Skip to main content

Equations with Lipschitz Nonlinearities

  • Chapter
  • First Online:
Stochastic Porous Media Equations

Part of the book series: Lecture Notes in Mathematics ((LNM,volume 2163))

  • 1375 Accesses

Abstract

We start here by studying the porous media equation problem (1.1) when \(\beta: \mathbb{R} \rightarrow \mathbb{R}\) is monotonically increasing and Lipschitz continuous. The main reason is that general maximal monotone graphs β can be approximated by their Yosida approximations β ε which are Lipschitz continuous and monotonically increasing. So, several estimates proved in this chapter will be exploited later for studying problems with more general β.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Here \(\mathcal{L}_{2}(H^{-1},L^{2})\) denotes the space of all Hilbert–Schmidt operators from H−1 to L2.

  2. 2.

    \(\mathcal{L}_{1}(H^{-1})\) denotes the space of all symmetric, nonnegative definite, trace-class operators in H −1.

  3. 3.

    \(\vert f\vert _{p} \leq \vert f\vert _{2}^{ \frac{2} {p} }\;\vert f\vert _{\infty }^{\frac{p-2} {p} }\).

References

  1. V. Barbu, G. Da Prato, The two phase stochastic Stefan problem. Probab. Theory Relat. Fields 124, 544–560 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  2. V. Barbu, G. Da Prato, M. Röckner, Existence and uniqueness of nonnegative solutions to the stochastic porous media equation. Indiana Univ. Math. J. 57 (1), 187–212 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  3. G. Da Prato, J. Zabczyk, Stochastic Equations in Infinite Dimensions. Encyclopedia of Mathematics and Its Applications, 2nd edn. (Cambridge University Press, Cambridge, 2014)

    Google Scholar 

  4. M. Fukushima, Y. Oshima, M. Takeda, Dirichlet Forms and Symmetric Markov Processes. de Gruyter Studies in Mathematics, vol. 19, Second revised and extended edn. (Walter de Gruyter & Co., Berlin, 2011)

    Google Scholar 

  5. D. Grieser, Uniform bounds for eigenfunctions of the Laplacian on manifolds with boundary. Commun. Partial Differ. Equ 27 (7–8), 1283–1299 (2002)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Appendix: Two Analytical Inequalities

Appendix: Two Analytical Inequalities

Let us consider the Laplace operator in \(L^{2}(\mathcal{O}),\;\mathcal{O}\in \mathbb{R}^{d},\) with homogeneous boundary conditions and its orthonormal basis of eigenfunctions, that is

$$\displaystyle{ -\varDelta e_{k} =\alpha _{k}e_{k}\;\mbox{ in}\;\mathcal{O},\quad e_{k} = 0\;\mbox{ on}\;\partial \mathcal{O}. }$$
(2.82)

We set f k  = α k 1∕2 e k so that {f k } is an orthonormal basis in \(H^{-1}(\mathcal{O})\). We assume that \(\partial \mathcal{O}\) is sufficiently regular (for instance of class C 2) in order to apply [66].

Proposition 1

There exist C 1 > 0 and C 2 > 0 such that

$$\displaystyle{ \|xf_{k}\|_{-1} \leq C_{1}\alpha _{k}^{d}\|x\|_{ -1}^{2},\quad \forall \;k \in \mathbb{N}. }$$
(2.83)

and

$$\displaystyle{ \vert xe_{k}\vert _{2}^{2} \leq C_{ 2}\alpha _{k}^{d-1}\vert x\vert _{ 2}^{2},\quad \forall \;k \in \mathbb{N}, }$$
(2.84)

Proof

The proof of (2.84) is very simple. In fact for each x ∈ L 2 we have

$$\displaystyle{\vert xe_{k}\vert _{2} \leq \vert x\vert _{2}\,\vert e_{k}\vert _{\infty }\leq c\alpha _{k}^{\frac{d-1} {2} }\vert x\vert _{2},\quad \forall \;k \in \mathbb{N},}$$

because by [66] we have \(\vert e_{k}\vert _{\infty }\leq c\alpha _{k}^{\frac{d-1} {2} }\) for all \(k \in \mathbb{N}\).

Let us now consider (2.83). Since H −1 is the dual of H 0 1 we have

$$\displaystyle{ \vert xe_{k}\vert _{-1}^{2} =\sup \left \{\vert \langle xe_{ k},\varphi \rangle \vert _{2}^{2}:\;\varphi \in H_{ 0}^{1},\;\vert \varphi \vert _{ H_{0}^{1}} \leq 1\right \}. }$$
(2.85)

But

$$\displaystyle{\vert \langle xe_{k},\varphi \rangle \vert _{2}^{2} = \vert \langle x,e_{ k}\varphi \rangle \vert _{2}^{2} \leq \vert x\vert _{ -1}^{2}\vert e_{ k}\varphi \vert _{H_{0}^{1}}^{2}}$$

On the other hand, for all \(k \in \mathbb{N}\)

$$\displaystyle{\begin{array}{lllll} \vert e_{k}\varphi \vert _{H_{0}^{1}}^{2} & =&\vert \nabla (e_{ k}\varphi )\vert _{2}^{2} & =& -\int _{ \mathcal{O}}e_{k}\,\varphi \,\varDelta (e_{k}\,\varphi )\,d\xi \\ \\ & & & =& -\int _{\mathcal{O}}(e_{k}\,\varphi ^{2}\,\varDelta e_{ k} + e_{k}^{2}\varphi \,\varDelta \varphi + \tfrac{1} {2}\nabla (e_{k}^{2}) \cdot \nabla (\varphi ^{2}))d\xi \\ \\ & & & =& -\int _{\mathcal{O}}(e_{k}\,\varphi ^{2}\,\varDelta e_{k} + e_{k}^{2}\varphi \,\varDelta \varphi -\tfrac{1} {2}\,e_{k}^{2}\,\varDelta (\varphi ^{2}))d\xi \end{array} }$$

Since

$$\displaystyle{\varDelta (\varphi ^{2}) = 2\varphi \;\varDelta \varphi + 2\vert \nabla \varphi \vert ^{2},}$$

we have

$$\displaystyle{ \vert e_{k}\varphi \vert _{H_{0}^{1}}^{2} =\int _{ \mathcal{O}}(\alpha _{k}\varphi ^{2} + \vert \nabla \varphi \vert ^{2}))e_{ k}^{2}d\xi,\quad \forall \;k \in \mathbb{N}. }$$
(2.86)

Therefore,

$$\displaystyle{ \vert e_{k}\varphi \vert _{H_{0}^{1}}^{2} \leq \alpha _{ k}\vert \varphi e_{k}\vert _{2}^{2} + \vert \varphi \vert _{ H_{0}^{1}}^{2}\vert e_{ k}\vert _{\infty }^{2},\quad \forall \;k \in \mathbb{N}. }$$
(2.87)

Now by the Sobolev embedding theorem we have \(H_{0}^{1} \subset L^{ \frac{2d} {d-2} }\) for d > 3, H 0 1 ⊂ ∩ p ≥ 2 L p for d = 1, 2 with continuous embedding. Then, using Hölder in the first term of (2.87) we see that there is a constant c > 0 such that

$$\displaystyle{ \vert e_{k}\varphi \vert _{H_{0}^{1}}^{2} \leq (c\alpha _{ k}\vert e_{k}\vert _{d}^{2} + \vert e_{ k}\vert _{\infty }^{2})\vert \varphi \vert _{ H_{0}^{1}(\mathcal{O})}^{2}. }$$
(2.88)

Now as mentioned earlier we know that

$$\displaystyle{\vert e_{k}\vert _{\infty }^{2} \leq c_{ 1}\alpha _{k}^{d-1},\quad \forall \;k \in \mathbb{N},}$$

so that, by interpolationFootnote 3

$$\displaystyle{\vert e_{k}\vert _{d}^{2} \leq c_{ 2}\alpha _{k}^{\frac{(d-1)(d-2)} {d} },\quad \forall \;k \in \mathbb{N},}$$

Finally, we find

$$\displaystyle{ \vert e_{k}\varphi \vert _{H_{0}^{1}}^{2} \leq c(\alpha _{ k}^{1+\frac{(d-1)(d-2)} {d} } +\alpha _{ k}^{d-1})\vert \varphi \vert _{H_{ 0}^{1}}^{2} \leq c_{ 1}\alpha _{k}^{d-1}\vert \varphi \vert _{ H_{0}^{1}}^{2},\quad \forall \;k \in \mathbb{N}, }$$
(2.89)

and therefore by (2.85) (2.83) follows.

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Barbu, V., Da Prato, G., Röckner, M. (2016). Equations with Lipschitz Nonlinearities. In: Stochastic Porous Media Equations. Lecture Notes in Mathematics, vol 2163. Springer, Cham. https://doi.org/10.1007/978-3-319-41069-2_2

Download citation

Publish with us

Policies and ethics