Skip to main content

Notes on Kähler-Ricci Flow

  • Chapter
  • First Online:
Ricci Flow and Geometric Applications

Part of the book series: Lecture Notes in Mathematics ((LNMCIME,volume 2166))

Abstract

In these notes some aspects of the Analytic Minimal Model Program through Kähler-Ricci flow which was initiated by J. Song and the author are discussed. Some open problems will be also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 49.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    This means that [ω0 ] − tc 1 (X) > 0 represents a Kähler class, where c 1 (X) denotes the 2π multiple of the first Chern class of X in the usual terminology.

  2. 2.

    The flow equation in [27] is not the same as, but equivalent to, (4.1).

  3. 3.

    We always use C ε , c ε ′ etc. to denote some uniform constants which may depend on ε and T′.

  4. 4.

    In [27], K X is assumed to be big. It is clear from the arguments in the proof that this assumption was not used.

  5. 5.

    In [25], it was misnamed as the stable base locus.

  6. 6.

    The singularities are caused by those singular fibers, but the developing map should be meromorphic.

  7. 7.

    It will be interesting to construct an explicit example of such a singular X T , even though no one doubts its existence.

  8. 8.

    A projective variety is \(\mathbb{Q}\)-factorial if it is normal and any \(\mathbb{Q}\)-Weil divisor is \(\mathbb{Q}\)-Cartier.

  9. 9.

    Without loss of generality, we may assume that N is independent of i.

  10. 10.

    It is likely that such a Fano-like manifold is actually Fano. This is indeed the case if the dimension is not greater than 3.

  11. 11.

    Reference [15] is mainly for complex surfaces, but the part on limiting metrics works for any dimensions.

  12. 12.

    In fact, one can prove that \(\left (\pi ^{{\ast}}\omega \right )^{\kappa }\wedge \varTheta\) extends to a continuous function on X, where Θ is the (n-κ, n-κ)-form which restricts to polarized flat volume form on each smooth fiber (see [16, p. 15]).

References

  1. H.D. Cao, Deformation of Kähler metrics to Kähler-Einstein metrics on compact Kähler manifolds. Invent. Math. 81 (2), 359–372 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  2. P. Cascini, G. La Nave, Kähler-Ricci flow and the minimal model program for projective varieties. (2006) Preprint, arXiv:math.DG/0603064

    Google Scholar 

  3. X.X. Chen, P. Lu, G. Tian, A note on uniformization of Riemann surfaces by Ricci flow. Proc. Am. Math. Soc. 134 (11), 3391–3393 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  4. X.X. Chen, G. Tian, Z. Zhang, On the weak Kähler-Ricci flow. (2008) Preprint, arXiv:math.DG/0802.0809

    Google Scholar 

  5. T. Collin, V. Tosatti, Kähler currents and null loci. (2013) Preprint, arXiv:1304.5216

    Google Scholar 

  6. J.P. Demailly, N. Pali, Degenerate complex Monge-Ampère equations over compact Kähler manifolds. (2007) Preprint, arXiv:math.DG/0710.5109

    Google Scholar 

  7. S. Dinew, Z. Zhang, Stability of bounded solutions for degenerate complex Monge-Ampère equations. (2007) arXiv:0711.3643

    Google Scholar 

  8. L.C. Evans, Classical solutions of fully nonlinear, convex, second-order elliptic equations. Commun. Pure Appl. Math. 35 (3), 333–363 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  9. P. Eyssidieux, V. Guedj, A. Zeriahi, A priori L -estimates for degenerate complex Monge-Ampère equations. (2007) Preprint, arXiv:0712.3743

    Google Scholar 

  10. Y. Kawamata, The cone of curves of algebraic varieties. Ann. Math. (2) 119 (3), 603–633 (1984)

    Google Scholar 

  11. Y. Kawamata, Pluricanonical systems on minimal algebraic varieties. Invent. Math. 79 (3), 567–588 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  12. S. Kolodziej, The complex Monge-Ampère equation. Acta Math. 180 (1), 69–117 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  13. G. Perelman, The entropy formula for the Ricci flow and its geometric applications. (2002) Preprint, arXiv:math.DG/0211159

    Google Scholar 

  14. N. Sesum, G. Tian, Perelman’s argument for uniform bounded scalar curvature and diameter along the Kähler-Ricci flow. Preprint (2005)

    Google Scholar 

  15. J. Song, G. Tian, The Kähler-Ricci flow on minimal surfaces of positive Kodaira dimension. Invent. Math. 170 (3), 609–653 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  16. J. Song, G. Tian, Canonical measures and Kähler-Ricci flow. J. Am. Math. Soc. 25 (2), 303–353 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  17. J. Song, G. Tian, The Kahler-Ricci flow through singularities. (2009) Preprint, arXiv:0909.4898

    Google Scholar 

  18. J. Song, G. Tian, Bounding scalar curvature for global solutions of the Kähler-Ricci flow. (2011) Preprint, arXiv:1111.5681

    Google Scholar 

  19. J. Song, B. Weinkove, Lecture notes on the Kḧler-Ricci flow. (2012) Preprint, arXiv:1212.3653

    Google Scholar 

  20. G. Tian, Smoothness of the universal deformation space of compact Calabi-Yau manifolds and its Petersson-Weil metric, in Mathematical Aspects of String Theory (San Diego, Calif., 1986) (World Scientific Publishing, Singapore, 1987), pp. 629–646

    Google Scholar 

  21. G. Tian, On Calabi’s conjecture for complex surfaces with positive first Chern class. Invent. Math. 101 (1), 101–172 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  22. G. Tian, Kähler-Einstein metrics with positive scalar curvature. Invent. Math. 130, 1–39 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  23. G. Tian, Geometry and nonlinear analysis, in Proceedings of the International Congress of Mathematicians (Beijing 2002), vol. I (Higher Education Press, Beijing, 2002), pp. 475–493

    Google Scholar 

  24. G. Tian, Existence of Einstein metrics on Fano manifolds, in Metric and Differential Geometry. Progress in Mathematics, vol. 297 (Birkhäuser/Springer, Basel/Berlin, 2012)

    Google Scholar 

  25. G. Tian, New progresses and results on Kähler-Ricci flow, in Proceeding for J.P. Bourguingnon’s 60 Birthday Conference (2007)

    Google Scholar 

  26. G. Tian, J. Viaclovsky, Moduli spaces of critical Riemannian metrics in dimension four. Adv. Math. 196 (2), 346–372 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  27. G. Tian, Z. Zhang, On the Kähler-Ricci flow on projective manifolds of general type. Chin. Ann. Math. Ser. B 27 (2), 179–192 (2006)

    Article  MATH  Google Scholar 

  28. G. Tian, X. Zhu, Convergence of Kähler Ricci flow. J. Am. Math. Soc. 20 (3), 675–699 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  29. H. Tsuji, Existence and degeneration of Kähler-Einstein metrics on minimal algebraic varieties of general type. Math. Ann. 281 (1), 123–133 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  30. X.J. Wang, X. Zhu, Kähler-Ricci solitons on toric manifolds with positive first Chern class. Adv. Math. 188 (1), 87–103 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  31. S.T. Yau, On the Ricci curvature of a compact Kähler manifold and the complex Monge-Ampère equation, I. Commun. Pure Appl. Math. 31, 339–411 (1978)

    Article  MATH  Google Scholar 

  32. Z. Zhang, On degenerate Monge-Ampère equations over closed Kähler manifolds. Int. Math. Res. Not. 2006, Art. ID 63640, 18 (2006)

    Google Scholar 

  33. Z. Zhang, General weak limit for Kähler-Ricci flow. (2011) Preprint, arXiv:1104.2961

    Google Scholar 

Download references

Acknowledgements

This work was partially supported by NSF grants.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gang Tian .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Tian, G. (2016). Notes on Kähler-Ricci Flow. In: Benedetti, R., Mantegazza, C. (eds) Ricci Flow and Geometric Applications. Lecture Notes in Mathematics(), vol 2166. Springer, Cham. https://doi.org/10.1007/978-3-319-42351-7_4

Download citation

Publish with us

Policies and ethics