Skip to main content

Singularities of Three-Dimensional Ricci Flows

  • Chapter
  • First Online:
Ricci Flow and Geometric Applications

Part of the book series: Lecture Notes in Mathematics ((LNMCIME,volume 2166))

  • 1658 Accesses

Abstract

The Ricci flow is an evolution of a Riemannian metric driven by a parabolic PDEs and was introduced by Hamilton in 1982. It has been the fundamental tool for some important achievements in geometry in the early 2000s, such as Perelman’s proof of the geometrization conjecture and Brendle–Schoen’s proof of the differentiable sphere theorem. In these notes we provide an introduction to the Ricci flow, by giving a survey of the basic results and examples. In particular, we focus our attention on the analysis of the singularities of the flow in the three-dimensional case which is needed in the surgery construction by Hamilton and Perelman.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 49.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. B. Andrews, Harnack inequalities for evolving hypersurfaces. Math. Z. 217, 179–197 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  2. B. Andrews, Noncollapsing in mean-convex mean curvature flow. Geom. Topol. 16, 1413–1418 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  3. B. Andrews, C. Hopper, The Ricci Flow in Riemannian Geometry (Springer, Berlin/Heidelberg, 2011)

    Book  MATH  Google Scholar 

  4. S. Angenent, D. Knopf, An example of neckpinching for Ricci flow on S n+1. Math. Res. Lett. 11, 493–518 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  5. S. Angenent, J. Isenberg, D. Knopf, Degenerate neckpinches in Ricci flow. J. Reine Angew. Math. 709, 81–117 (2015)

    MathSciNet  MATH  Google Scholar 

  6. L. Bessières, G. Besson, S. Maillot, M. Boileau, J. Porti, Geometrisation of 3-Manifolds (European Mathematical Society, Zürich, 2010)

    Book  MATH  Google Scholar 

  7. C. Böhm, B. Wilking, Manifolds with positive curvature operator are space forms. Ann. Math. 167, 1079–1097 (2008)

    Article  MATH  Google Scholar 

  8. S. Brendle, Ricci Flow and the Sphere Theorem (American Mathematical Society, Providence, 2010)

    Book  MATH  Google Scholar 

  9. S. Brendle, G. Huisken, Mean curvature flow with surgery of mean convex surfaces in \(\mathbb{R}^{3}\). Invent. Math. 203, 615–654 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  10. S. Brendle, R. Schoen, Manifolds with 1/4-pinched curvature are space forms. J. Am. Math. Soc. 22, 287–307 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  11. R.L. Bryant, Ricci flow solitons in dimension three with SO(3)-symmetries. Available at www.math.duke.edu/~bryant/3DRotSymRicciSolitons.pdf

  12. E. Calabi, An extension of E. Hopf’s maximum principle with an application to Riemannian geometry. Duke Math. J. 25, 45–56 (1958)

    MathSciNet  MATH  Google Scholar 

  13. P. Cannarsa, C. Sinestrari, Semiconcave Functions, Hamilton-Jacobi Equations, and Optimal Control (Birkhäuser, Boston, 2004)

    MATH  Google Scholar 

  14. H.D. Cao, B. Chow, Recent developments on the Ricci flow. Bull. Am. Math. Soc. 36, 59–74 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  15. H.D. Cao, X. Zhu, A Complete Proof of the Poincaré and geometrization conjectures - application of the Hamilton-Perelman theory of the Ricci flow. Asian J. Math. 10, 165–492 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  16. H.D. Cao, B. Chow, S.C. Chu, S.T. Yau (eds.), Collected Papers on Ricci Flow (International Press, Boston, 2003)

    MATH  Google Scholar 

  17. B. Chow, D. Knopf, The Ricci Flow: An Introduction (American Mathematical Society, Providence, 2004)

    Book  MATH  Google Scholar 

  18. B. Chow, P. Lu, L. Ni, Hamilton’s Ricci Flow (American Mathematical Society/Science Press, Providence/New York, 2006)

    MATH  Google Scholar 

  19. B. Chow, S.-C. Chu, D. Glickenstein, C. Guenther, J. Isenberg, T. Ivey, D. Knopf, P. Lu, F. Luo, L. Ni, The Ricci Flow: Techniques and Applications. Part I: Geometric Aspects (American Mathematical Society, Providence, 2007)

    Google Scholar 

  20. B. Chow, S.-C. Chu, D. Glickenstein, C. Guenther, J. Isenberg, T. Ivey, D. Knopf, P. Lu, F. Luo, L. Ni, The Ricci Flow: Techniques and Applications. Part II: Analytic Aspects (American Mathematical Society, Providence, 2008)

    Google Scholar 

  21. B. Chow, S.-C. Chu, D. Glickenstein, C. Guenther, J. Isenberg, T. Ivey, D. Knopf, P. Lu, F. Luo, L. Ni, The Ricci Flow: Techniques and Applications. Part III: Geometric-Analytic Aspects (American Mathematical Society, Providence, 2010)

    Google Scholar 

  22. B. Chow, S.-C. Chu, D. Glickenstein, C. Guenther, J. Isenberg, T. Ivey, D. Knopf, P. Lu, F. Luo, L. Ni, The Ricci Flow: Techniques and Applications. Part IV: Long-Time Solutions and Related Topics (American Mathematical Society, Providence, 2015)

    Google Scholar 

  23. M.G. Crandall, H. Ishii, P.L. Lions, User’s guide to viscosity solutions of second order partial differential equations. Bull. Am. Math. Soc. 27, 1–67 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  24. D.M. DeTurck, Deforming metrics in the direction of their Ricci tensors. J. Differ. Geom. 18, 157–162 (1983)

    MathSciNet  MATH  Google Scholar 

  25. M. Do Carmo, Riemannian Geometry (Birkhäuser, Boston, 1992)

    Book  MATH  Google Scholar 

  26. K. Ecker, A formula relating entropy monotonicity to Harnack inequalities. Commun. Anal. Geom. 15, 1025–1061 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  27. J. Eels, J.H. Sampson, Harmonic mappings of Riemannian manifolds. Am. J. Math. 86, 109–160 (1994)

    Article  MathSciNet  Google Scholar 

  28. L.C. Evans, Partial Differential Equations (American Mathematical Society, Providence, 1998)

    MATH  Google Scholar 

  29. D. Gilbarg, N. Trudinger, Elliptic Partial Differential Equations of Second Order (Springer, Berlin/Heidelberg, 1983)

    Book  MATH  Google Scholar 

  30. R.S. Hamilton, Three-manifolds with positive Ricci curvature. J. Differ. Geom. 17, 255–306 (1982)

    MathSciNet  MATH  Google Scholar 

  31. R.S. Hamilton, Four–manifolds with positive curvature operator. J. Differ. Geom. 24, 153–179 (1986)

    MathSciNet  MATH  Google Scholar 

  32. R.S. Hamilton, The Harnack estimate for the Ricci flow. J. Differ. Geom. 37, 225–243 (1993)

    MathSciNet  MATH  Google Scholar 

  33. R.S. Hamilton, The formation of singularities in the Ricci flow, in Surveys in Differential Geometry (Cambridge, MA, 1993), vol. II (International Press, Cambridge, 1995), pp. 7–136

    Google Scholar 

  34. R.S. Hamilton, The Harnack estimate for the mean curvature flow. J. Differ. Geom. 41, 215–226 (1995)

    MathSciNet  MATH  Google Scholar 

  35. R.S. Hamilton, Four–manifolds with positive isotropic curvature. Commun. Anal. Geom. 5, 1–92 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  36. R.S. Hamilton, Non-singular solutions of the Ricci flow on three-manifolds. Commun. Anal. Geom. 7, 695–729 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  37. R. Haslhofer, B. Kleiner, Mean curvature flow of mean convex hypersurfaces. Commun. Pure Appl. Math. (2013). Preprint

    Google Scholar 

  38. R. Haslhofer, B. Kleiner, Mean curvature flow with surgery (2014). Preprint, arXiv:1404.2332

    Google Scholar 

  39. G. Huisken, Flow by mean curvature of convex surfaces into spheres. J. Differ. Geom. 20, 237–266 (1984)

    MathSciNet  MATH  Google Scholar 

  40. G. Huisken, Asymptotic behavior of singularities of the mean curvature flow. J. Differ. Geom. 31, 285–299 (1990)

    MathSciNet  MATH  Google Scholar 

  41. G. Huisken, C. Sinestrari, Convexity estimates for mean curvature flow and singularities of mean convex surfaces. Acta Math. 183, 45–70 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  42. G. Huisken, C. Sinestrari, Mean curvature flow with surgeries of two-convex hypersurfaces. Invent. Math. 175, 137–221 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  43. T. Ivey, Ricci solitons on compact three-manifolds. Differ. Geom. Appl. 3, 301–307 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  44. B. Kleiner, J. Lott, Notes on Perelman’s papers. Geom. Topol. 12, 2587–2855 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  45. P. Li, S.T. Yau, On the parabolic kernel of the Schrödinger operator. Acta Math. 156, 153–201 (1986)

    Article  MathSciNet  Google Scholar 

  46. J. Morgan, G. Tian, Ricci Flow and the Poincaré Conjecture (American Mathematical Society/Clay Mathematics Institute, Providence/Cambridge, 2007)

    MATH  Google Scholar 

  47. J. Morgan, G. Tian, The Geometrization Conjecture (American Mathematical Society/Clay Mathematics Institute, Providence/Cambridge, 2014)

    MATH  Google Scholar 

  48. R. Müller, Differential Harnack Inequalities and the Ricci Flow (European Mathematical Society, Zürich, 2006)

    Book  MATH  Google Scholar 

  49. G. Perelman, The entropy formula for the Ricci flow and its geometric applications (2002). Preprint, arXiv:math/0211159

    Google Scholar 

  50. G. Perelman, Ricci flow with surgeries on three-manifolds (2003). Preprint, arXiv:math/0303109

    Google Scholar 

  51. G. Perelman, Finite extinction time for the solutions to the Ricci flow on certain three-manifolds (2003). Preprint, arXiv:math/0307245

    Google Scholar 

  52. W.X. Shi, Deforming the metric on complete Riemannian manifolds. J. Differ. Geom. 30, 223–301 (1989)

    MathSciNet  MATH  Google Scholar 

  53. M. Simon, A class of Riemannian manifolds that pinch when evolved by Ricci flow. Manuscripta Math. 101, 89–114 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  54. T. Tao, Perelman’s proof of the Poincaré conjecture: a nonlinear PDE perspective (2006). Preprint, arXiv:math/0610903

    Google Scholar 

  55. P. Topping, Lectures on the Ricci Flow (Cambridge University Press, Cambridge, 2006)

    Book  MATH  Google Scholar 

  56. B. White, The nature of singularities in mean curvature flow of mean-convex sets. J. Am. Math. Soc. 16, 123–138 (2002)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlo Sinestrari .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Sinestrari, C. (2016). Singularities of Three-Dimensional Ricci Flows. In: Benedetti, R., Mantegazza, C. (eds) Ricci Flow and Geometric Applications. Lecture Notes in Mathematics(), vol 2166. Springer, Cham. https://doi.org/10.1007/978-3-319-42351-7_3

Download citation

Publish with us

Policies and ethics