Skip to main content

Directing Road Networks by Listing Strong Orientations

  • Conference paper
  • First Online:
Combinatorial Algorithms (IWOCA 2016)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9843))

Included in the following conference series:

Abstract

A connected road network with N nodes and L edges has \(K \le L\) edges identified as one-way roads. In a feasible direction, these one-way roads are assigned a direction each, so that every node can reach any other [Robbins ’39]. Using O(L) preprocessing time and space usage, it is shown that all feasible directions can be found in O(K) amortized time each. To do so, we give a new algorithm that lists all the strong orientations of an undirected connected graph with m edges in O(m) amortized time each, using O(m) space. The cost can be deamortized to obtain O(m) delay with \(O(m^2)\) preprocessing time and space.

Work partially supported by the Italian Ministry of Education, University, and Research (MIUR) under PRIN 2012C4E3KT national research project AMANDA—Algorithmics for MAssive and Networked DAta.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    This is crucial, as the presence of unary nodes is the reason behind the \(O(m^2)\) cost of the approach based on [7], mentioned in the introduction.

References

  1. Arkin, E.M., Hassin, R.: A note on orientations of mixed graphs. Discrete Appl. Math. 116(3), 271–278 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  2. Ben-Ameur, W., Glorieux, A., Neto, J.: On the most imbalanced orientation of a graph. In: Xu, D., Du, D., Du, D. (eds.) COCOON 2015. LNCS, vol. 9198, pp. 16–29. Springer, Heidelberg (2015)

    Chapter  Google Scholar 

  3. Boesch, F., Tindell, R.: Robbins’ theorem for mixed multigraphs. Am. Math. Monthly 87(9), 716–719 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bollobás, B.: Modern Graph Theory. Springer-Verlag, New York (1998)

    Book  MATH  Google Scholar 

  5. Rainer, E., Feldbacher, K., Klinz, B., Woeginger, G.J.: Minimum-cost strong network orientation problems: classification, complexity, and algorithms. Networks 33(1), 57–70 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  6. Chartrand, G., Harary, F., Schultz, M., Wall, C.E.: Forced orientation number of a graph. Congressus Numerantium, pp. 183–192 (1994)

    Google Scholar 

  7. Chung, F.R.K., Garey, M.R., Tarjan, R.E.: Strongly connected orientations of mixed multigraphs. Networks 15(4), 477–484 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  8. Chvátal, V., Thomassen, C.: Distances in orientations of graphs. J. Comb. Theory Ser. B 24(1), 61–75 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  9. Conte, A., Grossi, R., Marino, A., Rizzi, R.: Enumerating cyclic orientations of a graph. In: Lipták, Z., Smyth, W.F. (eds.) IWOCA 2015. LNCS, vol. 9538, pp. 88–99. Springer, Heidelberg (2016)

    Chapter  Google Scholar 

  10. Conte, A., Grossi, R., Marino, A., Rizzi, R.: Listing acyclic orientations of graphs with single, multiple sources. In: Proceedings LATIN (2011) Observation of strains: Theoretical Informatics - 12th Latin American Symposium, Ensenada, 11-15 April 2016, pp. 319–333 (2016)

    Google Scholar 

  11. Dankelmann, P., Oellermann, O.R., Jian-Liang, W.: Minimum average distance of strong orientations of graphs. Discrete Appl. Math. 143(1–3), 204–212 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  12. Fomin, E.V., Matamala, M., Prisner, E., Rapaport, I.: At-free graphs: linear bounds for the oriented diameter. Discrete Appl. Math. 141(1), 135–148 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  13. Fomin, F.V., Matamala, M.: Complexity of approximating the oriented diameter of chordal graphs. J. Graph Theory 45(4), 255–269 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  14. Fukuda, K., Prodon, A., Sakuma, T.: Combinatorics and computer science notes on acyclic orientations and the shelling lemma. Theoret. Comput. Sci. 263(1), 9–16 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  15. Gutin, G.: Minimizing and maximizing the diameter in orientations of graphs. Graphs Comb. 10(2), 225–230 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  16. Hassin, R., Megiddo, N.: On orientations, shortest paths. Linear Algebra Appl. 114, 115, 589–602 (1989). Special Issue Dedicated to Alan J. Hoffman

    Article  MathSciNet  MATH  Google Scholar 

  17. Italiano, G.F., Laura, L., Santaroni, F.: Finding strong bridges and strong articulation points in linear time. Theoret. Comput. Sci. 447, 74–84 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  18. Koh, K.M., Tay, E.G.: Optimal orientations of graphs and digraphs: a survey. Graphs Comb. 18(4), 745–756 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  19. Kurz, S., Lätsch, M.: Bounds for the minimum oriented diameter. Discrete Math. Theoret. Comput. Sci. 14(1), 109–140 (2012)

    MathSciNet  MATH  Google Scholar 

  20. Plesník, J.: On the sum of all distances in a graph or digraph. J. Graph Theory 8(1), 1–21 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  21. Robbins, H.E.: A theorem on graphs, with an application to a problem of traffic control. The American Mathematical Monthly 46(5), 281–283 (1939)

    Article  MATH  Google Scholar 

  22. Roberts, F.S.: Graph theory and its applications to problems of society. NSF-CBSM Monograph No. 29. SIAM Publications (1978)

    Google Scholar 

  23. Roberts, F.S., Xu, Y.: On the optimal strongly connected orientations of city street graphs. II: two East-West avenues or North-South streets. Networks 19(2), 221–233 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  24. Roberts, F.S., Xu, Y.: On the optimal strongly connected orientations of city street graphs I: large grids. SIAM J. Discrete Math. 1(2), 199–222 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  25. Roberts, F.S., Xu, Y.: On the optimal strongly connected orientations of city street graphs. III: three East-West avenues or North-South streets. Networks 22(2), 109–143 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  26. Roberts, F.S., Xu, Y.: On the optimal strongly connected orientations of city street graphs IV: four East-West avenues or North-South streets. Discrete Appl. Math. 49(1), 331–356 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  27. Uno, T.: Two general methods to reduce delay and change of enumeration algorithms: NII Technical report NII-2003-004E, Tokyo (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roberto Grossi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Conte, A., Grossi, R., Marino, A., Rizzi, R., Versari, L. (2016). Directing Road Networks by Listing Strong Orientations. In: Mäkinen, V., Puglisi, S., Salmela, L. (eds) Combinatorial Algorithms. IWOCA 2016. Lecture Notes in Computer Science(), vol 9843. Springer, Cham. https://doi.org/10.1007/978-3-319-44543-4_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-44543-4_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-44542-7

  • Online ISBN: 978-3-319-44543-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics