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                                     Abstract
We start here by studying the porous media equation problem (1.1) when \(\beta: \mathbb{R} \rightarrow \mathbb{R}\) is monotonically increasing and Lipschitz continuous. The main reason is that general maximal monotone graphs β can be approximated by their Yosida approximations β

                ε
               which are Lipschitz continuous and monotonically increasing. So, several estimates proved in this chapter will be exploited later for studying problems with more general β.
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                             Notes
	1.Here \(\mathcal{L}_{2}(H^{-1},L^{2})\) denotes the space of all Hilbert–Schmidt operators from H−1 to L2.


	2.
\(\mathcal{L}_{1}(H^{-1})\) denotes the space of all symmetric, nonnegative definite, trace-class operators in H
−1.


	3.
\(\vert f\vert _{p} \leq \vert f\vert _{2}^{ \frac{2} {p} }\;\vert f\vert _{\infty }^{\frac{p-2} {p} }\).
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Appendix: Two Analytical Inequalities
Appendix: Two Analytical Inequalities
Let us consider the Laplace operator in \(L^{2}(\mathcal{O}),\;\mathcal{O}\in \mathbb{R}^{d},\) with homogeneous boundary conditions and its orthonormal basis of eigenfunctions, that is 

$$\displaystyle{ -\varDelta e_{k} =\alpha _{k}e_{k}\;\mbox{ in}\;\mathcal{O},\quad e_{k} = 0\;\mbox{ on}\;\partial \mathcal{O}. }$$


                    (2.82)
                

 We set f

                  k
                 = α

                  k
                
1∕2
e

                  k
                 so that {f

                  k
                } is an orthonormal basis in \(H^{-1}(\mathcal{O})\). We assume that \(\partial \mathcal{O}\) is sufficiently regular (for instance of class C
2) in order to apply [66].

                Proposition 1

                
                  There exist C
                  1
                  > 0 and C
                  2
                  > 0 such that
                  

$$\displaystyle{ \|xf_{k}\|_{-1} \leq C_{1}\alpha _{k}^{d}\|x\|_{ -1}^{2},\quad \forall \;k \in \mathbb{N}. }$$


                    (2.83)
                


                  and
                  

$$\displaystyle{ \vert xe_{k}\vert _{2}^{2} \leq C_{ 2}\alpha _{k}^{d-1}\vert x\vert _{ 2}^{2},\quad \forall \;k \in \mathbb{N}, }$$


                    (2.84)
                


                
              
                Proof

                The proof of (2.84) is very simple. In fact for each x ∈ L
2 we have 

$$\displaystyle{\vert xe_{k}\vert _{2} \leq \vert x\vert _{2}\,\vert e_{k}\vert _{\infty }\leq c\alpha _{k}^{\frac{d-1} {2} }\vert x\vert _{2},\quad \forall \;k \in \mathbb{N},}$$


 because by [66] we have \(\vert e_{k}\vert _{\infty }\leq c\alpha _{k}^{\frac{d-1} {2} }\) for all \(k \in \mathbb{N}\).

                Let us now consider (2.83). Since H
−1 is the dual of H
0
1 we have 

$$\displaystyle{ \vert xe_{k}\vert _{-1}^{2} =\sup \left \{\vert \langle xe_{ k},\varphi \rangle \vert _{2}^{2}:\;\varphi \in H_{ 0}^{1},\;\vert \varphi \vert _{ H_{0}^{1}} \leq 1\right \}. }$$


                    (2.85)
                

 But 

$$\displaystyle{\vert \langle xe_{k},\varphi \rangle \vert _{2}^{2} = \vert \langle x,e_{ k}\varphi \rangle \vert _{2}^{2} \leq \vert x\vert _{ -1}^{2}\vert e_{ k}\varphi \vert _{H_{0}^{1}}^{2}}$$


 On the other hand, for all \(k \in \mathbb{N}\) 

$$\displaystyle{\begin{array}{lllll} \vert e_{k}\varphi \vert _{H_{0}^{1}}^{2} & =&\vert \nabla (e_{ k}\varphi )\vert _{2}^{2} & =& -\int _{ \mathcal{O}}e_{k}\,\varphi \,\varDelta (e_{k}\,\varphi )\,d\xi \\ \\ & & & =& -\int _{\mathcal{O}}(e_{k}\,\varphi ^{2}\,\varDelta e_{ k} + e_{k}^{2}\varphi \,\varDelta \varphi + \tfrac{1} {2}\nabla (e_{k}^{2}) \cdot \nabla (\varphi ^{2}))d\xi \\ \\ & & & =& -\int _{\mathcal{O}}(e_{k}\,\varphi ^{2}\,\varDelta e_{k} + e_{k}^{2}\varphi \,\varDelta \varphi -\tfrac{1} {2}\,e_{k}^{2}\,\varDelta (\varphi ^{2}))d\xi \end{array} }$$


 Since 

$$\displaystyle{\varDelta (\varphi ^{2}) = 2\varphi \;\varDelta \varphi + 2\vert \nabla \varphi \vert ^{2},}$$


 we have 

$$\displaystyle{ \vert e_{k}\varphi \vert _{H_{0}^{1}}^{2} =\int _{ \mathcal{O}}(\alpha _{k}\varphi ^{2} + \vert \nabla \varphi \vert ^{2}))e_{ k}^{2}d\xi,\quad \forall \;k \in \mathbb{N}. }$$


                    (2.86)
                

 Therefore, 

$$\displaystyle{ \vert e_{k}\varphi \vert _{H_{0}^{1}}^{2} \leq \alpha _{ k}\vert \varphi e_{k}\vert _{2}^{2} + \vert \varphi \vert _{ H_{0}^{1}}^{2}\vert e_{ k}\vert _{\infty }^{2},\quad \forall \;k \in \mathbb{N}. }$$


                    (2.87)
                

 Now by the Sobolev embedding theorem we have \(H_{0}^{1} \subset L^{ \frac{2d} {d-2} }\) for d > 3, H
0
1 ⊂ ∩
p ≥ 2
L
p for d = 1, 2 with continuous embedding. Then, using Hölder in the first term of (2.87) we see that there is a constant c > 0 such that 

$$\displaystyle{ \vert e_{k}\varphi \vert _{H_{0}^{1}}^{2} \leq (c\alpha _{ k}\vert e_{k}\vert _{d}^{2} + \vert e_{ k}\vert _{\infty }^{2})\vert \varphi \vert _{ H_{0}^{1}(\mathcal{O})}^{2}. }$$


                    (2.88)
                

 Now as mentioned earlier we know that 

$$\displaystyle{\vert e_{k}\vert _{\infty }^{2} \leq c_{ 1}\alpha _{k}^{d-1},\quad \forall \;k \in \mathbb{N},}$$


 so that, by interpolationFootnote 3 

$$\displaystyle{\vert e_{k}\vert _{d}^{2} \leq c_{ 2}\alpha _{k}^{\frac{(d-1)(d-2)} {d} },\quad \forall \;k \in \mathbb{N},}$$


 Finally, we find 

$$\displaystyle{ \vert e_{k}\varphi \vert _{H_{0}^{1}}^{2} \leq c(\alpha _{ k}^{1+\frac{(d-1)(d-2)} {d} } +\alpha _{ k}^{d-1})\vert \varphi \vert _{H_{ 0}^{1}}^{2} \leq c_{ 1}\alpha _{k}^{d-1}\vert \varphi \vert _{ H_{0}^{1}}^{2},\quad \forall \;k \in \mathbb{N}, }$$


                    (2.89)
                

 and therefore by (2.85) (2.83) follows.
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