Skip to main content

Swept Source OCT and Glaucoma

  • Chapter
  • First Online:
Atlas of Swept Source Optical Coherence Tomography

Abstract

Glaucoma is a leading cause of blindness worldwide [1]. It is defined as a group of progressive optic neuropathies with characteristic retinal ganglion cell damage at the optic disc and a concomitant pattern of visual field loss [2]. Structural measurements have become more important for glaucoma diagnosis and follow-up. The introduction of optical coherence tomography (OCT) has contributed to better understanding and management of glaucoma [3]. The assessment of structural damage of the retinal nerve fiber layer (RNFL) using OCT has become a critical part of glaucoma diagnosis and follow-up. The new generation of OCT, swept source OCT (SS-OCT), has recently been developed to enhance the visualization of the deep optic nerve head and deep parapapillary structures such as the lamina cribrosa (LC) and the choroid, which have been postulated to play a role in glaucoma pathogenesis [4, 5].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Resnikoff S, Pascolini D, Etya’ale D, Kocur I, Pararajasegaram R, Pokharel GP, et al. Global data on visual impairment in the year 2002. Bull World Health Organ. 2004; 82(11):844–51. Epub 2004 Dec.

    Google Scholar 

  2. Weinreb RN, Khaw PT. Primary open-angle glaucoma. Lancet. 2004;363(9422):1711–20.

    Article  PubMed  Google Scholar 

  3. Leung CK. Diagnosing glaucoma progression with optical coherence tomography. Curr Opin Ophthalmol. 2014;25(2):104–11.

    Article  PubMed  Google Scholar 

  4. Quigley HA, Addicks EM. Regional differences in the structure of the lamina cribrosa and their relation to glaucomatous optic nerve damage. Arch Ophthalmol. 1981;99(1):137–43.

    Article  CAS  PubMed  Google Scholar 

  5. Banitt M. The choroid in glaucoma. Curr Opin Ophthalmol. 2013;24(2):125–9.

    Article  PubMed  Google Scholar 

  6. Spaide RF, Koizumi H, Pozzoni MC. Enhanced depth imaging spectral-domain optical coherence tomography. Am J Ophthalmol. 2008;146(4):496–500.

    Article  PubMed  Google Scholar 

  7. Margolis R, Spaide RF. A pilot study of enhanced depth imaging optical coherence tomography of the choroid in normal eyes. Am J Ophthalmol. 2009;147(5):811–5.

    Article  PubMed  Google Scholar 

  8. Yasuno Y, Hong Y, Makita S, Yamanari M, Akiba M, Miura M, et al. In vivo high-contrast imaging of deep posterior eye by 1-microm swept source optical coherence tomography and scattering optical coherence angiography. Opt Express. 2007;15(10):61.

    Article  Google Scholar 

  9. Unterhuber A, Povazay B, Hermann B, Sattmann H, Chavez-Pirson A, Drexler W. In vivo retinal optical coherence tomography at 1040 nm – enhanced penetration into the choroid. Opt Express. 2005;13(9):3252–8.

    Article  PubMed  Google Scholar 

  10. Chen Y, Burnes DL, de Bruin M, Mujat M, de Boer JF. Three-dimensional pointwise comparison of human retinal optical property at 845 and 1060 nm using optical frequency domain imaging. J Biomed Opt. 2009;14(2):024016.

    Article  PubMed  Google Scholar 

  11. Miki A, Ikuno Y, Jo Y, Nishida K. Comparison of enhanced depth imaging and high-penetration optical coherence tomography for imaging deep optic nerve head and parapapillary structures. Clin Ophthalmol. 2013;7:1995–2001.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Park HY, Shin HY, Park CK. Imaging the posterior segment of the eye using swept-source optical coherence tomography in myopic glaucoma eyes: comparison with enhanced-depth imaging. Am J Ophthalmol. 2014;157(3):550–7.

    Article  PubMed  Google Scholar 

  13. Grytz R, Meschke G, Jonas JB. The collagen fibril architecture in the lamina cribrosa and peripapillary sclera predicted by a computational remodeling approach. Biomech Model Mechanobiol. 2011;10(3):371–82.

    Article  PubMed  Google Scholar 

  14. Radius RL. Regional specificity in anatomy at the lamina cribrosa. Arch Ophthalmol. 1981;99(3):478–80.

    Article  CAS  PubMed  Google Scholar 

  15. Radius RL, Gonzales M. Anatomy of the lamina cribrosa in human eyes. ArchOphthalmol. 1981;99(12):2159–62.

    CAS  Google Scholar 

  16. Tezel G, Trinkaus K, Wax MB. Alterations in the morphology of lamina cribrosa pores in glaucomatous eyes. Br J Ophthalmol. 2004;88(2):251–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Miller KM, Quigley HA. Comparison of optic disc features in low-tension and typical open-angle glaucoma. Ophthalmic Surg. 1987;18(12):882–9.

    CAS  PubMed  Google Scholar 

  18. Fontana L, Bhandari A, Fitzke FW, Hitchings RA. In vivo morphometry of the lamina cribrosa and its relation to visual field loss in glaucoma. Curr Eye Res. 1998;17(4):363–9.

    Article  CAS  PubMed  Google Scholar 

  19. Quigley HA. Glaucoma. Lancet. 2011;377(9774):1367–77.

    Article  PubMed  Google Scholar 

  20. Burgoyne CF. A biomechanical paradigm for axonal insult within the optic nerve head in aging and glaucoma. Exp Eye Res. 2011;93(2):120–32.

    Article  CAS  PubMed  Google Scholar 

  21. Downs JC, Roberts MD, Sigal IA. Glaucomatous cupping of the lamina cribrosa: a review of the evidence for active progressive remodeling as a mechanism. Exp Eye Res. 2011;93(2):133–40.

    Article  Google Scholar 

  22. Kiumehr S, Park SC, Syril D, Teng CC, Tello C, Liebmann JM, Ritch R. In vivo evaluation of focal lamina cribrosa defects in glaucoma. Arch Ophthalmol. 2012;130(5):552–9.

    Article  PubMed  Google Scholar 

  23. Quigley HA, Addicks EM, Green WR, Maumenee AE. Optic nerve damage in human glaucoma. II. The site of injury and susceptibility to damage. Arch Ophthalmol. 1981;99(4):635–49.

    Article  CAS  PubMed  Google Scholar 

  24. Lee KM, Kim TW, Weinreb RN, Lee EJ, Girard MJ, Mari JM. Anterior lamina cribrosa insertion in primary open-angle glaucoma patients and healthy subjects. PLoS One. 2014;9(12):e114935.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Kim YW, Kim DW, Jeoung JW, Kim DM, Park KH. Peripheral lamina cribrosa depth in primary open-angle glaucoma: a swept-source optical coherence tomography study of lamina cribrosa. Eye (Lond). 2015;29(10):1368–74.

    Article  CAS  Google Scholar 

  26. Takayama K, Hangai M, Kimura Y, Morooka S, Nukada M, Akagi T, et al. Three-dimensional imaging of lamina cribrosa defects in glaucoma using swept-source optical coherence tomography. Invest Ophthalmol Vis Sci. 2013;54(7):4798–807.

    Article  PubMed  Google Scholar 

  27. Kim YK, Park KH. Lamina cribrosa defects in eyes with glaucomatous disc haemorrhage. Acta Ophthalmol. 2015; doi:10.1111/aos.12903.

    Google Scholar 

  28. Miki A, Ikuno Y, Asai T, Usui S, Nishida K. Defects of the lamina cribrosa in high myopia and glaucoma. PLoS One. 2015;10(9):e0137909.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Omodaka K, Horii T, Takahashi S, Kikawa T, Matsumoto A, Shiga Y, et al. 3D evaluation of the lamina cribrosa with swept-source optical coherence tomography in normal tension glaucoma. PLoS One. 2015;10(4):e0122347.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Spaide RF. Age-related choroidal atrophy. Am J Ophthalmol. 2009;147(5):801–10.

    Article  PubMed  Google Scholar 

  31. Imamura Y, Fujiwara T, Margolis R, Spaide RF. Enhanced depth imaging optical coherence tomography of the choroid in central serous chorioretinopathy. Retina. 2009;29(10):1469–73.

    Article  PubMed  Google Scholar 

  32. Haefliger IO, Flammer J, Luscher TF. Heterogeneity of endothelium-dependent regulation in ophthalmic and ciliary arteries. Invest Ophthalmol Vis Sci. 1993;34(5):1722–30.

    CAS  PubMed  Google Scholar 

  33. Hayreh SS. Blood supply of the optic nerve head and its role in optic atrophy, glaucoma, and oedema of the optic disc. Br J Ophthalmol. 1969;53(11):721–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Yin ZQ, Vaegan, Millar TJ, Beaumont P, Sarks S. Widespread choroidal insufficiency in primary open-angle glaucoma. J Glaucoma 1997;6(1):23–32.

    Google Scholar 

  35. Hung LF, Wallman J, Smith 3rd EL. Vision-dependent changes in the choroidal thickness of macaque monkeys. Invest Ophthalmol Vis Sci. 2000;41(6):1259–69.

    CAS  PubMed  Google Scholar 

  36. Gloesmann M, Hermann B, Schubert C, Sattmann H, Ahnelt PK, Drexler W. Histologic correlation of pig retina radial stratification with ultrahigh-resolution optical coherence tomography. Invest Ophthalmol Vis Sci. 2003;44(4):1696–703.

    Article  PubMed  Google Scholar 

  37. Mansouri K, Medeiros FA, Tatham AJ, Marchase N, Weinreb RN. Evaluation of retinal and choroidal thickness by swept-source optical coherence tomography: repeatability and assessment of artifacts. Am J Ophthalmol. 2014;157(5):1022–32.

    Article  PubMed  Google Scholar 

  38. Zhang C, Tatham AJ, Medeiros FA, Zangwill LM, Yang Z, Weinreb RN. Assessment of choroidal thickness in healthy and glaucomatous eyes using swept source optical coherence tomography. PLoS One. 2014;9(10):e109683.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Mansouri K, Medeiros FA, Marchase N, Tatham AJ, Auerbach D, Weinreb RN. Assessment of choroidal thickness and volume during the water drinking test by swept-source optical coherence tomography. Ophthalmology. 2013;120(12):2508–16.

    Article  PubMed  Google Scholar 

  40. Yang Z, Tatham AJ, Zangwill LM, Weinreb RN, Zhang C, Medeiros FA. Diagnostic ability of retinal nerve fiber layer imaging by swept-source optical coherence tomography in glaucoma. Am J Ophthalmol. 2015;159(1):193–201.

    Article  PubMed  Google Scholar 

  41. Yang Z, Tatham AJ, Weinreb RN, Medeiros FA, Liu T, Zangwill LM. Diagnostic ability of macular ganglion cell inner plexiform layer measurements in glaucoma using swept source and spectral domain optical coherence tomography. PLoS One. 2015;10(5):e0125957.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Leung CK, Weinreb RN. Anterior chamber angle imaging with optical coherence tomography. Eye (Lond). 2011;25(3):261–7.

    Article  Google Scholar 

  43. Sakata LM, Lavanya R, Friedman DS, Aung HT, Seah SK, Foster PJ, et al. Assessment of the scleral spur in anterior segment optical coherence tomography images. Arch Ophthalmol. 2008;126(2):181–5.

    Article  PubMed  Google Scholar 

  44. Liu S, Li H, Dorairaj S, Cheung CY, Rousso J, Liebmann J, et al. Assessment of scleral spur visibility with anterior segment optical coherence tomography. J Glaucoma. 2010;19(2):132–5.

    Article  PubMed  Google Scholar 

  45. McKee H, Ye C, Yu M, Liu S, Lam DS, Leung CK. Anterior chamber angle imaging with swept-source optical coherence tomography: detecting the scleral spur, Schwalbe’s Line, and Schlemm’s Canal. J Glaucoma. 2013;22(6):468–72.

    Article  PubMed  Google Scholar 

  46. Liu S, Yu M, Ye C, Lam DS, Leung CK. Anterior chamber angle imaging with swept-source optical coherence tomography: an investigation on variability of angle measurement. Invest Ophthalmol Vis Sci. 2011;52(12):8598–603.

    Article  PubMed  Google Scholar 

  47. Lai I, Mak H, Lai G, Yu M, Lam DS, Leung CK. Anterior chamber angle imaging with swept-source optical coherence tomography: measuring peripheral anterior synechia in glaucoma. Ophthalmology. 2013;120(6):1144–9.

    Article  PubMed  Google Scholar 

  48. Mishima K, Tomidokoro A, Suramethakul P, Mataki N, Kurita N, Mayama C, et al. Iridotrabecular contact observed using anterior segment three-dimensional OCT in eyes with a shallow peripheral anterior chamber. Invest Ophthalmol Vis Sci. 2013;54(7):4628–35.

    Article  PubMed  Google Scholar 

  49. Mak H, Xu G, Leung CK. Imaging the iris with swept-source optical coherence tomography: relationship between iris volume and primary angle closure. Ophthalmology. 2013;120(12):2517–24.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kaweh Mansouri MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Mansouri, K., Hoskens, K., Weinreb, R.N. (2017). Swept Source OCT and Glaucoma. In: Michalewska, Z., Nawrocki, J. (eds) Atlas of Swept Source Optical Coherence Tomography . Springer, Cham. https://doi.org/10.1007/978-3-319-49840-9_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-49840-9_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-49839-3

  • Online ISBN: 978-3-319-49840-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics