Skip to main content
  • 332 Accesses

Abstract

Each design type shows different statistical properties, which have to be considered individually. In order to compare changes of statistically gathered sample strength properties easily and with a high level of traceability, the author proposed a new concept for a performance chart in 2010. This is introduced as “sample performance chart (SPC)” and explained in Sect. 3.1. In Sect. 3.2, it is demonstrated by examples how sample test results can be interpreted and displayed in the relevant sample performance chart. Section 3.3 addresses the question how reliability of the tested sample can be quantified by using the performance chart. In order to get a statement on the reliability for the basic population of relevant composite cylinders, the influence of a limited sample size on the confidence level has to be considered. This is explained and incorporated into the sample performance chart in Sect. 3.4. Some explanations on practical aspects of gas storage and their influence are added in Sect. 3.5. Issues of interests are the influence of the effective service pressure and some experience concerning the probabilistic assessment of accidental scenarios.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 59.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

     This expression is composed of the (old) Greek words “ισοσ” (“iso” means “equal”) and “ασϕαλια” (“asfalia” is already relatively close to the concept of technical reliability).

  2. 2.

    The database GIDAS (German In-Depth Accident Study) collects extensively data as a knowledge base for different stakeholders. Due to a completely defined concept for data collection, the data recorded there are representative for Germany [38].

Literature

  1. Mair GW, Saul H, Scherer F (2015) Composite cylinders—10 years determination of retest periods in D: from VdTÜV-guideline 506 to BAM-CAT. In: 2nd WORKSHOP on statistical safety assessment of composite cylinders from mass production, Berlin

    Google Scholar 

  2. Basler H (1971) Grundbegriffe der Wahrscheinlichkeitsrechnung und statistischer Methodenlehre, 3. Aufl. Physika-Verlag, Würzburg

    Google Scholar 

  3. Mair GW (1996) Zuverlässigkeitsrestringierte Optimierung faserteilarmierter Hybridbehälter unter Betriebslast am Beispiel eines CrMo4-Stahlbehälters mit Carbonfaserarmierung als Erdgasspeichers im Nahverkehrsbus, Fortschrittbericht Reihe 18. VDI-Verlag, Düsseldorf

    Google Scholar 

  4. Mair GW (2005) Die probabilistische Bauteilbetrachtung am Beispiel des Treibgasspeichers im Kfz – Teil 1: Ein Werkzeug für die Risikosteuerung. Technische Überwachung (TÜ) 46(Nr. 11/12 – Nov./Dez.), S 42–46

    Google Scholar 

  5. ADR/RID 2017 (2016) Technical annexes to the European agreements concerning the international carriage of dangerous goods

    Google Scholar 

  6. UN Model Regulations (2015) UN recommendations on the transport of dangerous goods. United Nations Publications, Geneva

    Google Scholar 

  7. IMDG Code (2016) inc Amdt 38-16

    Google Scholar 

  8. Wöhler A (1867) Wöhler’s experiments on the strength of metals. Engineering 4:160–161

    Google Scholar 

  9. Mair GW, Becker B, Scherer F (2014) Burst strength of composite cylinders—assessment of the type of statistical distribution. MP Mat Test 56(9):642–648

    Article  Google Scholar 

  10. Mair GW, Becker B, Scholz I (2015) Assessment of the type of statistical distribution concerning strength properties of composite cylinders. In: Proceeding of 20th international conference on composite materials, Copenhagen

    Google Scholar 

  11. Technical Annex SBT of the Concept Additional Tests (CAT) (2014) Test procedure “Slow Burst Test”, Berlin. http://www.bam.de/de/service/amtl_mitteilungen/gefahrgutrecht/druckgefaesse.htm

  12. Rossow E (1964) Eine Einfache Rechenschiebernäherung an die den normal scores entsprechenden Prozentpunkte. Zeitschrift wirtsch. Fertigung 59(Heft 12)

    Google Scholar 

  13. Grubbs FE (1969) Procedures for detecting outlying observations in samples. Technometrics 11(1):1–21. doi:10.1080/00401706.1969.10490657

    Article  Google Scholar 

  14. Mair GW, Scherer F (2013) Statistic evaluation of sample test results to determine residual strength of composite gas cylinders. MP Mat Test 55(10):728–736

    Article  Google Scholar 

  15. Mair GW, Hoffmann M, Scherer F (2015) Type approval of composite gas cylinders—probabilistic analysis of RC&S concerning minimum burst pressure. Int J Hydrogen Energy 40(15):5359–5366

    Article  Google Scholar 

  16. Mair GW, Hoffmann M, Scherer F (2014) Type approval of composite gas cylinders—probabilistic analysis of RC&S concerning minimum burst pressure. In: Proceeding of European Hydrogen Energy Conference EHEC 2014, S HS2–6

    Google Scholar 

  17. Mair GW, Hoffmann M (2013) Assessment of the residual strength thresholds of composite pressure receptacles—criteria for hydraulic load cycle testing. MP Mat Test 55(2):121–129

    Article  Google Scholar 

  18. Wiedemann J (1989, 1996, 2006) Leichtbau: Elemente und Konstruktion: (Klassiker der Technik), 3. Aufl. Springer, Berlin

    Google Scholar 

  19. Haibach E (2006) Betriebsfestigkeit – Verfahren und Daten zur Bauteilberechnung (VDI-Buch), 3. Aufl. Springer, Berlin

    Google Scholar 

  20. Technical Annex LCT of the Concept Additional Tests (CAT) (2014) Test procedure “Hydraulic Load Cycle Test”, Berlin. http://www.bam.de/de/service/amtl_mitteilungen/gefahrgutrecht/druckgefaesse.htm

  21. Mair GW et al (2013) Abschlussbericht zum Vorhaben “Ermittlung des Langzeitverhaltens und der Versagensgrenzen von Druckgefäßen aus Verbundwerkstoffen für die Beförderung gefährlicher Güter”. In: BMVBS UI 33/361.40/2-26 (BAM-Vh 3226). Berlin, pp 21

    Google Scholar 

  22. National research project of Germany “Ermittlung des Langzeitverhaltens und der Versagensgrenzen von Druckgefäßen aus Verbundwerkstoffen für die Beförderung gefährlicher Güter” (Long term behaviour of composite cylinders): BMVBS UI 33/361.40/2-26

    Google Scholar 

  23. Echtermeyer AT, Lasn K (2014) Safety approach for composite pressure vessels for road transport of hydrogen. Part 2: Safety factors and test requirements. Int J Hydrogen Energy 39(2014):14142–14152. http://dx.doi.org/10.1016/j.ijhydene.2014.06.016

  24. Mair GW, Scherer F, Scholz I, Schönfelder T (2014) The residual strength of breathing air composite cylinders towards the end of their service life—a first assessment of a real-life sample. In: Proceeding of ASME pressure vessels & piping conference 2014

    Google Scholar 

  25. Bronshteĭn IN, Semendiï¸ aï¸ev KA, Musiol G, Mühlig H (2015) Handbook of mathematics, 6. Aufl. Springer, Berlin

    Google Scholar 

  26. Mair GW, Pöschko P, Schoppa A (2011) Verfahrensalternative zur wiederkehrenden Prüfung von Composite-Druckgefäßen. Technische Sicherheit (TS) 1(7/8 Juli/August), S 38–43

    Google Scholar 

  27. Weibull W (1956) Scatter of fatigue life and fatigue strength in aircraft structural materials and parts. Fatigue in aircraft structures. Akademic Press Inc, New York, pp 126–145

    Google Scholar 

  28. ISO 5479 (2004) Statistical methods. Tests for departure of the probability distribution from the normal distribution., ISO, Geneva (CH)

    Google Scholar 

  29. Lecoutre B (2011) The significance test controversy and the Bayesian alternative. http://statprob.com/encyclopedia/SignificanceTestControversyAndTheBayesianAlternative.html (version 12)

  30. Dorey FJ (2010) Statistics in brief: confidence intervals: what is the real result in the target population? Clin Orthop Relat Res 468(11):3137–3138

    Article  Google Scholar 

  31. Bleymüller J, Weißbach R (2015) Statistik für Wirtschaftswissenschaftler, 17. Aufl. Vahlen, München

    Google Scholar 

  32. Bleymüller J, Weißbach R (2015) Statistische Formeln und Tabellen – Kompakt für Wirtschaftswissenschaftler, 13. Aufl. Vahlen, München

    Google Scholar 

  33. Becker B, Mair GW (2017) Statistical analysis of burst requirements from regulations for composite cylinders in hydrogen transport. MP Mat Test 59(3):226–232

    Article  Google Scholar 

  34. Technical Annex SAS of the Concept Additional Tests (CAT) (2014) Procedure “Statistical assessment of sample test results”, Berlin. http://www.bam.de/de/service/amtl_mitteilungen/gefahrgutrecht/druckgefaesse.htm

  35. Mair GW, Scherer F, Saul H, Spode M, Becker B (2014) CAT (Concept Additional Tests): concept for assessment of safe life time of composite pressure receptacle by additional tests. http://www.bam.de/en/service/amtl_mitteilungen/gefahrgutrecht/gefahrgutrecht_medien/druckgefr_regulation_on_retest_periods_technical_appendix_cat_en.pdf

  36. Mair GW (2007) Ansatz zur modularen Prüfung des Verhaltens von Composite-Flaschen und thermisch aktivierten Druckentlastungseinrichtungen (“T” PRD) im Brandfall: Teil I. Technische Überwachung (TÜ) 48(3 März):38–43

    Google Scholar 

  37. Hydrogen Storage Systems for Automotive Application (STORHY) Project No.: 502667; Integrated Project Thematic Priority 6: sustainable development, global change and ecosystems

    Google Scholar 

  38. GIDAS Database (German In-Depth Accident Study): From mid-1999, the GIDAS project collects about 2000 per year accidents in the areas of Hanover and Dresden

    Google Scholar 

  39. Mair GW (2011) Regulations, codes and standards for hydrogen storage relevant to transport and vehicle issues. In: No. 11: Hydrogen technologies and infrastructure, Ulster

    Google Scholar 

  40. López E, Rengel R, Mair GW, Isorna F (2015) Analysis of high-pressure hydrogen and natural gas cylinders explosions through TNT equivalent method. In: Association EEH (Ed) Proceeding Hyceltec 2015. Iberian symposium on hydrogen, fuel cells and advanced batteries, 5–8 July 2015

    Google Scholar 

  41. Mair GW (2005) Highlights of SP SAR within StorHy related to RC&S

    Google Scholar 

  42. Zheng J (2016) Composite tank fire resistance and safety research in China. Presentation at the International conference on safety of high-pressure hydrogen storage “Hydrogen Bridge 2016”, Hangzhou, 21–22 Apr 2016

    Google Scholar 

  43. Welch S, Hadden R, Hidalgo-Medina J, Pironi P (2016) Thermal properties of composite materials exposed to fire. Presentation at the International conference on safety of high-pressure hydrogen storage “Hydrogen Bridge 2016”, Hangzhou, 21–22 Apr 2016

    Google Scholar 

  44. Zaki SS, Jennifer XW (2016) Car fire scenarios. Presentation at the International conference on safety of high-pressure

    Google Scholar 

  45. Molkov V (2016) Overview of hazards associated with high-pressure onboard hydrogen storage and their mitigation techniques. Presentation at the International conference on safety of high-pressure hydrogen storage “Hydrogen Bridge 2016”, Hangzhou, 21–22 Apr 2016

    Google Scholar 

  46. Makarov D, Kim Y, Kashkarov S, Molkov V (2016) Numerical simulations of bare and thermally protected composite cylinders in bonfire. Presentation at the International conference on safety of high-pressure hydrogen storage “Hydrogen Bridge 2016”, Hangzhou, 21–22 Apr 2016

    Google Scholar 

  47. Hydrogen Bridge (2016) International conference on safety of high-pressure hydrogen storage, Hangzhou, 21–22 Apr 2016

    Google Scholar 

  48. GTR (2012) Revised draft global technical regulation on hydrogen and fuel cell vehicles. In: ECE/TRANS/WP.29/GRSP/2012/23, Geneva

    Google Scholar 

  49. EN ISO 10497 (2010) Testing of valves—fire type testing requirements. ISO, Geneva (CH)

    Google Scholar 

  50. IAEA Safety Standards (2012) Regulations for the safe transport of radioactive material. In: Bd. Specific Safety Guide No. SSG-26; 728.1-728.40. IAEA, Vienna

    Google Scholar 

  51. IAEA Safety Standards Series (2012) Advisory material for the IAEA regulations for the safe transport of radioactive material. In: Vol. Specific safety requirements No. SSR-6; Para 728. IAEA, Vienna

    Google Scholar 

  52. Droste D, Wieser G, Probst U (1992) Thermal test requirements and their verification by different test methods. PATRAM 1992 Proceed. Bd 3, Yokoma City, Japan, pp 1263–1272

    Google Scholar 

  53. Mair GW (2016) Probabilistic analysis of composite gas cylinders. Presentation at the International Conference on safety of high-pressure hydrogen storage “Hydrogen Bridge 2016”, Hangzhou, 21–22 Apr 2016

    Google Scholar 

  54. Umweltbundesamt (2000) Ermittlung und Berechnung von Störfallablaufszenarien nach Maßgabe der 3. Störfallverwaltungsvorschrift. Band 1: Methodischer Teil zum Erarbeiten von Störfallablaufszenarien. Umweltbundesamt, Dessau

    Google Scholar 

  55. Umweltbundesamt (2000) Ermittlung und Berechnung von Störfallablaufszenarien nach Maßgabe der 3. Störfallverwaltungsvorschrift. Band 2: Berechnungsmethoden, aktuelle Modelle und Modellgleichungen. Umweltbundesamt, Dessau

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Georg W. Mair .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Mair, G.W. (2017). Statistical Assessment of Sample Test Results. In: Safety Assessment of Composite Cylinders for Gas Storage by Statistical Methods. Springer, Cham. https://doi.org/10.1007/978-3-319-49710-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-49710-5_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-49708-2

  • Online ISBN: 978-3-319-49710-5

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics