Skip to main content

Riemann and the Cutting of Surfaces

  • Chapter
  • First Online:
What is the Genus?

Part of the book series: Lecture Notes in Mathematics ((HISTORYMS,volume 2162))

  • 2202 Accesses

Abstract

Shortly after Cauchy and Puiseux, Riemann came up with a radically different solution to the problem of multivaluedness of functions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 19.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 29.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In the next fragment, x and y denote the real and imaginary parts of the variable \(z \in \mathbb{C}\).

  2. 2.

    I took the picture from [172, page 284].

  3. 3.

    In Chap. 40 we will see how one arrived, historically speaking, at this mode of expression.

  4. 4.

    In this text, x and y again denote the real and imaginary parts of a complex variable z, which is a local complex coordinate on the surface T.

  5. 5.

    Note that here, in contrast to the situation considered in the Introduction, the loops are allowed to intersect.

  6. 6.

    See Theorem 41.1 for its general modern statement. Here, in the context of curvilinear integrals on surfaces, it is often called the Green–Riemann formula.

  7. 7.

    The translation into English was done by Weil.

References

  1. J. Milnor, Towards the Poincaré conjecture and the classification of 3-manifolds. Not. Am. Math. Soc. 50 (10), 1226–1233 (2003)

    MathSciNet  MATH  Google Scholar 

  2. J. Milnor, Topology through the centuries: low dimensional manifolds. Bull. Am. Math. Soc. (N.S.) 52 (4), 545–584 (2015)

    Google Scholar 

  3. C.G. Neumann, Vorlesungen über Riemann’s Theorie der Abelschen Integralen (Teubner, Leipzig, 1865)

    Google Scholar 

  4. G. Perelman, The entropy formula for the Ricci flow and its geometric applications. (2002). ArXiv:math.DG/0211159

    Google Scholar 

  5. H. Poincaré, Cinquième Complément à l’Analysis Situs. Rend. Circ. Matem. Palermo 18, 45–110 (1904). Republished in Œuvres de Henri Poincaré, vol. VI (Gauthier-Villars, Paris, 1953), pp. 435–498

    Google Scholar 

  6. J.-C. Pont, La topologie algébrique des origines à Poincaré (Presses Universitaires de France, Paris, 1974)

    MATH  Google Scholar 

  7. P. Popescu-Pampu, La bande que “tout le monde connaît”. Images des Mathématiques (CNRS, 2010). http://images.math.cnrs.fr/La-bande-que-tout-le-monde-connait.html

  8. B. Riemann, Grundlagen für eine allgemeine Theorie der Functionen einer veränderlicher komplexer Grösse (Inauguraldissertation, Göttingen, 1851). French translation: Principes fondamentaux pour une théorie générale des fonctions d’une grandeur variable complexe, in Œuvres mathématiques de Riemann., transl. L. Laugel (Gauthier-Villars, Paris, 1898), pp. 2–60. Reprinted by J. Gabay, Sceaux, 1990

    Google Scholar 

  9. B. Riemann, Theorie der Abelschen Functionen. J. Reine Angew. Math. 54, 115–155 (1857). French translation: Théorie des fonctions abéliennes. Dans Œuvres mathématiques de Riemann, transl. L. Laugel (Gauthier-Villars, Paris, 1898), pp. 89–164. Reprinted by J. Gabay, Sceaux, 1990

    Google Scholar 

  10. J. Stillwell, Mathematics and its History, 2nd edn. (Springer, New York, 2002)

    Book  MATH  Google Scholar 

  11. A. Weil, Riemann, Betti and the birth of Topology. Arch. Hist. Exact Sci. 20, 91–96 (1979)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Popescu-Pampu, P. (2016). Riemann and the Cutting of Surfaces. In: What is the Genus?. Lecture Notes in Mathematics(), vol 2162. Springer, Cham. https://doi.org/10.1007/978-3-319-42312-8_14

Download citation

Publish with us

Policies and ethics