variation in buoyancy within Antarctic notothenioid fishes. Antarct Sci 21:123–129

    Article  Google Scholar 

  • Olaso I, Lombarte A, Velasco F (2004) Daily ration of antarctic silverfish Pleuragramma antarcticum (Boulenger, 1902) in the eastern Weddell Sea. Sci Mar 68:419–424

    Article  Google Scholar 

  • Parker ML, Fraser WR, Ashford J et al (2015) Assemblages of micronektonic fishes and invertebrates in a gradient of regional warming along the western Antarctic peninsula. J Mar Syst 152:18–41

    Article  Google Scholar 

  • Pinkerton MH (2017) Diet and trophic ecology of adult Antarctic silverfish (Pleuragramma antarctica) In: Vacchi M, Pisano E, Ghigliotti L (eds) The Antarctic silverfish. A keystone species in a changing ecosystem. Springer series advances in polar ecology (in press)

    Google Scholar 

  • Radke RL, Hubold G, Folsom SD et al (1993) Otolith structural and chemical analyses: the key to resolving age and growth of the Antarctic silverfish, Pleuragramma antarcticum. Antarct Sci 5:51–62

    Google Scholar 

  • Ralph R, Everson I (1968) The respiratory metabolism of some Antarctic fish. Comp Biochem Physiol 27:299–307

    Article  Google Scholar 

  • Reinhardt S, Van Vleet E (1986) Lipid composition of twenty-two species of Antarctic midwater zooplankton and fish. Mar Biol 91:149–159

    Article  CAS  Google Scholar 

  • Reisenbichler KR (1993) Growth and chemical composition in two populations of the Antarctic silverfish, Pleuragramma antarcticum (Pisces, Notoheniidae). Master’s of arts in biology Master’s, University of California, US

    Google Scholar 

  • Robison BH (2003) What drives the diel vertical migrations of Antarctic midwater fish? J Mar Biol Ass UK 83:639–642

    Article  Google Scholar 

  • Sayer M, Davenport J (1987) The relative importance of the gills to ammonia and urea excretion in five seawater and one freshwater teleost species. J Fish Biol 31:561–570

    Article  Google Scholar 

  • Steffensen JF (2005) Respiratory systems and metabolic rates. In: AP Farrell, JF Steffensen (eds) Fish physiology: the physiology of polar fish. Elsevier, vol 22, pp 203–238

    Google Scholar 

  • Sutton C, Horn P (2011) A preliminary assessment of age and growth of Antarctic silverfish. CCAMLR Sci 18:75–86

    Google Scholar 

  • Tavernier E, Giraldo C (2017) Trophic ecology of early developmental stages of Antarctic silverfish. In: Vacchi M, Pisano E, Ghigliotti L (eds) The Antarctic silverfish. A keystone species in a changing ecosystem. Springer series advances in polar ecology (in press)

    Google Scholar 

  • Targett TE (1981) Trophic ecology and structure of coastal Antarctic fish communities. Mar Ecol Prog Ser 4:243–263

    Article  Google Scholar 

  • Torres J, Somero G (1988a) Metabolism, enzymic activities and cold adaptation in Antarctic mesopelagic fishes. Mar Biol 98:169–180

    Article  CAS  Google Scholar 

  • Torres J, Somero G (1988b) Vertical distribution and metabolism in Antarctic mesopelagic fishes. Comp Biochem Physiol B Biochem Mol Biol 90:521–528

    Article  Google Scholar 

  • Torres JJ, Donnelly J, Hopkins TL et al (1994) Proximate composition and overwintering strategies of Antarctic micronektonic Crustacea. Mar Ecol Prog Ser 113(3):221–232

    Article  Google Scholar 

  • Vacchi M, La Mesa M, Dalù M et al (2004) Early life stages in the life cycle of Antarctic silverfish, Pleuragramma antarcticum in Terra Nova Bay, Ross Sea. Antarct Sci 16:299–305

    Article  Google Scholar 

  • Vacchi M, Koubbi P, Ghigliotti L et al (2012) Sea-ice interactions with polar fish: focus on the Antarctic silverfish life history. In: Verde C, di Prisco G (eds) Adaptation and evolution in marine environments, From pole to pole series, vol 1. Springer, Berlin/Heidelberg, pp 51–73

    Chapter  Google Scholar 

  • Vallet C, Beans C, Koubbi P et al (2011) Food preferences of larvae of Antarctic silverfish Pleuragramma antarcticum Boulenger, 1902 from Terre Adélie coastal waters during summer 2004. Polar Sci 5:239–251

    Article  Google Scholar 

  • Vaughan DG, Marshall GJ, Connolley WM et al (2003) Recent rapid regional climate warming on the Antarctic peninsula. Clim Chang 60:243–274

    Article  Google Scholar 

  • Voskoboinikova O, Detrich HW III, Albertson C et al (2017) Evolution reshaped life for the water column: the skeleton of the Antarctic silverfish Pleuragramma antarctica Boulenger, 1902. In: Vacchi M, Pisano E, Ghigliotti L (eds) The Antarctic silverfish. A keystone species in a changing ecosystem. Advances in Polar Ecology 3. doi: 10.1007/978-3-319-55893-6_1

  • Wells RM (1987) Respiration of antarctic fish from McMurdo sound. Comp Biochem Physiol A Physiol 88:417–424

    Article  CAS  Google Scholar 

  • Williams R (1985) Trophic relationships between pelagic fish and euphausiids in Antarctic waters. In: Siegfried WR, Condy PR, Laws RM (eds) Antarctic nutrient cycles and food webs. Springer, Berlin/Heidelberg, pp 452–459

    Chapter  Google Scholar 

  • Williams TD (1995) Bird families of the world. The penguins. Oxford University Press, New York

    Google Scholar 

  • Wohlschlag DE (1960) Metabolism of an Antarctic fish and the phenomenon of cold adaptation. Ecology 41:287–292

    Article  CAS  Google Scholar 

  • Wohlschlag DE (1963) An Antarctic fish with unusually low metabolism. Ecology 44:557–564

    Article  Google Scholar 

  • Wohlschlag DE (1964) Respiratory metabolism and ecological characteristics of some fishes in McMurdo sound, Antarctica. In: Lee MO (ed) Biology of the Antarctic seas. American Geophysical Union, Washington, DC, pp 33–62

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eloy Martinez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Martinez, E., Torres, J.J. (2017). Energetics of the Antarctic Silverfish, Pleuragramma antarctica, from the Western Antarctic Peninsula. In: Vacchi, M., Pisano, E., Ghigliotti, L. (eds) The Antarctic Silverfish: a Keystone Species in a Changing Ecosystem. Advances in Polar Ecology, vol 3. Springer, Cham. https://doi.org/10.1007/978-3-319-55893-6_8

Download citation

Publish with us

Policies and ethics