Skip to main content

Mechanical Properties of Natural Fiber/Synthetic Fiber Reinforced Polymer Hybrid Composites

  • Chapter
  • First Online:
Green Biocomposites

Part of the book series: Green Energy and Technology ((GREEN))

Abstract

Natural fiber composites are often poorer in properties, mostly mechanical, compared to synthetic fiber composites. A possible solution to this issue is the use of natural fiber/synthetic fiber combination in polymer hybrid composites. Although the biodegradability of the composites is compromised by synthetic fibers, this is compensated by the improvement in their mechanical and physical properties. Hybrid composites use more than one kind of fibers in the same matrix and the idea is to get the synergistic effect of the properties of both fibers on the overall properties of composites. There has been a significant increase in research on natural fiber/synthetic fiber hybrid composites in recent years. Natural fibers are mostly hybridized with glass fibers because of their comparable properties and low cost. Some studies, however, have been done on hybridization of natural fibers with the more expensive carbon and aramid fibers. The natural fibers mostly used in these studies are hemp, jute, coir, flax, sisal, and ramie. Conventional thermosets and thermoplastics and biodegradable polymers have been used as matrix material for these composites. There is a considerable improvement in mechanical properties of these composites following hybridization, especially when synthetic fiber plies are used as skin and natural fiber plies are used as core. Various natural fiber surface treatments have been used to improve their interfacial adhesion with the matrices and, hence, their mechanical properties. This chapter aims to present an overview of the work done on the mechanical properties of these hybrid composites.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adams DF, Miller AK (1975) An analysis of impact behaviour of hybrid composite materials. Mater Sci Eng 19:245–260

    Article  Google Scholar 

  • Adekunle K, Cho S, Ketzscher R, Skrifvars M (2012) Mechanical properties of natural fiber hybrid composites based on renewable thermoset resins derived from soybean oil, for use in technical applications. J Appl Polym Sci 124:4530–4541

    CAS  Google Scholar 

  • Agarwal BD, Broutman LJ, Chandrashekhara K (2006) Analysis and performance of fiber composites, vol 3. Wiley, Hokoben

    Google Scholar 

  • Ahmed KS, Vijayarangan S (2008) Tensile, flexural and interlaminar shear properties of woven jute and jute-glass fabric reinforced polyester composites. J Mater Process Technol 207(1–3):330–335

    Article  CAS  Google Scholar 

  • Ahmed KS, Vijayarangan S, Rajput C (2006) Mechanical behavior of isothalic polyester-based untreated woven jute and glass fabric hybrid composites. J Reinf Plast Compos 25:1549–1569

    Article  CAS  Google Scholar 

  • Ahmed KS, Vijayarangan S, Kumar A (2007) Low velocity impact damage characterization of woven jute–glass fabric reinforced isothalic polyester hybrid composites. J Reinf Plast Compos 26:959–976

    Article  CAS  Google Scholar 

  • Akil HM, De Rosa IM, Santulli C, Sarasini F (2010) Flexural behaviour of pultruded jute/glass and kenaf/glass hybrid composites monitored using acoustic emission. Mater Sci Eng A 527:2942–2950

    Article  Google Scholar 

  • Al-Kafi A, Abedin MZ, Beg MDH et al (2006) Study on the mechanical properties of jute/glass fiber-reinforced unsaturated polyester hybrid composites: effect of surface modification by ultraviolet radiation. J Reinf Plast Compos 25(6):575–588

    Article  Google Scholar 

  • Amico SC, Angrizani CC, Drummond ML (2010) Influence of the stacking sequence on the mechanical properties of glass/sisal hybrid composites. J Reinf Plast Compos 29(2):179–189

    Article  CAS  Google Scholar 

  • Angrizani CC, Cioffi MOH, Zattera AJ, Amico SC (2014) Analysis of curaua/glass hybrid interlayer laminates. J Reinf Plast Compos 33(5):472–478

    Article  Google Scholar 

  • Anuar H, Ahmad SH, Rasid R, Ahmad A, Busu WN (2008a) Reinforced thermoplastic natural rubber hybrid composites with Hibiscus cannabinus, L and short glass fiber—part 1: processing parameters and tensile properties. J Compos Mater 42:1075-1087

    Google Scholar 

  • Anuar H, Ahmad SH, Rasid R, Ahmad A, Busu WN (2008b) Mechanical properties and dynamic mechanical analysis of thermoplastic-natural-rubber-reinforced short carbon fiber and kenaf fiber hybrid composites. J Appl Polym Sci 107:4043–4052

    Google Scholar 

  • Atiqah A, Maleque MA, Jawaid M, Iqbal M (2014) Development of kenaf-glass reinforced unsaturated polyester hybrid composite for structural applications. Compos B 56:68–73

    Article  CAS  Google Scholar 

  • Aveston J, Kelly A (1980) Tensile first cracking strain and strength of hybrid composites and laminates. Philos Trans R Soc Lond A 294:519–534

    Article  CAS  Google Scholar 

  • Banerjee S, Sankar BV (2014) Mechanical properties of hybrid composites using finite element method based micromechanics. Compos B 58:318–327

    Article  CAS  Google Scholar 

  • Barvarz MG, Duchesne C, Rodrigue D (2015) Mechanical, water absorption, and aging properties of polypropylene/flax/glass fiber hybrid composites. J Compos Mater. doi:10.1177/0021998314568576

    Google Scholar 

  • Beaumont PWR, Riewald PG, Zweben C (1974) Methods for improving the impact resistance of composite materials. Foreign Object Damage Compos ASTM STP 568:134–158

    Google Scholar 

  • Bhagat VJ, Biswas S, Dehury J (2014) Physical, mechanical, and water absorption behavior of coir/glass fiber reinforced epoxy based hybrid composites. Polym Compos 35:925–930

    Article  CAS  Google Scholar 

  • Birat KC, Panthapulakkal S, Kronka A, Agnelli JAM, Tjong J (2015) Hybrid biocomposites with enhanced thermal and mechanical property values for structural applications. J Appl Polym Sci. doi:10.1002/APP.42452

    Google Scholar 

  • Bismarck A, Mishra S, Lampke T (2005) Plant fibers as reinforcement for green composites. In: Mohanty AK, Misra M, Drzal LT (eds) Natural fibers, biopolymers, and biocomposites. CRC Press, Boca Raton

    Google Scholar 

  • Braga RA, Magalhaes PAA Jr (2015) Analysis of the mechanical and thermal properties of jute and glass fiber as reinforcement epoxy hybrid composites. Mater Sci Eng C 56:269–273

    Article  CAS  Google Scholar 

  • Chamis CC, Lark RF (1977) Hybrid composites—state-of-the-art review: analysis: design, application and fabrication. In: 18th annual structural dynamics and materials conference, San Diego, California

    Google Scholar 

  • Cerbu C (2015) Practical solution for improving the mechanical behaviour of the composite materials reinforced with flax woven fabric. Adv Mech Eng. doi:10.1177/1687814015582084

    Google Scholar 

  • Chamis CC, Hanson MP, Serafini TT (1972) Impact resistance of unidirectional fiber composites. Compos Mater Test Design ASTM STP 497:324–349

    Google Scholar 

  • Chou T (1992) Microstructural design of fiber composites. Cambridge solid state science series. Cambridge University Press, Cambridge

    Google Scholar 

  • Dalbehera S, Acharya SK (2014) Study on mechanical properties of natural fiber reinforced woven jute-glass hybrid epoxy composites. Adv Polym Sci Technol 4(1):1–6

    Google Scholar 

  • Dalbehera S, Acharya SK (2015) Effect of cenosphere addition on the mechanical properties of jute-glass fiber hybrid epoxy composites. J Ind Text. doi:10.1177/1528083715577936

    Google Scholar 

  • Dan-Mallam Y, Abdullah MZ, Yusoff MSMM (2014) The effect of hybridization on mechanical properties of woven kenaf fiber reinforced polyoxymethylene composite. Polym Compos 35:1900–1910

    Article  CAS  Google Scholar 

  • Davoodi MM, Sapuan SM, Ahmed D, Ali A, Khalina A, Jonoobil M (2010) Mechanical properties of hybrid kenaf/glass reinforced epoxy composite for passenger car bumper beam. Mater Des 31:4927–4932

    Article  CAS  Google Scholar 

  • Devi LU, Bhagawan SS, Thomas S (2012) Polyester composites of short pineapple fiber and glass fiber: tensile and impact properties. Polym Compos 33:1064–1070

    Article  Google Scholar 

  • Dhakal HN, Zhang ZY, Guthrie R, MacMullen J, Bennett N (2013) Development of flax/carbon fiber hybrid composites for enhanced properties. Carbohydr Polym 96:1–8

    Article  CAS  Google Scholar 

  • Dong C, Davies IJ (2012) Optimal design for the flexural behaviour of glass and carbon fiber hybrid composites with E-glass and carbon fibers. Mater Design 37:450–457

    Article  CAS  Google Scholar 

  • Dorey G, Sidey GR, Hutchings J (1978) Impact properties of carbon fiber/Kevlar 49 hybrid composites. Composites 9:25–32

    Article  CAS  Google Scholar 

  • Fiore V, Valenza A, Bella GD (2011) Mechanical behavior of carbon/flax hybrid composites for structural applications. J Compos Mater 46(17):2089–2096

    Article  Google Scholar 

  • Goud G, Rao RN (2012) Mechanical and electrical performance of Roystonea regia/glass fiber reinforced epoxy hybrid composites. Bull Mater Sci 35:595–599

    Article  CAS  Google Scholar 

  • Giancaspro JW, Papakonstantinou CG, Balaguru PN (2012) Flexural response of inorganic reinforced polymer hybrid composites. Mater Design 37:450–457

    Article  Google Scholar 

  • Gujjala R, Ojha S, Acharya SK, Pal SK (2014) Mechanical properties of woven jute–glass hybrid-reinforced epoxy composite. J Compos Mater 48:3445–3455

    Google Scholar 

  • Haneefa A, Bindu P, Aravind I, Thomas S (2008) Studies on tensile and flexural properties of short banana/glass hybrid fiber reinforced polystyrene composites. J Compos Mater 42:1471–1489

    Article  CAS  Google Scholar 

  • Hariharan AA, Khalil APHS (2005) Lignocellulose-based hybrid bilayer laminate composite: part 1—studies on tensile and impact behavior of oil palm fiber–glass fiber-reinforced epoxy resin. J Compos Mater 39:663–684

    Article  CAS  Google Scholar 

  • Hashmi SAR, Naik A, Chand N, Sharma J, Sharma P (2011) Development of environment friendly hybrid layered sisal–glass–epoxy composites. Compos Interfaces 18:671–683

    Article  CAS  Google Scholar 

  • Hofer KE, Stander M, Bennett LC (1978) Degradation and enhancement of the fatigue behavior of glass/graphite/epoxy hybrid composites after accelerated aging. Polym Eng Sci 18:120–127

    Article  CAS  Google Scholar 

  • Jawaid M, Khalil HPAS (2011) Cellulosic/synthetic fiber reinforced polymer hybrid composites: a review. Carbohydr Polym 86:1–18

    Article  CAS  Google Scholar 

  • Jayabal S, Natarajan U, Murugan M (2011) Mechanical property evaluation of woven coir and woven coir–glass fiber-reinforced polyester composites. J Compos Mater 45:2279–2285

    Article  CAS  Google Scholar 

  • John K, Naidu SV (2004a) Effect of fiber content and fiber treatment on flexural properties of sisal fiber/glass fiber hybrid composites. J Reinf Plast Compos 23:1601–1605

    Google Scholar 

  • John K, Naidu SV (2004b) Tensile properties of unsaturated polyester-based sisal fiber–glass fiber hybrid composites J Reinf Plast Compos 23:1815–1819

    Google Scholar 

  • John K, Naidu SV (2004c) Sisal fiber/glass fiber hybrid composites: the impact and compressive properties. J Reinf Plast Compos 23:1253–1257

    Google Scholar 

  • Joseph  S, Sreekala MS, Koshy P, Thomas S (2007) Mechanical properties and water sorption behavior of phenol-formaldehyde hybrid composites reinforced with banana fiber and glass fiber. J Appl Polym Sci 109:1439–1446

    Google Scholar 

  • Júnior JHSA, Amico SC, Botelho EC, Amado FDR (2013) Hybridization effect on the mechanical properties of curaua/glass fiber composites. Compos B 55:492–497

    Article  Google Scholar 

  • Kabir MM, Wang H, Lau KT, Cardona F (2012) Chemical treatments on plant-based natural fiber reinforced polymer composites: an overview. Compos B 43:2883–2892

    Article  CAS  Google Scholar 

  • Kalaprasad G, Francis B, Thomas S, Kumar CR, Pavithran C, Groeninck G, Thomas S (2004) Effect of fiber length and chemical modifications on the tensile properties of intimately mixed short sisal/glass hybrid fiber reinforced low density polyethylene composites. Polym Int 53:1624–1638

    Article  CAS  Google Scholar 

  • Karahan M, Karahan N (2015) Investigation of the tensile properties of natural and natural/synthetic hybrid fiber woven fabric composites. J Reinf Plast Compos 34:795–806

    Article  CAS  Google Scholar 

  • Khalil HPSA, Hanida S, Kang CW, Khairul A, Fuaad NAN (2007) Agro-hybrid composite: the effects on mechanical and physical properties of oil palm fiber (EFB)/glass hybrid reinforced polyester composites. J Reinf Plast Compos 26:203–218

    Article  Google Scholar 

  • Khalil HPSA, Kang CW, Khairul A, Ridzuan R, Adawi TO (2009) The effect of different laminations on mechanical and physical properties of hybrid composites. J Reinf Plast Compos 28(9):1123–1137

    Article  Google Scholar 

  • Kretsis G (1987) A review of the tensile, compressive, flexural and shear properties of hybrid fiber-reinforced plastics. Composites 18:13–23

    Article  CAS  Google Scholar 

  • Kushwaha PK, Kumar R (2010) The studies on performance of epoxy and polyester-based composites reinforced with bamboo and glass fibers. J Reinf Plast Compos 29:1952–1962

    Article  CAS  Google Scholar 

  • Kumar A, Singh S (2015) Analysis of mechanical properties and cost of glass/jute fiber-reinforced hybrid polyester composites. J Mater Design Appl 229(3):202–208

    CAS  Google Scholar 

  • Kumar NM, Reddy GV, Naidu SV (2009) Mechanical properties of coir/glass fiber phenolic resin based composites. J Reinf Plast Compos 28:2605–2613

    Article  CAS  Google Scholar 

  • Latha PS, Rao MV, Kumar VVK, Raghavendra G, Ojha S, Inala R (2015) Evaluation of mechanical and tribological properties of bamboo–glass hybrid fiber reinforced polymer composite. J Ind Text. doi:10.1177/1528083715569376

    Google Scholar 

  • Marom G, Fischer S (1978) Hybrid effects in composites: conditions for positive or negative effects versus rule-of-mixtures behaviour. J Mater Sci 13:1419–1426

    Article  CAS  Google Scholar 

  • Mishra S, Mohanty AK, Drzal LT (2003) Studies on mechanical performance of bio-fiber/glass reinforced polyester hybrid composites. Compos Sci Technol 63:1377–1385

    Article  CAS  Google Scholar 

  • Morye SS, Wool RP (2005) Mechanical properties of glass/flax hybrid composites based on a novel modified soybean oil matrix material. Polym Compos 26:407–416

    Article  CAS  Google Scholar 

  • Muhammad YH, Ahmad S, Bakar MAA, Mamun AA, Heim HP (2015) Mechanical properties of hybrid glass/kenaf fiber-reinforced epoxy composite with matrix modification using liquid epoxidised natural rubber. J Reinf Plast Compos 34(11):896–906

    Article  CAS  Google Scholar 

  • Nayak SK, Mohanty S (2010) Sisal glass fiber reinforced PP hybrid composites: effect of MAPP on the dynamic mechanical and thermal properties. J Reinf Plast Compos 29:1551–1567

    Article  CAS  Google Scholar 

  • Pandita SD, Yuan X, Manan MA, Lau CH, Subramanian AS, Wei J (2014) Evaluation of jute/glass hybrid composite sandwich: water resistance, impact properties and life cycle assessment. J Reinf Plast Compos 33(1):14–25

    Article  Google Scholar 

  • Panthapulakkal S, Sain M (2007) Injection-molded short hemp fiber/glass fiber-reinforced polypropylene hybrid composites—mechanical, water absorption and thermal properties. J Appl Polym Sci 103:2432–2441

    Article  CAS  Google Scholar 

  • Pavithran C, Mukherjee PS, Brahmakumar M (1991) Coir-glass intermingled fiber hybrid composites. J Reinf Plast Compos 10:91–101

    Article  CAS  Google Scholar 

  • Philips LN (1976) The hybrid effect—does it exist? Composites 7:7–8

    Article  Google Scholar 

  • Priya SP, Rai SK (2006) Mechanical performance of biofiber/glass-reinforced epoxy hybrid composites. J Ind Text 35:217–226

    Article  CAS  Google Scholar 

  • Raghavendra G, Ojha S, Acharya SK, Pal SK (2014) A comparative analysis of woven jute/glass hybrid polymer composite with and without reinforcing of fly ash particles. Polym Compos. doi:10.1002/pc.23222

    Google Scholar 

  • Rajulu AV, Devi RR (2007) Tensile properties of ridge gourd/phenolic composites and glass/ridge gourd/phenolic hybrid composites. J Reinf Plast Compos 26:629–638

    Article  CAS  Google Scholar 

  • Rajulu AV, Devi RR (2008) Flexural properties of ridge gourd/phenolic composites and glass/ridge gourd/phenolic hybrid composites. J Compos Mater 42:593–601

    Article  CAS  Google Scholar 

  • Rao HR, Rajulu AV, Reddy GR (2010) Flexural and compressive properties of bamboo and glass fiber-reinforced epoxy hybrid composites. J Reinf Plast Compos 29:1446–1450

    Article  CAS  Google Scholar 

  • Reddy GV, Naidu SV, Rani TS (2008a) Impact properties of kapok based unsaturated polyester hybrid composites. J Reinf Plast Compos 27:1789–1804

    Google Scholar 

  • Reddy GV, Naidu SV, Rani TS (2008b) Kapok/glass polyester hybrid composites: tensile and hardness properties. J Reinf Plast Compos 27:1775–1787

    Google Scholar 

  • Reddy EVS, Rajulu AV, Reddy GR (2010) Chemical resistance and tensile properties of glass and bamboo fibers reinforced polyester hybrid composites. J Reinf Plast Compos 29:2119–2123

    Article  CAS  Google Scholar 

  • Shahzad A (2011) Impact and fatigue properties of hemp-glass fiber hybrid biocomposites. J Reinf Plast Compos 30:1389–1398

    Article  CAS  Google Scholar 

  • Shanmugam D, Thiruchitrambalam M, Thirumurugan R (2014) Continuous unidirectional palmyra palm leaf stalk fiber/glass—polyester composites: static and dynamic mechanical properties. J Reinf Plast Compos 33(9):836–850

    Article  CAS  Google Scholar 

  • Sharba MJ, Leman Z, Sultan MTH, Ishak MR, Hanim MAA (2015) Partial replacement of glass fiber by woven kenaf in hybrid composites and its effect on monotonic and fatigue properties. BioResources 11(1):2665–2683

    Google Scholar 

  • Silva RV, Aquino EMF, Rodrigues LPS, Barros ARF (2009) Curaua/glass hybrid composite: the effect of water aging on the mechanical properties. J Reinf Plast Compos 28:1857–1868

    Article  CAS  Google Scholar 

  • Swolfs Y, Gorbatikh L, Verpoest I (2014) Fiber hybridisation in polymer composites: a review. Compos A 67(1):181–200

    Article  CAS  Google Scholar 

  • Trehan R, Singh S, Garg M (2015) Optimization of mechanical properties of polyester hybrid composite laminate using Taguchi methodology—part 1. J Mater Design Appl 229(4):263–273

    CAS  Google Scholar 

  • Uawongsuwan P, Yang Y, Hamada H (2015) Long jute fiber-reinforced polypropylene composite: effects of jute fiber bundle and glass fiber hybridization. J Appl Polym Sci. doi:10.1002/APP.41819

    Google Scholar 

  • Velmurugan R, Manikandan V (2007) Mechanical properties of palmyra/glass fiber hybrid composites. Compos A 38:2216–2226

    Article  Google Scholar 

  • Vinayagamoorthy R, Rajeswari N (2014) Mechanical performance studies on vetiveria zizanioides/jute/glass fiber-reinforced hybrid polymeric composites. J Reinf Plast Compos 33(1):81–92

    Article  Google Scholar 

  • Yahaya R, Sapuan SM, Jawaid M, Leman Z, Zainudin ES (2015a) Effect of fiber orientations on the mechanical properties of kenaf—aramid hybrid composites for spall liner application. Defence Technol. doi:10.1016/j.dt.2015.08.005

    Google Scholar 

  • Yahaya R, Sapuan SM, Jawaid M, Leman Z, Zainudin ES (2015b) Effect of layering sequence and chemical treatment on the mechanical properties of woven kenaf—aramid hybrid laminated composites. Mater Design 67:173–179

    Article  CAS  Google Scholar 

  • Yahaya R, Sapuan SM, Jawaid M, Leman Z, Zainudin ES (2014) Quasi-static penetration and ballistic properties of kenaf–aramid hybrid composites. Mater Design 63:775–782

    Google Scholar 

  • Zhang Y, Li Y, Ma H, Yu Y (2013) Tensile and interfacial properties of unidirectional flax/glass fiber reinforced hybrid composites. Compos Sci Technol 88:172–177

    Article  CAS  Google Scholar 

  • Zhong LX, Fu SU, Zhou XS, Zhan HU (2011) Effect of surface microfibrillation of sisal fiber on the mechanical properties of sisal/aramid fiber hybrid composites. Compos A 42:244–252

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Asim Shahzad .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Shahzad, A., Nasir, S.U. (2017). Mechanical Properties of Natural Fiber/Synthetic Fiber Reinforced Polymer Hybrid Composites. In: Jawaid, M., Sapuan, S., Alothman, O. (eds) Green Biocomposites. Green Energy and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-46610-1_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-46610-1_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-46609-5

  • Online ISBN: 978-3-319-46610-1

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics