Skip to main content

Standard and Non-standard CAGD Tools for Isogeometric Analysis: A Tutorial

  • Chapter
  • First Online:
IsoGeometric Analysis: A New Paradigm in the Numerical Approximation of PDEs

Part of the book series: Lecture Notes in Mathematics ((LNMCIME,volume 2161))

Abstract

We present a detailed summary of the main CAGD tools of interest in IgA: Bernstein polynomials and B-splines. Besides their well-known algebraic and geometric properties, we give a deeper insight into why these representations are so popular and efficient by proving that they are optimal bases for the corresponding function spaces. Moreover, we review some generalizations of the B-spline structure in function spaces which extend classical polynomial spaces. Extensions to the bivariate setting beyond the straightforward tensor-product case are discussed as well. In particular, we focus on the triangular setting.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 49.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Bernstein polynomials were introduced in [3] to provide a constructive proof of the Weierstrass theorem, i.e., to explicitly construct a sequence of algebraic polynomials, namely

    $$\displaystyle{B_{p}(\,f,t):=\sum _{ i=0}^{p}f\left ( \frac{i} {p}\right )\binom{p}{i}t^{i}(1 - t)^{p-i},}$$

    which uniformly converges on [0, 1] to any f ∈ C([0, 1]). From the approximation perspective, the above operator did not receive much attention due to its slow convergence. Indeed, it can be proved that (see [3])

    $$\displaystyle{\lim _{p\rightarrow \infty }p[B_{p}(\,f,t_{0}) - f(t_{0})] = \frac{1} {2}t_{0}(1 - t_{0})f''(t_{0})\ \ \mathrm{if}\ \ f''(t_{0})\not =0.}$$

    We refer to the nice paper [27] for a historical summary of the properties of Bernstein polynomials.

  2. 2.

    A set of polynomials with the same properties on a general interval [a, b] can be immediately obtained by the usual change of variable \(t = \frac{x-a} {b-a}\).

  3. 3.

    We introduce this notation for the sake of symmetry with a recurrence relation we need later on in Sect. 4.1.

  4. 4.

    Referring to footnote 1, Sergei N. Bernstein used the Greville abscissae in his proof of the Weierstrass theorem [3].

  5. 5.

    Pierre Bézier was a French engineer working at Renault. His software UNISURF was one of the first CAD systems [4, 41].

  6. 6.

    Paul de Casteljau is a French physicist and mathematician. He worked at Citroën, where he developed his famous algorithm for evaluation of a family of polynomial curves [5, 22]. The same curves were used independently by Pierre Bézier at Renault. The connection between these curves and Bernstein polynomials was not clear in the beginning.

  7. 7.

    It follows that the Bernstein operator B p ( f, ⋅ ), as defined in footnote 1, is shape preserving in the sense that if f is positive and/or monotone and/or convex then B p ( f, ⋅ ) is positive and/or monotone and/or convex as well.

  8. 8.

    B-splines were introduced by Curry and Schoenberg [16] as divided differences of truncated powers, see, e.g., [19, Chap. IX]. Here we present an equivalent definition in terms of a recurrence relation. The original definition can be used to prove properties of the B-splines, but it is not suited for numerical evaluation, see [18]. On the other hand, Definition 6 only uses convex combinations which ensure a numerically stable procedure. Nevertheless, Isaac J. Schoenberg is indisputably considered as the father of splines although other authors considered this concept already earlier, see, e.g., [8, 37, 62].

  9. 9.

    An explicit expression of (40) was given by Thomas N.E. Greville in [34]. According to Isaac J. Schoenberg [61], Thomas N.E. Greville reviewed the paper [61] introducing some elegant simplifications.

  10. 10.

    As in the case of Bernstein polynomials ( footnote 1), the Greville abscissae for B-splines can be used to define an interesting approximating operator, namely the so-called Schoenberg operator, see [61, Sect. 10]:

    $$\displaystyle{Q(f,t):=\sum _{ i=1}^{n}f(\xi _{ i,p}^{{\ast}})B_{ i,\varXi }^{(\,p)}(t).}$$

    Analogously to the Bernstein operator, the Schoenberg operator reproduces polynomials of first degree and it is shape preserving, see Theorems 9 and 10.

  11. 11.

    If τ i in (44) is a knot, then the left or right derivatives of f have to be considered. Actually, a slightly more general form of (44) can be given, see [19, Chap. IX].

  12. 12.

    The right derivative has to be considered where B i, Ξ ( p) is not sufficiently smooth.

  13. 13.

    The formula is well defined for knots having multiplicity at most p. For the more general case, we refer to Definition 11.

  14. 14.

    Like in the case of Bézier curves, the development of a stable evaluation algorithm for B-spline curves is related to the car industry. In the early 1960s, Carl de Boor worked at General Motors Research, where splines were already being employed in automotive design. There he laid the foundations of his famous algorithm, see [18].

  15. 15.

    A multiplicity p is actually sufficient for Bézier extraction.

  16. 16.

    Negative weights could be used as well. Here, we just consider strictly positive weights because they ensure nice properties of the corresponding NURBS basis functions.

  17. 17.

    For a more general approach we refer to [33].

  18. 18.

    This is always the case for an EC space.

  19. 19.

    Beyond the neat theory of GB-splines presented here, more general constructions of B-spline-like functions in EC-spaces can be obtained with less restrictive hypotheses, see [42, 49, 63] and references therein.

  20. 20.

    We use the term degree to stress the similarity with classical polynomial B-splines.

  21. 21.

    GB-splines are defined by successive integration of elements in the bidimensional spaces (71). Therefore, it is natural to start the recurrence relation from degree 1, instead of from degree 0 as is usually done in the polynomial case (see Definition 6).

  22. 22.

    In both the univariate and bivariate case we use the same symbol for the space of algebraic polynomials, \(\mathbb{P}_{p}\), but the meaning will be clear from the context.

  23. 23.

    In the univariate case both approaches lead to the same result, see Sect. 3.2.

  24. 24.

    Powell–Sabin splines were originally developed in [56] with the main aim of drawing contour lines of bivariate functions.

  25. 25.

    Such a choice is always possible: Z i can be selected as the center of the inscribed circle. Usually, the barycenter of T i is also a valid choice (but not always).

  26. 26.

    For boundary edges the subscript j refers to the edge.

References

  1. T. Ando, Totally positive matrices. Linear Algebra Appl. 90, 165–219 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  2. L. Beirão da Veiga, T.J.R. Hughes, J. Kiendl, C. Lovadina, J. Niiranen, A. Reali, H. Speleers, A locking-free model for Reissner–Mindlin plates: analysis and isogeometric implementation via NURBS and triangular NURPS. Math. Models Methods Appl. Sci. 25, 1519–1551 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  3. S.N. Bernstein, Démonstration du théorème de Weierstrass fondée sur le calcul des probabilités. Communications de la Société Mathématique de Kharkov 2. Series XIII, 1–2 (1912)

    Google Scholar 

  4. P. Bézier, Mathematical and practical possibilities of UNISURF, in Computer Aided Geometric Design, ed. by R.E. Barnhill, R.F. Riesenfeld (Academic, New York, 1974), pp. 127–152

    Chapter  Google Scholar 

  5. W. Böhm, A. Müller, On de Casteljau’s algorithm. Comput. Aided Geom. Des. 16, 587–605 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  6. W. Böhm, G. Farin, J. Kahmann, A survey of curve and surface methods in CAGD. Comput. Aided Geom. Des. 1, 1–60 (1984)

    Article  MATH  Google Scholar 

  7. T. Bosner, M. Rogina, Non-uniform exponential tension splines. Numer. Algor. 46, 265–294 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  8. P.L. Butzer, M. Schmidt, E.L. Stark, Observations on the history of central B-splines. Arch. Hist. Exact Sci. 39, 137–156 (1988)

    MathSciNet  MATH  Google Scholar 

  9. J.M. Carnicer, J.M. Peña, Shape preserving representations and optimality of the Bernstein basis. Adv. Comp. Math. 1, 173–196 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  10. J.M. Carnicer, J.M. Peña, Totally positive bases for shape preserving curve design and optimality of B-splines. Comput. Aided Geom. Des. 6, 633–654 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  11. J.M. Carnicer, J.M. Peña, Totally positivity and optimal bases, in Total Positivity and Its Applications ed. by M. Gasca, C.A. Micchelli (Kluwer, Dordrecht, 1996), pp. 133–155

    Google Scholar 

  12. E. Cohen, T. Lyche, R. Riesenfeld, Discrete B-splines and subdivision techniques in computer-aided geometric design and computer graphics. Comput. Graph. Image Process. 14, 87–111 (1980)

    Article  Google Scholar 

  13. P. Costantini, T. Lyche, C. Manni, On a class of weak Tchebycheff systems. Numer. Math. 101, 333–354 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  14. P. Costantini, C. Manni, F. Pelosi, M.L. Sampoli, Quasi-interpolation in isogeometric analysis based on generalized B-splines. Comput. Aided Geom. Des. 27, 656–668 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  15. J.A. Cottrell, T.J.R. Hughes, Y. Bazilevs, Isogeometric Analysis: Toward Integration of CAD and FEA. (Wiley, Chichester, 2009)

    Google Scholar 

  16. H.B. Curry, I.J. Schoenberg, On spline distributions and their limits: the Pólya distribution functions. Bull. Am. Math. Soc. 53, 1114 (1947). Abstract 380t

    Google Scholar 

  17. W. Dahmen, C.A. Micchelli, H.P. Seidel, Blossoming begets B-splines built better by B-patches. Math. Comp. 59, 97–115 (1992)

    MathSciNet  MATH  Google Scholar 

  18. C. de Boor, On calculating with B-splines. J. Approx. Theory 6, 50–62 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  19. C. de Boor, A Practical Guide to Splines, revised edition (Springer, New York, 2001)

    Google Scholar 

  20. C. de Boor, The way things were in multivariate splines: a personal view, in Multiscale, Nonlinear and Adaptive Approximation, ed. by R. DeVore, A. Kunoth (Springer, Berlin/Heidelberg, 2009), pp. 19–37

    Chapter  Google Scholar 

  21. C. de Boor, K. Höllig, S. Riemenschneider, Box Splines. (Springer, New York, 1993)

    Google Scholar 

  22. P. de Casteljau, De Casteljau’s autobiography: my time at Citroën. Comput. Aided Geom. Des. 16, 583–586 (1999)

    Article  MATH  Google Scholar 

  23. P. Dierckx, On calculating normalized Powell–Sabin B-splines. Comput. Aided Geom. Des. 15, 61–78 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  24. N. Dyn, D. Levin, Subdivision schemes in geometric modelling. Acta Numer. 11, 73–144 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  25. N. Dyn, D. Levin, A. Luzzatto, Exponentials reproducing subdivision schemes. Found. Comput. Math. 3, 187–206 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  26. G. Farin, Curves and Surfaces for Computer Aided Geometric Design. A Practical Guide. 5th edn. (Academic, Boston, 2002)

    Google Scholar 

  27. R.T. Farouki, The Bernstein polynomial basis: a centennial retrospective. Comput. Aided Geom. Des. 29, 379–419 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  28. R.T. Farouki, T.N.T. Goodman, On the optimal stability of the Bernstein basis. Math. Comput. 65, 1553–1566 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  29. M. Fekete, G. Pólya, Über ein Problem von Laguerre. Rend. Circ. Matem. Palermo 34, 89–120 (1912)

    Article  MATH  Google Scholar 

  30. M. Gasca, C.A. Micchelli (eds.), Total Positivity and its Applications (Kluwer, Dordrecht, 1996)

    MATH  Google Scholar 

  31. M. Gasca, J.M. Peña, On the characterization of totally positive matrices, in Approximation Theory, Spline Functions and Applications, ed. by S.P. Singh. (Kluwer, Dordrecht, 1992), pp. 357–364

    Chapter  Google Scholar 

  32. T.N.T. Goodman, Total positivity and shape of curves, in Total Positivity and Its Applications, ed. by M. Gasca, C.A. Micchelli (Kluwer, Dordrecht, 1996), pp. 157–186

    Chapter  Google Scholar 

  33. T.N.T. Goodman, M.L. Mazure, Blossoming beyond extended Chebyshev spaces. J. Approx. Theory 109, 48–81 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  34. T.N.E. Greville, On the normalisation of the B-splines and the location of the nodes for the case of unequally spaced knots, in Inequalities, ed. by O. Shisha (Academic, New York, 1967), pp. 286–290

    Google Scholar 

  35. J. Hoschek, D. Lasser, Fundamentals of Computer Aided Geometric Design (A K Peters, Natick, MA, 1993)

    MATH  Google Scholar 

  36. S. Karlin, Total Positivity (Stanford University Press, Stanford, 1968)

    MATH  Google Scholar 

  37. S. Karlin, To I. J. Schoenberg and his mathematics. J. Approx. Theory 8, vi–ix (1973)

    Google Scholar 

  38. P.E. Koch, T. Lyche, Exponential B-splines in tension, in Approximation Theory VI, ed. by C.K. Chui, L.L. Schumaker, J.D. Ward (Academic, New York, 1989), pp. 361–364

    Google Scholar 

  39. B. Kvasov, P. Sattayatham, GB-splines of arbitrary order. J. Comput. Appl. Math. 104, 63–88 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  40. M.-J. Lai, L.L. Schumaker, Spline Functions on Triangulations (Cambridge University Press, Cambridge, 2007)

    Book  MATH  Google Scholar 

  41. P.-J. Laurent, P. Sablonnière, Pierre Bézier: an engineer and a mathematician. Comput. Aided Geom. Des. 18, 609–617 (2001)

    Article  MATH  Google Scholar 

  42. T. Lyche, A recurrence relation for Chebyshevian B-splines. Constr. Approx. 1, 155–173 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  43. E. Mainar, J.M. Peña, A general class of Bernstein-like bases. Comput. Math. Appl. 53, 1686–1703 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  44. C. Manni, F. Pelosi, M.L. Sampoli, Generalized B-splines as a tool in isogeometric analysis. Comput. Methods Appl. Mech. Eng. 200, 867–881 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  45. C. Manni, F. Pelosi, M.L. Sampoli, Isogeometric analysis in advection-diffusion problems: tension splines approximation. J. Comput. Appl. Math. 236, 511–528 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  46. C. Manni, F. Pelosi, H. Speleers, Local hierarchical h-refinements in IgA based on generalized B-splines, in Mathematical Methods for Curves and Surfaces 2012. Lecture Notes in Computer Science, vol. 8177, ed. by M. Floater, et al. (Springer, Berlin/Heidelberg, 2014), pp. 341–363

    Google Scholar 

  47. C. Manni, A. Reali, H. Speleers, Isogeometric collocation methods with generalized B-splines. Comput. Math. Appl. 70, 1659–1675 (2015)

    Article  MathSciNet  Google Scholar 

  48. M. Marsden, An identity for spline functions and its application to variation diminishing spline approximation. J. Approx. Theory 3, 7–49 (1970)

    Article  MATH  Google Scholar 

  49. M.L. Mazure, Chebyshev–Bernstein bases. Comput. Aided Geom. Des 16, 649–669 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  50. M.L. Mazure, Chebyshev splines beyond total positivity. Adv. Comput. Math. 14, 129–156 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  51. M.L. Mazure, How to build all Chebyshevian spline spaces good for geometric design? Numer. Math. 119, 517–556 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  52. M. Neamtu, What is the natural generalization of univariate splines to higher dimensions? in Mathematical Methods for Curves and Surfaces, ed. by T. Lyche, L.L. Schumaker (Vanderbilt University Press, Nashville, 2001), pp. 355–392

    Google Scholar 

  53. M. Neamtu, Delaunay configurations and multivariate splines: a generalization of a result of B. N. Delaunay. Trans. Am. Math. Soc. 359, 2993–3004 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  54. J.M. Peña (ed.), Shape Preserving Representations in Computer-Aided Geometric Design (Nova Science Publishers, New York, 1999)

    MATH  Google Scholar 

  55. L. Piegl, W. Tiller, The NURBS Book (Monographs in Visual Communication), 2nd edn. (Springer, New York, 1997)

    Book  MATH  Google Scholar 

  56. M.J.D. Powell, M.A. Sabin, Piecewise quadratic approximations on triangles. ACM Trans. Math. Softw. 3, 316–325 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  57. H. Prautzsch, T. Gallagher, Is there a geometric variation diminishing property for B-spline or Bézier surfaces? Comput. Aided Geom. Des. 9, 119–124 (1992)

    Article  MATH  Google Scholar 

  58. H. Prautzsch, W. Boehm, M. Paluszny, Bézier and B-spline Techniques (Springer, Berlin, 2002)

    Book  MATH  Google Scholar 

  59. L. Ramshaw, Blossoms are polar forms. Comput. Aided Geom. Des. 6, 323–358 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  60. D.F. Rogers, An Introduction to NURBS: With Historical Perspective (Morgan Kaufmann, San Francisco, 2001)

    Google Scholar 

  61. I.J. Schoenberg, On spline functions, in Inequalities, ed. by O. Shisha (Academic, New York, 1967), pp. 255–286

    Google Scholar 

  62. I.J. Schoenberg, A brief account of my life and work, in I. J. Schoenberg, Selected Papers, vol. I, ed. by C. de Boor, (Birkhäuser, Boston, 1988), pp. 1–10

    Google Scholar 

  63. L.L. Schumaker, Spline Functions: Basic Theory, 3rd edn. (Cambridge University Press, Cambridge, 2007)

    Book  MATH  Google Scholar 

  64. H. Speleers, A normalized basis for quintic Powell–Sabin splines. Comput. Aided Geom. Des. 27, 438–457 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  65. H. Speleers, A normalized basis for reduced Clough–Tocher splines. Comput. Aided Geom. Design 27, 700–712 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  66. H. Speleers, Multivariate normalized Powell–Sabin B-splines and quasi-interpolants. Comput. Aided Geom. Des. 30, 2–19 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  67. H. Speleers, Construction of normalized B-splines for a family of smooth spline spaces over Powell–Sabin triangulations. Constr. Approx. 37, 41–72 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  68. H. Speleers, P. Dierckx, S. Vandewalle, Numerical solution of partial differential equations with Powell–Sabin splines. J. Comput. Appl. Math. 189, 643–659 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  69. H. Speleers, P. Dierckx, S. Vandewalle, Weight control for modelling with NURPS surfaces. Comput. Aided Geom. Des. 24, 179–186 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  70. H. Speleers, C. Manni, F. Pelosi, From NURBS to NURPS geometries. Comput. Methods Appl. Mech. Eng. 255, 238–254 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  71. H. Speleers, C. Manni, F. Pelosi, M.L. Sampoli, Isogeometric analysis with Powell–Sabin splines for advection-diffusion-reaction problems. Comput. Methods Appl. Mech. Eng. 221–222, 132–148 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  72. G. Wang, M. Fang, Unified and extended form of three types of splines. J. Comput. Appl. Math. 216, 498–508 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  73. J. Windmolders, P. Dierckx, From PS-splines to NURPS, in Proceedings of Curve and Surface Fitting, Saint-Malo, 1999, ed. by A. Cohen, C. Rabut, L.L. Schumaker (Vanderbilt University Press,, Nashville, 2000), pp. 45–54

    Google Scholar 

  74. J. Zhang, F. Krause, H. Zhang, Unifying C-curves and H-curves by extending the calculation to complex numbers. Comput. Aided Geom. Des. 22, 865–883 (2005)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carla Manni .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Manni, C., Speleers, H. (2016). Standard and Non-standard CAGD Tools for Isogeometric Analysis: A Tutorial. In: Buffa, A., Sangalli, G. (eds) IsoGeometric Analysis: A New Paradigm in the Numerical Approximation of PDEs. Lecture Notes in Mathematics(), vol 2161. Springer, Cham. https://doi.org/10.1007/978-3-319-42309-8_1

Download citation

Publish with us

Policies and ethics