Skip to main content

Pediatric Thyroid Cancer

  • Chapter
  • First Online:
Management of Differentiated Thyroid Cancer

Abstract

Pediatric differentiated thyroid cancer makes up approximately 10% of all thyroid malignancies and is the second most common cancer in adolescents aged 15–19. There should be a high index of suspicion of any thyroid nodule that present in childhood as malignancy rates can be as high as 25–50%. Most DTCs in children are well-differentiated tumors but present with a higher frequency of multifocality, nodal involvement, extrathyroidal extension, and distant metastases. Long-term survival is excellent but recurrence rates can approach 40–50% over 40–50 years. Treatment generally involves a total thyroidectomy; more extensive surgery and the use of radioiodine need to strike a balance between maintaining the low disease-specific mortality currently experienced by children with DTC and reducing potential complications from therapy that ensures a good quality of life during a very long survivorship. Risk stratification is similar to adults, but re-stratification based on response to therapy 1–2 years after treatment appears to be the most reliable at predicting future recurrence and dictating the level of surveillance. Future research should focus on long-term survivorship issues and validating risk stratification systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Corrias A, Mussa A. Thyroid nodules in pediatrics: which ones can be left alone, which ones must be investigated, when and how. J Clin Res Pediatr Endocrinol. 2013;5(Suppl 1): S57–69.

    Google Scholar 

  2. Vergamini LB, Frazier AL, Abrantes FL, Ribeiro KB, Rodriguez-Galindo C. Increase in the incidence of differentiated thyroid carcinoma in children, adolescents, and young adults: a population-based study. J Pediatr. 2014;164(6):1481–5.

    Article  PubMed  Google Scholar 

  3. http://seer.cancer.gov/faststats/. Accessed 5 Jan 2016.

  4. Barr RD, Ries LA, Lewis DR, Harlan LC, Keegan TH, Pollock BH, et al. Incidence and incidence trends of the most frequent cancers in adolescent and young adult Americans, including “nonmalignant/noninvasive” tumors. Cancer. 2016;122(7):1000–8.

    Article  PubMed  Google Scholar 

  5. http://www.cancer.org/acs/groups/content/@research/documents/webcontent/acspc-041787.pdf. Accessed 5 Jan 2016.

  6. Lerner J, Goldfarb M. Pediatric thyroid microcarcinoma. Ann Surg Oncol. 2015;22(13):4187–92.

    Article  PubMed  Google Scholar 

  7. Hughes DT, Haymart MR, Miller BS, Gauger PG, Doherty GM. The most commonly occurring papillary thyroid cancer in the United States is now a microcarcinoma in a patient older than 45 years. Thyroid. 2011;21(3):231–6.

    Article  PubMed  Google Scholar 

  8. Francis GL, Waguespack SG, Bauer AJ, Angelos P, Benvenga S, Cerutti JM, et al. Management guidelines for children with thyroid nodules and differentiated thyroid cancer. Thyroid. 2015;25(7):716–59.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Hogan AR, Zhuge Y, Perez EA, Koniaris LG, Lew JI, Sola JE. Pediatric thyroid carcinoma: incidence and outcomes in 1753 patients. J Surg Res. 2009;156(1):​167–72.

    Article  PubMed  Google Scholar 

  10. Niedziela M. Pathogenesis, diagnosis and management of thyroid nodules in children. Endocr Relat Cancer. 2006;13(2):427–53.

    Article  CAS  PubMed  Google Scholar 

  11. Welch Dinauer CA, Tuttle RM, Robie DK, McClellan DR, Svec RL, Adair C, et al. Clinical features associated with metastasis and recurrence of differentiated thyroid cancer in children, adolescents and young adults. Clin Endocrinol. 1998;49(5):619–28.

    Article  CAS  Google Scholar 

  12. Gupta A, Ly S, Castroneves LA, Frates MC, Benson CB, Feldman HA, et al. A standardized assessment of thyroid nodules in children confirms higher cancer prevalence than in adults. J Clin Endocrinol Metab. 2013;98(8):3238–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Guille JT, Opoku-Boateng A, Thibeault SL, Chen H. Evaluation and management of the pediatric thyroid nodule. Oncologist. 2015;20(1):19–27.

