Skip to main content

Functions of Inositol Polyphosphate and Inorganic Polyphosphate in Yeast and Amoeba

  • Chapter
  • First Online:
Inorganic Polyphosphates in Eukaryotic Cells
  • 556 Accesses

Abstract

Phosphate, as a chemical group, forms a variety of bonds with important structural, informational and energetic roles. Therefore, the control of cellular phosphate homoeostasis is essential to cellular well-being. Key to this regulation of phosphate level is inorganic polyphosphate, a linear polymer of phosphate groups linked by phosphoanhydride bonds. While for many years bacterial research has dominated the inorganic polyphosphate field, interest in eukaryotic work is growing due to the discovery of this polymer’s involvement in human diseases. Simple genetically tractable eukaryotes such as the yeast Saccharomyces cerevisiae and the social amoeba Dictyostelium discoideum have become excellent experimental models to study inorganic polyphosphate metabolism and physiological roles. The enzymes responsible for inorganic polyphosphate synthesis have been identified in both budding yeast and amoeba. In addition, research in yeast has revealed a strong metabolic connection between inorganic polyphosphate and inositol pyrophosphates, signalling molecules that belong to the vast and well-recognised inositol phosphates family. Interestingly, also inositol pyrophosphate metabolism and physiology has been primarily elucidated in the yeast and amoeba model organisms. The aim of the current essay is to highlight the metabolic and functional connections between these highly phosphorylated classes of molecules, focusing our attention on what the yeast and the amoeba have taught us about the functions and metabolism of inorganic polyphosphate and inositol pyrophosphates.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

IP3 :

Inositol trisphosphate I(1,4,5)P3

PP-IPs:

Inositol pyrophosphates

polyP:

Inorganic polyphosphate

PTM:

Post-translational modification

PLC1:

Phospholipase

IPMK:

Inositol polyphosphate multikinase

PPK1:

Inositol pentakisphosphate 2-kinase

IP6K:

Inositol hexakisphosphate kinase

PPIP5K:

Diphosphoinositol pentakisphosphate kinase

PPK:

Polyphosphate kinase

IP6 :

Inositol hexakisphosphate or phytic acid

VTC:

Vacuolar transporter chaperone

WT:

Wild type

References

  • Abramov AY, Fraley C, Diao CT et al (2007) Targeted polyphosphatase expression alters mitochondrial metabolism and inhibits calcium-dependent cell death. Proc Natl Acad Sci U S A 104(46):18091–18096

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ahn K, Kornberg A (1990) Polyphosphate kinase from Escherichia coli. Purification and demonstration of a phosphoenzyme intermediate. J Biol Chem 265(20):11734–11739

    CAS  PubMed  Google Scholar 

  • Andreeva NA, Kulakovskaya TV, Kulakovskaya EV et al (2008) Polyphosphates and exopolyphosphatases in cytosol and mitochondria of Saccharomyces cerevisiae during growth on glucose or ethanol under phosphate surplus. Biochemistry (Mosc) 73(1):65–69

    Article  CAS  Google Scholar 

  • Andreeva N, Trilisenko L, Eldarov M et al (2015) Polyphosphatase PPN1 of Saccharomyces cerevisiae: switching of exopolyphosphatase and endopolyphosphatase activities. PLoS One 10(3):e0119594

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Aravind L, Koonin EV (1998) A novel family of predicted phosphoesterases includes Drosophila prune protein and bacterial RecJ exonuclease. Trends Biochem Sci 23(1):17–19

    Article  CAS  PubMed  Google Scholar 

  • Auesukaree C, Tochio H, Shirakawa M et al (2005) Plc1p, Arg82p, and Kcs1p, enzymes involved in inositol pyrophosphate synthesis, are essential for phosphate regulation and polyphosphate accumulation in Saccharomyces cerevisiae. J Biol Chem 280(26):25127–25133

    Article  CAS  PubMed  Google Scholar 

  • Azevedo C, Saiardi A (2014) Functions of inorganic polyphosphates in eukaryotic cells: a coat of many colours. Biochem Soc Trans 42(1):98–102

    Article  CAS  PubMed  Google Scholar 

  • Azevedo C, Burton A, Ruiz-Mateos E et al (2009) Inositol pyrophosphate mediated pyrophosphorylation of AP3B1 regulates HIV-1 Gag release. Proc Natl Acad Sci U S A 106(50):21161–21166

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Azevedo C, Livermore T, Saiardi A (2015) Protein polyphosphorylation of lysine residues by inorganic polyphosphate. Mol Cell 58(1):71–82

    Article  CAS  PubMed  Google Scholar 

  • Berridge MJ, Lipp P, Bootman MD (2000) The versatility and universality of calcium signalling. Nat Rev Mol Cell Biol 1(1):11–21

    Article  CAS  PubMed  Google Scholar 

  • Bhandari R, Saiardi A, Ahmadibeni Y et al (2007) Protein pyrophosphorylation by inositol pyrophosphates is a posttranslational event. Proc Natl Acad Sci U S A 104(39):15305–15310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burton A, Hu X, Saiardi A (2009) Are inositol pyrophosphates signalling molecules? J Cell Physiol 220(1):8–15

    Article  CAS  PubMed  Google Scholar 

  • Burton A, Azevedo C, Andreassi C et al (2013) Inositol pyrophosphates regulate JMJD2C-dependent histone demethylation. Proc Natl Acad Sci U S A 110(47):18970–18975

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chakraborty A, Koldobskiy MA, Bello NT et al (2010) Inositol pyrophosphates inhibit Akt signaling, thereby regulating insulin sensitivity and weight gain. Cell 143(6):897–910

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Choi JH, Williams J, Cho J et al (2007) Purification, sequencing, and molecular identification of a mammalian PP-InsP5 kinase that is activated when cells are exposed to hyperosmotic stress. J Biol Chem 282(42):30763–30775

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cramer CL, Davis RH (1984) Polyphosphate-cation interaction in the amino acid-containing vacuole of Neurospora crassa. J Biol Chem 259(8):5152–5157

    CAS  PubMed  Google Scholar 

  • Docampo R, de Souza W, Miranda K et al (2005) Acidocalcisomes – conserved from bacteria to man. Nat Rev Microbiol 3(3):251–261

    Article  CAS  PubMed  Google Scholar 

  • Draskovic P, Saiardi A, Bhandari R et al (2008) Inositol hexakisphosphate kinase products contain diphosphate and triphosphate groups. Chem Biol 15(3):274–286

    Article  CAS  PubMed  Google Scholar 

  • Dubois E, Scherens B, Vierendeels F et al (2002) In Saccharomyces cerevisiae, the inositol polyphosphate kinase activity of Kcs1p is required for resistance to salt stress, cell wall integrity, and vacuolar morphogenesis. J Biol Chem 277(26):23755–23763

    Article  CAS  PubMed  Google Scholar 

  • El Alami M, Messenguy F, Scherens B et al (2003) Arg82p is a bifunctional protein whose inositol polyphosphate kinase activity is essential for nitrogen and PHO gene expression but not for Mcm1p chaperoning in yeast. Mol Microbiol 49(2):457–468

    Article  PubMed  CAS  Google Scholar 

  • Faxalv L, Boknas N, Strom JO et al (2013) Putting polyphosphates to the test: evidence against platelet-induced activation of factor XII. Blood 122(23):3818–3824

    Article  PubMed  CAS  Google Scholar 

  • Franca-Koh J, Kamimura Y, Devreotes P (2006) Navigating signaling networks: chemotaxis in Dictyostelium discoideum. Curr Opin Genet Dev 16(4):333–338

    Article  CAS  PubMed  Google Scholar 

  • Gerasimaite R, Sharma S, Desfougeres Y et al (2014) Coupled synthesis and translocation restrains polyphosphate to acidocalcisome-like vacuoles and prevents its toxicity. J Cell Sci 127(Pt 23):5093–5104

    Article  PubMed  CAS  Google Scholar 

  • Gezelius K (1974) Inorganic polyphosphates and enzymes of polyphosphate metabolism in the cellular slime mold Dictyostelium discoideum. Arch Microbiol 98(4):311–329

    Article  CAS  PubMed  Google Scholar 

  • Ghosh S, Shukla D, Suman K et al (2013) Inositol hexakisphosphate kinase 1 maintains hemostasis in mice by regulating platelet polyphosphate levels. Blood 122(8):1478–1486

    Article  CAS  PubMed  Google Scholar 

  • Glennon MC, Shears SB (1993) Turnover of inositol pentakisphosphates, inositol hexakisphosphate and diphosphoinositol polyphosphates in primary cultured hepatocytes. Biochem J 293(Pt 2):583–590

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gomez-Garcia MR, Kornberg A (2004) Formation of an actin-like filament concurrent with the enzymatic synthesis of inorganic polyphosphate. Proc Natl Acad Sci U S A 101(45):15876–15880

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gray MJ, Wholey WY, Wagner NO et al (2014) Polyphosphate is a primordial chaperone. Mol Cell 53(5):689–699

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hooley P, Whitehead MP, Brown MR (2008) Eukaryote polyphosphate kinases: is the ‘Kornberg’ complex ubiquitous? Trends Biochem Sci 33(12):577–58

    Article  CAS  PubMed  Google Scholar 

  • Horigome C, Ikeda R, Okada T et al (2009) Genetic interaction between ribosome biogenesis and inositol polyphosphate metabolism in Saccharomyces cerevisiae. Biosci Biotechnol Biochem 73(2):443–446

    Article  CAS  PubMed  Google Scholar 

  • Hothorn M, Neumann H, Lenherr ED et al (2009) Catalytic core of a membrane-associated eukaryotic polyphosphate polymerase. Science 324(5926):513–516

    Article  CAS  PubMed  Google Scholar 

  • Irvine RF (2003) 20 years of Ins(1,4,5)P3, and 40 years before. Nat Rev Mol Cell Biol 4(7):586–590

    Article  CAS  PubMed  Google Scholar 

  • Irvine RF, Schell MJ (2001) Back in the water: the return of the inositol phosphates. Nat Rev Mol Cell Biol 2(5):327–338

    Article  CAS  PubMed  Google Scholar 

  • Jahid IK, Silva AJ, Benitez JA (2006) Polyphosphate stores enhance the ability of Vibrio cholerae to overcome environmental stresses in a low-phosphate environment. Appl Environ Microbiol 72(11):7043–7049

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kestenbaum B, Glazer NL, Kottgen A et al (2010) Common genetic variants associate with serum phosphorus concentration. J Am Soc Nephrol 21(7):1223–1232

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kilari RS, Weaver JD, Shears SB et al (2013) Understanding inositol pyrophosphate metabolism and function: kinetic characterization of the DIPPs. FEBS Lett 587(21):3464–3470

    Article  CAS  PubMed  Google Scholar 

  • Klein G, Cotter DA, Martin JB et al (1988) Germination of Dictyostelium discoideum spores. A phosphorus-31 NMR analysis. Biochemistry 27(21):8199–8203

    Article  CAS  Google Scholar 

  • Korber P, Barbaric S (2014) The yeast PHO5 promoter: from single locus to systems biology of a paradigm for gene regulation through chromatin. Nucleic Acids Res 42(17):10888–10902

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kornberg A, Rao NN, Ault-Riche D (1999) Inorganic polyphosphate: a molecule of many functions. Annu Rev Biochem 68:89–125

    Article  CAS  PubMed  Google Scholar 

  • Kuehl L, Childers TJ, McCauley RM (1986) The occurrence of extended acidic sequences in nonhistone chromosomal proteins. Arch Biochem Biophys 248(1):272–281

    Article  CAS  PubMed  Google Scholar 

  • Lander N, Ulrich PN, Docampo R (2013) Trypanosoma brucei vacuolar transporter chaperone 4 (TbVtc4) is an acidocalcisome polyphosphate kinase required for in vivo infection. J Biol Chem 288(47):34205–34216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Letcher AJ, Schell MJ, Irvine RF (2008) Do mammals make all their own inositol hexakisphosphate? Biochem J 416(2):263–270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lichko L, Kulakovskaya T, Pestov N et al (2006a) Inorganic polyphosphates and exopolyphosphatases in cell compartments of the yeast Saccharomyces cerevisiae under inactivation of PPX1 and PPN1 genes. Biosci Rep 26(1):45–54

    Article  CAS  PubMed  Google Scholar 

  • Lichko LP, Kulakovskaya TV, Kulaev IS (2006b) Inorganic polyphosphate and exopolyphosphatase in the nuclei of Saccharomyces cerevisiae: dependence on the growth phase and inactivation of the PPX1 and PPN1 genes. Yeast 23(10):735–740

    Article  CAS  PubMed  Google Scholar 

  • Lichko LP, Kulakovskaya TV, Kulakovskaya EV et al (2008) Inactivation of PPX1 and PPN1 genes encoding exopolyphosphatases of Saccharomyces cerevisiae does not prevent utilization of polyphosphates as phosphate reserve. Biochemistry (Mosc) 73(9):985–989

    Article  CAS  Google Scholar 

  • Livermore TM, Chubb JR, Saiardi A (2016) Developmental accumulation of polyphosphate affects germination and energetic metabolism in D. discoideum. Proc Natl Acad Sci U S A. doi:10.1073/pnas.1519440113

    PubMed Central  Google Scholar 

  • Lonetti A, Szijgyarto Z, Bosch D et al (2011) Identification of an evolutionarily conserved family of inorganic polyphosphate endopolyphosphatases. J Biol Chem 286(37):31966–31974

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Losito O, Szijgyarto Z, Resnick AC et al (2009) Inositol pyrophosphates and their unique metabolic complexity: analysis by gel electrophoresis. PLoS One 4(5):e5580

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Luo HR, Huang YE, Chen JC et al (2003) Inositol pyrophosphates mediate chemotaxis in Dictyostelium via pleckstrin homology domain-PtdIns(3,4,5)P3 interactions. Cell 114(5):559–572

    Article  CAS  PubMed  Google Scholar 

  • McLennan AG (2006) The Nudix hydrolase superfamily. Cell Mol Life Sci 63(2):123–143

    Article  CAS  PubMed  Google Scholar 

  • Menniti FS, Miller RN, Putney JW et al (1993) Turnover of inositol polyphosphate pyrophosphates in pancreatoma cells. J Biol Chem 268(6):3850–3856

    CAS  PubMed  Google Scholar 

  • Moreno SN, Docampo R (2013) Polyphosphate and its diverse functions in host cells and pathogens. PLoS Pathog 9(5):e1003230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morrissey JH, Choi SH, Smith SA (2012) Polyphosphate: an ancient molecule that links platelets, coagulation, and inflammation. Blood 119(25):5972–5979

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Muller O, Bayer MJ, Peters C et al (2002) The Vtc proteins in vacuole fusion: coupling NSF activity to V(0) trans-complex formation. EMBO J 21(3):259–269

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Muller F, Mutch NJ, Schenk WA et al (2009) Platelet polyphosphates are proinflammatory and procoagulant mediators in vivo. Cell 139(6):1143–1156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mulugu S, Bai W, Fridy PC et al (2007) A conserved family of enzymes that phosphorylate inositol hexakisphosphate. Science 316(5821):106–109

    Article  CAS  PubMed  Google Scholar 

  • Muramoto T, Cannon D, Gierlinski M et al (2012) Live imaging of nascent RNA dynamics reveals distinct types of transcriptional pulse regulation. Proc Natl Acad Sci U S A 109(19):7350–7355

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Norbis F, Boll M, Stange G et al (1997) Identification of a cDNA/protein leading to an increased Pi-uptake in Xenopus laevis oocytes. J Membr Biol 156(1):19–24

    Article  CAS  PubMed  Google Scholar 

  • Odom AR, Stahlberg A, Wente SR et al (2000) A role for nuclear inositol 1,4,5-trisphosphate kinase in transcriptional control. Science 287(5460):2026–2029

    Article  CAS  PubMed  Google Scholar 

  • Ogawa N, DeRisi J, Brown PO (2000) New components of a system for phosphate accumulation and polyphosphate metabolism in Saccharomyces cerevisiae revealed by genomic expression analysis. Mol Biol Cell 11(12):4309–4321

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pisani F, Livermore T, Rose G et al (2014) Analysis of Dictyostelium discoideum inositol pyrophosphate metabolism by gel electrophoresis. PLoS One 9(1), e85533

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pohlmann J, Risse C, Seidel C et al (2014) The Vip1 inositol polyphosphate kinase family regulates polarized growth and modulates the microtubule cytoskeleton in fungi. PLoS Genet 10(9):e1004586

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Posternak S (1919) Sur la synthése de l’ether hexaphosphorique de l’inosite avec le principe phosphoorganique de réserve des plantes vertes. C R Acad Sci 169:138–140

    CAS  Google Scholar 

  • Raboy V (2003) myo-Inositol-1,2,3,4,5,6-hexakisphosphate. Phytochemistry 64(6):1033–1043

    Article  CAS  PubMed  Google Scholar 

  • Rao NN, Gomez-Garcia MR, Kornberg A (2009) Inorganic polyphosphate: essential for growth and survival. Annu Rev Biochem 78:605–647

    Article  CAS  PubMed  Google Scholar 

  • Resnick AC, Saiardi A (2008) Inositol polyphosphate multikinase: metabolic architect of nuclear inositides. Front Biosci 13:856–866

    Article  CAS  PubMed  Google Scholar 

  • Safrany ST, Caffrey JJ, Yang X et al (1998) A novel context for the ‘MutT’ module, a guardian of cell integrity, in a diphosphoinositol polyphosphate phosphohydrolase. EMBO J 17(22):6599–6607

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Safrany ST, Ingram SW, Cartwright JL et al (1999) The diadenosine hexaphosphate hydrolases from Schizosaccharomyces pombe and Saccharomyces cerevisiae are homologues of the human diphosphoinositol polyphosphate phosphohydrolase. Overlapping substrate specificities in a MutT-type protein. J Biol Chem 274(31):21735–21740

    Article  CAS  PubMed  Google Scholar 

  • Saiardi A (2012a) Cell signalling by inositol pyrophosphates. Subcell Biochem 59:413–443

    Article  CAS  PubMed  Google Scholar 

  • Saiardi A (2012b) How inositol pyrophosphates control cellular phosphate homeostasis? Adv Biol Regul 52(2):351–359

    Article  CAS  PubMed  Google Scholar 

  • Saiardi A, Cockcroft S (2008) Human ITPK1: a reversible inositol phosphate kinase/phosphatase that links receptor-dependent phospholipase C to Ca2+-activated chloride channels. Sci Signal 1(4):pe5

    Article  PubMed  Google Scholar 

  • Saiardi A, Erdjument-Bromage H, Snowman AM et al (1999) Synthesis of diphosphoinositol pentakisphosphate by a newly identified family of higher inositol polyphosphate kinases. Curr Biol 9(22):1323–1326

    Article  CAS  PubMed  Google Scholar 

  • Saiardi A, Caffrey JJ, Snyder SH et al (2000a) The inositol hexakisphosphate kinase family. Catalytic flexibility and function in yeast vacuole biogenesis. J Biol Chem 275(32):24686–24692

    Article  CAS  PubMed  Google Scholar 

  • Saiardi A, Caffrey JJ, Snyder SH et al (2000b) Inositol polyphosphate multikinase (ArgRIII) determines nuclear mRNA export in Saccharomyces cerevisiae. FEBS Lett 468(1):28–32

    Article  CAS  PubMed  Google Scholar 

  • Saiardi A, Nagata E, Luo HR et al (2001a) Mammalian inositol polyphosphate multikinase synthesizes inositol 1,4,5-trisphosphate and an inositol pyrophosphate. Proc Natl Acad Sci U S A 98(5):2306–2311

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saiardi A, Nagata E, Luo HR et al (2001b) Identification and characterization of a novel inositol hexakisphosphate kinase. J Biol Chem 276(42):39179–39185

    Article  CAS  PubMed  Google Scholar 

  • Saiardi A, Sciambi C, McCaffery JM et al (2002) Inositol pyrophosphates regulate endocytic trafficking. Proc Natl Acad Sci U S A 99(22):14206–14211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saiardi A, Bhandari R, Resnick AC et al (2004) Phosphorylation of proteins by inositol pyrophosphates. Science 306(5704):2101–2105

    Article  CAS  PubMed  Google Scholar 

  • Saiardi A, Resnick AC, Snowman AM et al (2005) Inositol pyrophosphates regulate cell death and telomere length through phosphoinositide 3-kinase-related protein kinases. Proc Natl Acad Sci U S A 102(6):1911–1914

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schell MJ, Letcher AJ, Brearley CA et al (1999) PiUS (Pi uptake stimulator) is an inositol hexakisphosphate kinase. FEBS Lett 461(3):169–172

    Article  CAS  PubMed  Google Scholar 

  • Seidlmayer LK, Blatter LA, Pavlov E et al (2012) Inorganic polyphosphate-an unusual suspect of the mitochondrial permeability transition mystery. Channels (Austin) 6(6):463–467

    Article  CAS  Google Scholar 

  • Sethuraman A, Rao NN, Kornberg A (2001) The endopolyphosphatase gene: essential in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 98(15):8542–8547

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shears SB (2001) Assessing the omnipotence of inositol hexakisphosphate. Cell Signal 13(3):151–158

    Article  CAS  PubMed  Google Scholar 

  • Shears SB (2009a) Diphosphoinositol polyphosphates: metabolic messengers? Mol Pharmacol 76(2):236–252

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shears SB (2009b) Molecular basis for the integration of inositol phosphate signaling pathways via human ITPK1. Adv Enzym Regul 49(1):87–96

    Article  CAS  Google Scholar 

  • Shears SB (2015) Inositol pyrophosphates: why so many phosphates? Adv Biol Regul 57:203–216

    Article  CAS  PubMed  Google Scholar 

  • Shi X, Kornberg A (2005) Endopolyphosphatase in Saccharomyces cerevisiae undergoes post-translational activations to produce short-chain polyphosphates. FEBS Lett 579(9):2014–2018

    Article  CAS  PubMed  Google Scholar 

  • Stephens L, Radenberg T, Thiel U et al (1993) The detection, purification, structural characterization, and metabolism of diphosphoinositol pentakisphosphate(s) and bisdiphosphoinositol tetrakisphosphate(s). J Biol Chem 268(6):4009–4015

    CAS  PubMed  Google Scholar 

  • Streb H, Irvine RF, Berridge MJ et al (1983) Release of Ca2+ from a nonmitochondrial intracellular store in pancreatic acinar cells by inositol-1,4,5-trisphosphate. Nature 306(5938):67–69

    Article  CAS  PubMed  Google Scholar 

  • Szijgyartovc Z, Garedew A, Azevedo C et al (2011) Influence of inositol pyrophosphates on cellular energy dynamics. Science 334(6057):802–805

    Article  CAS  Google Scholar 

  • Tammenkoski M, Koivula K, Cusanelli E et al (2008) Human metastasis regulator protein H-prune is a short-chain exopolyphosphatase. Biochemistry 47(36):9707–9713

    Article  CAS  PubMed  Google Scholar 

  • Thota SG, Bhandari R (2015) The emerging roles of inositol pyrophosphates in eukaryotic cell physiology. J Biosci 40(3):593–605

    Article  CAS  PubMed  Google Scholar 

  • Thota SG, Unnikannan CP, Thampatty SR et al (2015) Inositol pyrophosphates regulate RNA polymerase I-mediated rRNA transcription in Saccharomyces cerevisiae. Biochem J 466(1):105–114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Torres J, Dominguez S, Cerda MF et al (2005) Solution behaviour of myo-inositol hexakisphosphate in the presence of multivalent cations. Prediction of a neutral pentamagnesium species under cytosolic/nuclear conditions. J Inorg Biochem 99(3):828–840

    Article  CAS  PubMed  Google Scholar 

  • Veiga N, Torres J, Dominguez S et al (2006) The behaviour of myo-inositol hexakisphosphate in the presence of magnesium(II) and calcium(II): protein-free soluble InsP6 is limited to 49 microM under cytosolic/nuclear conditions. J Inorg Biochem 100(11):1800–1810

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Voglmaier SM, Bembenek ME, Kaplin AI et al (1996) Purified inositol hexakisphosphate kinase is an ATP synthase: diphosphoinositol pentakisphosphate as a high-energy phosphate donor. Proc Natl Acad Sci U S A 93(9):4305–4310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang H, Nair VS, Holland AA et al (2015) Asp1 from Schizosaccharomyces pombe binds a [2Fe-2S](2+) cluster which inhibits inositol pyrophosphate 1-phosphatase activity. Biochemistry 54(42):6462–6474

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wilson MS, Livermore TM, Saiardi A (2013) Inositol pyrophosphates: between signalling and metabolism. Biochem J 452(3):369–379

    Article  CAS  PubMed  Google Scholar 

  • Worley J, Luo X, Capaldi AP (2013) Inositol pyrophosphates regulate cell growth and the environmental stress response by activating the HDAC Rpd3L. Cell Rep 3(5):1476–1482

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wundenberg T, Mayr GW (2012) Synthesis and biological actions of diphosphoinositol phosphates (inositol pyrophosphates), regulators of cell homeostasis. Biol Chem 393(9):979–998

    Article  CAS  PubMed  Google Scholar 

  • Wurst H, Shiba T, Kornberg A (1995) The gene for a major exopolyphosphatase of Saccharomyces cerevisiae. J Bacteriol 177(4):898–906

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • York JD, Odom AR, Murphy R et al (1999) A phospholipase C-dependent inositol polyphosphate kinase pathway required for efficient messenger RNA export. Science 285(5424):96–100

    Article  CAS  PubMed  Google Scholar 

  • York SJ, Armbruster BN, Greenwell P et al (2005) Inositol diphosphate signaling regulates telomere length. J Biol Chem 280(6):4264–4269

    Article  CAS  PubMed  Google Scholar 

  • Zakharian E, Thyagarajan B, French RJ et al (2009) Inorganic polyphosphate modulates TRPM8 channels. PLoS One 4(4):e5404

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhang H, Ishige K, Kornberg A (2002) A polyphosphate kinase (PPK2) widely conserved in bacteria. Proc Natl Acad Sci U S A 99(26):16678–16683

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang H, Gomez-Garcia MR, Brown MR et al (2005) Inorganic polyphosphate in Dictyostelium discoideum: influence on development, sporulation, and predation. Proc Natl Acad Sci U S A 102(8):2731–2735

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang H, Gomez-Garcia MR, Shi X et al (2007) Polyphosphate kinase 1, a conserved bacterial enzyme, in a eukaryote, Dictyostelium discoideum, with a role in cytokinesis. Proc Natl Acad Sci U S A 104(42):16486–16491

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The author would like to thank Drs. T. Livermore and M. Wilson for promptly reading the manuscript and the members of the laboratory for their constructive inputs.

Funding

This work was supported by the Medical Research Council (MRC) core support to the MRC/UCL Laboratory for Molecular Cell Biology University Unit (MC_UU_1201814).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adolfo Saiardi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Saiardi, A. (2016). Functions of Inositol Polyphosphate and Inorganic Polyphosphate in Yeast and Amoeba. In: Kulakovskaya, T., Pavlov, E., Dedkova, E. (eds) Inorganic Polyphosphates in Eukaryotic Cells. Springer, Cham. https://doi.org/10.1007/978-3-319-41073-9_5

Download citation

Publish with us

Policies and ethics