    Article  PubMed  Google Scholar 

  14. Josefson J, Zimmerman D. Thyroid nodules and cancers in children. Pediatr Endocrinol Rev. 2008;6(1):​14–23.

    PubMed  Google Scholar 

  15. Balachandar S, La Quaglia M, Tuttle RM, Heller G, Ghossein RA, Sklar CA. Pediatric differentiated thyroid carcinoma of follicular cell origin: prognostic significance of histologic subtypes. Thyroid. 2016;26(2):219–26.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Nikiforov YE, Erickson LA, Nikiforova MN, Caudill CM, Lloyd RV. Solid variant of papillary thyroid carcinoma: incidence, clinical-pathologic characteristics, molecular analysis, and biologic behavior. Am J Surg Pathol. 2001;25(12):1478–84.

    Article  CAS  PubMed  Google Scholar 

  17. LiVolsi VA. Papillary thyroid carcinoma: an update. Mod Pathol. 2011;24(Suppl 2):S1–9.

    Article  CAS  PubMed  Google Scholar 

  18. Grigsby PW, Gal-or A, Michalski JM, Doherty GM. Childhood and adolescent thyroid carcinoma. Cancer. 2002;95(4):724–9.

    Article  PubMed  Google Scholar 

  19. Alessandri AJ, Goddard KJ, Blair GK, Fryer CJ, Schultz KR. Age is the major determinant of recurrence in pediatric differentiated thyroid carcinoma. Med Pediatr Oncol. 2000;35(1):41–6.

    Article  CAS  PubMed  Google Scholar 

  20. Sugino K, Nagahama M, Kitagawa W, Shibuya H, Ohkuwa K, Uruno T, et al. Papillary thyroid carcinoma in children and adolescents: long-term follow-up and clinical characteristics. World J Surg. 2015;39(9):2259–65.

    Article  PubMed  Google Scholar 

  21. Mazzaferri EL, Kloos RT. Clinical review 128: current approaches to primary therapy for papillary and follicular thyroid cancer. J Clin Endocrinol Metab. 2001;86(4):1447–63.

    Article  CAS  PubMed  Google Scholar 

  22. Kiratli PO, Volkan-Salanci B, Gunay EC, Varan A, Akyuz C, Buyukpamukcu M. Thyroid cancer in pediatric age group: an institutional experience and review of the literature. J Pediatr Hematol Oncol. 2013;35(2):93–7.

    Article  PubMed  Google Scholar 

  23. Zimmerman D, Hay ID, Gough IR, Goellner JR, Ryan JJ, Grant CS, et al. Papillary thyroid carcinoma in children and adults: long-term follow-up of 1039 patients conservatively treated at one institution during three decades. Surgery. 1988;104(6):1157–66.

    CAS  PubMed  Google Scholar 

  24. Lazar L, Lebenthal Y, Steinmetz A, Yackobovitch-Gavan M, Phillip M. Differentiated thyroid carcinoma in pediatric patients: comparison of presentation and course between pre-pubertal children and adolescents. J Pediatr. 2009;154(5):708–14.

    Article  PubMed  Google Scholar 

  25. Al-Qurayshi Z, Hauch A, Srivastav S, Aslam R, Friedlander P, Kandil E. A national perspective of the risk, presentation, and outcomes of pediatric thyroid cancer. JAMA Otolaryngol Head Neck Surg. 2016;142(5):472–8.

    Article  PubMed  Google Scholar 

  26. O’Gorman CS, Hamilton J, Rachmiel M, Gupta A, Ngan BY, Daneman D. Thyroid cancer in childhood: a retrospective review of childhood course. Thyroid. 2010;20(4):375–80.

    Article  PubMed  Google Scholar 

  27. Hay ID, Gonzalez-Losada T, Reinalda MS, Honetschlager JA, Richards ML, Thompson GB. Long-term outcome in 215 children and adolescents with papillary thyroid cancer treated during 1940 through 2008. World J Surg. 2010;34(6):1192–202.

    Article  PubMed  Google Scholar 

  28. Lee YA, Jung HW, Kim HY, Choi H, Kim HY, Hah JH, et al. Pediatric patients with multifocal papillary thyroid cancer have higher recurrence rates than adult patients: a retrospective analysis of a large pediatric thyroid cancer cohort over 33 years. J Clin Endocrinol Metab. 2015;100(4):1619–29.

    Article  CAS  PubMed  Google Scholar 

  29. Lazar L, Lebenthal Y, Segal K, Steinmetz A, Strenov Y, Cohen M, et al. Pediatric thyroid cancer: postoperative classifications and response to initial therapy as prognostic factors. J Clin Endocrinol Metab. 2016;101(5):1970–9.

    Article  CAS  PubMed  Google Scholar 

  30. Penko K, Livezey J, Fenton C, Patel A, Nicholson D, Flora M, et al. BRAF mutations are uncommon in papillary thyroid cancer of young patients. Thyroid. 2005;15(4):320–5.

    Article  CAS  PubMed  Google Scholar 

  31. Yamashita S, Saenko V. Mechanisms of disease: molecular genetics of childhood thyroid cancers. Nat Clin Pract Endocrinol Metab. 2007;3(5):422–9.

    Article  CAS  PubMed  Google Scholar 

  32. Monaco SE, Pantanowitz L, Khalbuss WE, Benkovich VA, Ozolek J, Nikiforova MN, et al. Cytomorphological and molecular genetic findings in pediatric thyroid fine-needle aspiration. Cancer Cytopathol. 2012;120(5):342–50.

    Article  PubMed  Google Scholar 

  33. Nikita ME, Jiang W, Cheng SM, Hantash FM, McPhaul MJ, Newbury RO, et al. Mutational analysis in pediatric thyroid cancer and correlations with age, ethnicity, and clinical presentation. Thyroid. 2016;26(2):227–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Elisei R, Romei C, Vorontsova T, Cosci B, Veremeychik V, Kuchinskaya E, et al. RET/PTC rearrangements in thyroid nodules: studies in irradiated and not irradiated, malignant and benign thyroid lesions in children and adults. J Clin Endocrinol Metab. 2001;86(7):3211–6.

    CAS  PubMed  Google Scholar 

  35. Fenton C, Anderson J, Lukes Y, Dinauer CA, Tuttle RM, Francis GL. Ras mutations are uncommon in sporadic thyroid cancer in children and young adults. J Endocrinol Investig. 1999;22(10):781–9.

    Article  CAS  Google Scholar 

  36. Fenton CL, Lukes Y, Nicholson D, Dinauer CA, Francis GL, Tuttle RM. The ret/PTC mutations are common in sporadic papillary thyroid carcinoma of children and young adults. J Clin Endocrinol Metab. 2000;85(3):1170–5.

    CAS  PubMed  Google Scholar 

  37. Prasad ML, Vyas M, Horne MJ, Virk RK, Morotti R, Liu Z, et al. NTRK fusion oncogenes in pediatric papillary thyroid carcinoma in northeast United States. Cancer. 2016;122(7):1097–107.

    Article  CAS  PubMed  Google Scholar 

  38. Picarsic JL, Buryk MA, Ozolek J, Ranganathan S, Monaco SE, Simons JP, et al. Molecular characterization of sporadic pediatric thyroid carcinoma with the DNA/RNA ThyroSeq v2 next-generation sequencing assay. Pediatr Dev Pathol. 2016;19(2):115–22.

    Article  PubMed  Google Scholar 

  39. Lerner J, Goldfarb M. Follicular variant of papillary thyroid carcioma in the pediatric population. Pediatr Blood Cancer. 2015;62(11):1942–6.

    Google Scholar 

  40. Veiga LH, Lubin JH, Anderson H, de Vathaire F, Tucker M, Bhatti P, et al. A pooled analysis of thyroid cancer incidence following radiotherapy for childhood cancer. Radiat Res. 2012;178(4):365–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Sinnott B, Ron E, Schneider AB. Exposing the thyroid to radiation: a review of its current extent, risks, and implications. Endocr Rev. 2010;31(5):756–73.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Mussa A, De Andrea M, Motta M, Mormile A, Palestini N, Corrias A. Predictors of malignancy in children with thyroid nodules. J Pediatr. 2015;167(4):886–92.e1.

    Article  PubMed  Google Scholar 

  43. Goldfarb M, Gondek SS, Sanchez Y, Lew JI. Clinic based ultrasound can predict malignancy in pediatric thyroid nodules. Thyroid. 2012;22(8):827–31.

    Article  PubMed  Google Scholar 

  44. Koltin D, O’Gorman CS, Murphy A, Ngan B, Daneman A, Navarro OM, et al. Pediatric thyroid nodules: ultrasonographic characteristics and inter-observer variability in prediction of malignancy. J Pediatr Endocrinol Metab. 2016;29(7):789–94.

    Article  PubMed  Google Scholar 

  45. Brignardello E, Felicetti F, Castiglione A, Gallo M, Maletta F, Isolato G, et al. Ultrasound surveillance for radiation-induced thyroid carcinoma in adult survivors of childhood cancer. Eur J Cancer. 2016;55:74–80.

    Article  PubMed  Google Scholar 

  46. Fish SA, Langer JE, Mandel SJ. Sonographic imaging of thyroid nodules and cervical lymph nodes. Endocrinol Metab Clin N Am. 2008;37(2):401–17, ix.

    Article  Google Scholar 

  47. Stevens C, Lee JK, Sadatsafavi M, Blair GK. Pediatric thyroid fine-needle aspiration cytology: a meta-analysis. J Pediatr Surg. 2009;44(11):2184–91.

    Article  PubMed  Google Scholar 

  48. Moudgil P, Vellody R, Heider A, Smith EA, Grove JJ, Jarboe MD, et al. Ultrasound-guided fine-needle aspiration biopsy of pediatric thyroid nodules. Pediatr Radiol. 2016;46(3):365–71.

    Article  PubMed  Google Scholar 

  49. Kapila K, Pathan SK, George SS, Haji BE, Das DK, Qadan LR. Fine needle aspiration cytology of the thyroid in children and adolescents: experience with 792 aspirates. Acta Cytol. 2010;54(4):569–74.

    Article  PubMed  Google Scholar 

  50. Willgerodt H, Keller E, Bennek J, Emmrich P. Diagnostic value of fine-needle aspiration biopsy of thyroid nodules in children and adolescents. J Pediatr Endocrinol Metab. 2006;9(4):507–15.

    Google Scholar 

  51. Smith M, Pantanowitz L, Khalbuss WE, Benkovich VA, Monaco SE. Indeterminate pediatric thyroid fine needle aspirations: a study of 68 cases. Acta Cytol. 2013;57(4):341–8.

    Article  PubMed  Google Scholar 

  52. Norlen O, Charlton A, Sarkis LM, Henwood T, Shun A, Gill AJ, et al. Risk of malignancy for each Bethesda class in pediatric thyroid nodules. J Pediatr Surg. 2015;50(7):1147–9.

    Article  PubMed  Google Scholar 

  53. Lale SA, Morgenstern NN, Chiara S, Wasserman P. Fine needle aspiration of thyroid nodules in the pediatric population: a 12-year cyto-histological correlation experience at North Shore-Long Island Jewish Health System. Diagn Cytopathol. 2015;43(8):598–604.

    Article  PubMed  Google Scholar 

  54. Ballester LY, Sarabia SF, Sayeed H, Patel N, Baalwa J, Athanassaki I, et al. Integrating molecular testing in the diagnosis and management of children with thyroid lesions. Pediatr Dev Pathol. 2016;19(2):94–100.

    Article  PubMed  Google Scholar 

  55. Kundel A, Thompson GB, Richards ML, Qiu LX, Cai Y, Schwenk FW, et al. Pediatric endocrine surgery: a 20-year experience at the Mayo Clinic. J Clin Endocrinol Metab. 2014;99(2):399–406.

    Article  CAS  PubMed  Google Scholar 

  56. Tuggle CT, Roman SA, Wang TS, Boudourakis L, Thomas DC, Udelsman R, et al. Pediatric endocrine surgery: who is operating on our children? Surgery. 2008;144(6):869–77. Discussion 77.

    Article  PubMed  Google Scholar 

  57. Klein Hesselink MS, Nies M, Bocca G, Brouwers AH, Burgerhof JG, van Dam EW, et al. Pediatric differentiated thyroid carcinoma in The Netherlands: a nationwide follow-up study. J Clin Endocrinol Metab. 2016;101(5):2031–9.

    Google Scholar 

  58. Bilimoria KY, Bentrem DJ, Ko CY, Stewart AK, Winchester DP, Talamonti MS, et al. Extent of surgery affects survival for papillary thyroid cancer. Ann Surg. 2007;246(3):375–81. Discussion 81–4.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Nice T, Pasara S, Goldfarb M, Doski J, Goldin A, Gow KW, et al. Pediatric papillary thyroid cancer >1 cm: is total thyroidectomy necessary? J Pediatr Surg. 2015;50(6):1009–13.

    Article  PubMed  Google Scholar 

  60. Cady B. Papillary carcinoma of the thyroid gland: treatment based on risk group definition. Surg Oncol Clin N Am. 1998;7(4):633–44.

    CAS  PubMed  Google Scholar 

  61. Handkiewicz-Junak D, Wloch J, Roskosz J, Krajewska J, Kropinska A, Pomorski L, et al. Total thyroidectomy and adjuvant radioiodine treatment independently decrease locoregional recurrence risk in childhood and adolescent differentiated thyroid cancer. J Nucl Med. 2007;48(6):879–88.

    Article  CAS  PubMed  Google Scholar 

  62. Spinelli C, Strambi S, Rossi L, Bakkar S, Massimino M, Ferrari A, et al. Surgical management of papillary thyroid carcinoma in childhood and adolescence: an Italian multicenter study on 250 patients. J Endocrinol Investig. 2016;39(9):1055–9.

    Article  CAS  Google Scholar 

  63. Demidchik YE, Demidchik EP, Reiners C, Biko J, Mine M, Saenko VA, et al. Comprehensive clinical assessment of 740 cases of surgically treated thyroid cancer in children of Belarus. Ann Surg. 2006;243(4):​525–32.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Baloch ZW, Seethala RR, Faquin WC, Papotti MG, Basolo F, Fadda G, et al. Noninvasive follicular thyroid neoplasm with papillary-like nuclear features (NIFTP): a changing paradigm in thyroid surgical pathology and implications for thyroid cytopathology. Cancer Cytopathol. 2016;124(9):616–20.

    Article  PubMed  Google Scholar 

  65. Sugino K, Kameyama K, Ito K, Nagahama M, Kitagawa W, Shibuya H, et al. Outcomes and prognostic factors of 251 patients with minimally invasive follicular thyroid carcinoma. Thyroid. 2012;22(8):​798–804.

    Article  PubMed  Google Scholar 

  66. Ito Y, Miyauchi A, Tomoda C, Hirokawa M, Kobayashi K, Miya A. Prognostic significance of patient age in minimally and widely invasive follicular thyroid carcinoma: investigation of three age groups. Endocr J. 2014;61(3):265–71.

    Article  PubMed  Google Scholar 

  67. Golpanian S, Perez EA, Tashiro J, Lew JI, Sola JE, Hogan AR. Pediatric papillary thyroid carcinoma: outcomes and survival predictors in 2504 surgical patients. Pediatr Surg Int. 2016;32(3):201–8.

    Article  PubMed  Google Scholar 

  68. Savio R, Gosnell J, Palazzo FF, Sywak M, Agarwal G, Cowell C, et al. The role of a more extensive surgical approach in the initial multimodality management of papillary thyroid cancer in children. J Pediatr Surg. 2005;40(11):1696–700.

    Article  PubMed  Google Scholar 

  69. Machens A, Elwerr M, Thanh PN, Lorenz K, Schneider R, Dralle H. Impact of central node dissection on postoperative morbidity in pediatric patients with suspected or proven thyroid cancer. Surgery. 2016.

    Google Scholar 

  70. Chen Y, Masiakos PT, Gaz RD, Hodin RA, Parangi S, Randolph GW, et al. Pediatric thyroidectomy in a high volume thyroid surgery center: risk factors for postoperative hypocalcemia. J Pediatr Surg. 2015;50(8):1316–9.

    Article  PubMed  Google Scholar 

  71. Newman KD, Black T, Heller G, Azizkhan RG, Holcomb 3rd GW, Sklar C, et al. Differentiated thyroid cancer: determinants of disease progression in patients <21 years of age at diagnosis: a report from the Surgical Discipline Committee of the Children’s Cancer Group. Ann Surg. 1998;227(4):533–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Hyer S, Vini L, O’Connell M, Pratt B, Harmer C. Testicular dose and fertility in men following I(131) therapy for thyroid cancer. Clin Endocrinol. 2002;56(6):755–8.

    Article  CAS  Google Scholar 

  73. Esquerre-Lamare C, Isus F, Moinard N, Bujan L. Sperm DNA fragmentation after radioiodine treatment for differentiated thyroid cancer. Basic Clin Androl. 2015;25:8.

    PubMed  PubMed Central  Google Scholar 

  74. Rosario PW, Barroso AL, Rezende LL, Padrao EL, Borges MA, Guimaraes VC, et al. Testicular function after radioiodine therapy in patients with thyroid cancer. Thyroid. 2006;16(7):667–70.

    Article  CAS  PubMed  Google Scholar 

  75. Wichers M, Benz E, Palmedo H, Biersack HJ, Grunwald F, Klingmuller D. Testicular function after radioiodine therapy for thyroid carcinoma. Eur J Nucl Med. 2000;27(5):503–7.

    Article  CAS  PubMed  Google Scholar 

  76. Vini L, Hyer S, Al-Saadi A, Pratt B, Harmer C. Prognosis for fertility and ovarian function after treatment with radioiodine for thyroid cancer. Postgrad Med J. 2002;78(916):92–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Ko KY, Yen RF, Lin CL, Cheng MF, Huang WS, Kao CH. Pregnancy outcome after I-131 therapy for patients with thyroid cancer: a nationwide population-based cohort study. Medicine (Baltimore). 2016;95(5):e2685.

    Article  CAS  Google Scholar 

  78. Stone MB, Stanford JB, Lyon JL, VanDerslice JA, Alder SC. Childhood thyroid radioiodine exposure and subsequent infertility in the intermountain fallout cohort. Environ Health Perspect. 2013;121(1):79–84.

    Article  PubMed  Google Scholar 

  79. Bal C, Kumar A, Tripathi M, Chandrashekar N, Phom H, Murali NR, et al. High-dose radioiodine treatment for differentiated thyroid carcinoma is not associated with change in female fertility or any genetic risk to the offspring. Int J Radiat Oncol Biol Phys. 2005;63(2):449–55.

    Article  CAS  PubMed  Google Scholar 

  80. Souza Rosario PW, Alvarenga Fagundes T, Villas-Boas Fagundes AS, Barroso AL, Lamego Rezende L, Lanza Padrao E, et al. Ovarian function after radioiodine therapy in patients with thyroid cancer. Exp Clin Endocrinol Diabetes. 2005;113(6):331–3.

    Article  CAS  PubMed  Google Scholar 

  81. http://blog.livestrong.org/2016/03/26/livestrong-fertility-know-your-options.

  82. Handkiewicz-Junak D, Gawlik T, Rozkosz J, Puch Z, Michalik B, Gubala E, et al. Recombinant human thyrotropin preparation for adjuvant radioiodine treatment in children and adolescents with differentiated thyroid cancer. Eur J Endocrinol. 2015;173(6):​873–81.

    Article  CAS  PubMed  Google Scholar 

  83. Haugen BR, Alexander EK, Bible KC, Doherty GM, Mandel SJ, Nikiforov YE, et al. 2015 American Thyroid Association management guidelines for adult patients with thyroid nodules and differentiated thyroid cancer: the American Thyroid Association guidelines task force on thyroid nodules and differentiated thyroid cancer. Thyroid. 2016;26(1):1–133.

    Article  PubMed  PubMed Central  Google Scholar 

  84. Kim HY, Gelfand MJ, Sharp SE. SPECT/CT imaging in children with papillary thyroid carcinoma. Pediatr Radiol. 2011;41(8):1008–12.

    Article  PubMed  Google Scholar 

  85. Tuttle RM, Tala H, Shah J, Leboeuf R, Ghossein R, Gonen M, et al. Estimating risk of recurrence in differentiated thyroid cancer after total thyroidectomy and radioactive iodine remnant ablation: using response to therapy variables to modify the initial risk estimates predicted by the new American Thyroid Association staging system. Thyroid. 2010;20(12):1341–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Marti JL, Jain KS, Morris LG. Increased risk of second primary malignancy in pediatric and young adult patients treated with radioactive iodine for differentiated thyroid cancer. Thyroid. 2015;25(6):681–7.

    Article  PubMed  PubMed Central  Google Scholar 

  87. Teng CJ, Hu YW, Chen SC, Yeh CM, Chiang HL, Chen TJ, et al. Use of radioactive iodine for thyroid cancer and risk of second primary malignancy: a nationwide population-based study. J Natl Cancer Inst. 2016;108(2).

    Google Scholar 

  88. Sawka AM, Thabane L, Parlea L, Ibrahim-Zada I, Tsang RW, Brierley JD, et al. Second primary malignancy risk after radioactive iodine treatment for thyroid cancer: a systematic review and meta-analysis. Thyroid. 2009;19(5):451–7.

    Article  CAS  PubMed  Google Scholar 

  89. Goldfarb M, Casillas J. Thyroid cancer-specific quality of life and health-related quality of life in young adult thyroid cancer survivors. Thyroid. 2016;26(7):​923–32.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Melanie Goldfarb M.D., M.Sc., F.A.C.S., F.A.C.E. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 The Author(s)

About this chapter

Cite this chapter

Goldfarb, M., Fischer, T. (2017). Pediatric Thyroid Cancer. In: Mancino, A., Kim, L. (eds) Management of Differentiated Thyroid Cancer. Springer, Cham. https://doi.org/10.1007/978-3-319-54493-9_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-54493-9_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-54492-2

  • Online ISBN: 978-3-319-54493-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics