Skip to main content

Application of a New Wearable Augmented Reality Video See-Through Display to Aid Percutaneous Procedures in Spine Surgery

  • Conference paper
  • First Online:
Augmented Reality, Virtual Reality, and Computer Graphics (AVR 2016)

Abstract

In mini-invasive surgery, the surgeon operates without a direct visualization of the patient’s anatomy. In image-guided surgery, solutions based on augmented reality (AR) represent the most promising ones. The aim of this study was to evaluate the efficacy of a new wearable AR system as aid in the performance of percutaneous procedures in spine surgery. Our solution is based on a video see-through head mounted display (HMD) and it allows the augmentation of video frames acquired by two external cameras with the rendering of patient-specific 3D models obtained elaborating radiological images. We tested the system on an in vitro setup intended to simulate the reaching of a lumbar pedicle. An experienced surgeon performed the percutaneous task wearing the HMD. System accuracy was evaluated through post-operative CT scan, measuring the maximum distance between the planned and obtained trajectories inside the pedicle canal. The mean insertion error was of 1.18 ±0.16 mm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Soper, N.J., Stockmann, P.T., Dunnegan, D.L., Ashley, S.W.: Laparoscopic cholecystectomy: the new ‘gold standard’? Arch. Surg. 127, 917–921 (1992). Discussion, 921–913

    Article  Google Scholar 

  2. Legorreta, A.P., Silber, J.H., Costantino, G.N., Kobylinski, R.W., Zatz, S.L.: Increased cholecystectomy rate after the introduction of laparoscopic cholecystectomy. JAMA 270, 1429–1432 (1993)

    Article  Google Scholar 

  3. Oppenheimer, J.H., DeCastro, I., McDonnell, D.E.: Minimally invasive spine technology and minimally invasive spine surgery: a historical review. Neurosurg. Focus 27, E9 (2009)

    Article  Google Scholar 

  4. Deramond, H., Sebert, J.L., Rosat, P., Fardellone, P., Romero, C.A., Berlemont, F.: Destructive spondyloarthropathy in chronic haemodialysis patients: current data and radiological aspects. J. Neuroradiol. 14, 27–38 (1987)

    Google Scholar 

  5. Peh, W.C., Gilula, L.A.: Percutaneous vertebroplasty: indications, contraindications, and technique. Br. J. Radiol. 76, 69–75 (2003)

    Article  Google Scholar 

  6. Garfin, S.R., Yuan, H.A., Reiley, M.A.: New technologies in spine: kyphoplasty and vertebroplasty for the treatment of painful osteoporotic compression fractures. Spine 26, 1511–1515 (2001)

    Article  Google Scholar 

  7. Peh, W.C.G., Gilula, L.A.: Percutaneous vertebroplasty: indications, contraindications, and technique. Br. J. Radiol. 76, 69–75 (2003)

    Article  Google Scholar 

  8. Ortiz, A.O., Natarajan, V., Gregorius, D.R., Pollack, S.: Significantly reduced radiation exposure to operators during kyphoplasty and vertebroplasty procedures: methods and techniques. AJNR Am. J. Neuroradiol. 27, 989–994 (2006)

    Google Scholar 

  9. Choi, H.C.: Fluoroscopic radiation exposure during percutaneous kyphoplasty. J. Korean Neurosurg. Soc. 49, 37–42 (2011)

    Article  Google Scholar 

  10. Braak, S.J., Zuurmond, K., Aerts, H.C., van Leersum, M., Overtoom, T.T., van Heesewijk, J.P., van Strijen, M.J.: Feasibility study of needle placement in percutaneous vertebroplasty: cone-beam computed tomography guidance versus conventional fluoroscopy. Cardiovasc. Intervent. Radiol. 36, 1120–1126 (2013)

    Article  Google Scholar 

  11. Hoheisel, M., Skalej, M., Beuing, O., Bill, U., Klingenbeck-Regn, K., Petzold, R., Nagel, M.H.: Kyphoplasty interventions using a navigation system and C-arm CT data: first clinical results, pp. 72580E–72588. (2009)

    Google Scholar 

  12. Bichlmeier, C., Ockert, B., Heining, S.M., Ahmadi, A., Navab, N.: Stepping into the operating theater: ARAV - augmented reality aided vertebroplasty. In: 7th IEEE International Symposium on Mixed and Augmented Reality 2008, Proceedings, pp. 165–166 (2008)

    Google Scholar 

  13. Abe, Y., Sato, S., Kato, K., Hyakumachi, T., Yanagibashi, Y., Ito, M., Abumi, K.: A novel 3D guidance system using augmented reality for percutaneous vertebroplasty. J. Neurosurg. Spine 19, 492–501 (2013)

    Article  Google Scholar 

  14. Fritz, J., Paweena, U., Ungi, T., Flammang, A.J., Kathuria, S., Fichtinger, G., Iordachita, I.I., Carrino, J.A.: MR-guided vertebroplasty with augmented reality image overlay navigation. Cardiovasc. Intervent. Radiol. 37, 1589–1596 (2014)

    Article  Google Scholar 

  15. Sembrano, J.N., Yson, S.C., Polly Jr., D.W., Ledonio, C.G., Nuckley, D.J., Santos, E.R.: Comparison of nonnavigated and 3-dimensional image-based computer navigated balloon kyphoplasty. Orthopedics 38, 17–23 (2015)

    Article  Google Scholar 

  16. Kersten-Oertel, M., Jannin, P., Collins, D.L.: The state of the art of visualization in mixed reality image guided surgery. Comput. Med. Imag. Graph. 37, 98–112 (2013)

    Article  Google Scholar 

  17. Cutolo, F., Badiali, G., Ferrari, V.: Human-PnP: ergonomic AR interaction paradigm for manual placement of rigid bodies. In: Linte, C., Yaniv, Z., Fallavollita, P. (eds.) Augmented Environments for Computer-Assisted Interventions, vol. 9365, pp. 50–60. Springer, Heidelberg (2015)

    Chapter  Google Scholar 

  18. Sielhorst, T., Feuerstein, M., Navab, N.: Advanced medical displays: a literature review of augmented reality. J. Disp. Technol. 4, 451–467 (2008)

    Article  Google Scholar 

  19. Cutolo, F., Parchi, P.D., Ferrari, V.: Video see through AR head-mounted display for medical procedures. In: International Symposium on Mixed and Augmented Reality, pp. 393–396 (2014)

    Google Scholar 

  20. Ferrari, V., Cutolo, F., Calabro, E.M., Ferrari, M.: HMD video see though AR with unfixed cameras vergence. In: International Symposium on Mixed and Augmented Reality, pp. 265–266 (2014)

    Google Scholar 

  21. Ferrari, V., Megali, G., Troia, E., Pietrabissa, A., Mosca, F.: A 3-D mixed-reality system for stereoscopic visualization of medical dataset. IEEE Trans. Bio-Med. Eng. 56, 2627–2633 (2009)

    Article  Google Scholar 

  22. Megali, G., Ferrari, V., Freschi, C., Morabito, B., Turini, G., Troia, E., Cappelli, C., Pietrabissa, A., Tonet, O., Cuschieri, A., Dario, P., Mosca, F.: EndoCAS navigator platform: a common platform for computer and robotic assistance in minimally invasive surgery. Int. J. Med. Robot. Comp. 4, 242–251 (2008)

    Article  Google Scholar 

  23. Zhang, Z.Y.: A flexible new technique for camera calibration. IEEE Trans. Pattern Anal. 22, 1330–1334 (2000)

    Article  Google Scholar 

  24. Navab, N., Heining, S.M., Traub, J.: Camera Augmented Mobile C-Arm (CAMC): calibration, accuracy study, and clinical applications. IEEE Trans. Med. Imaging 29, 1412–1423 (2010)

    Article  Google Scholar 

  25. Ferrari, V., Carbone, M., Cappelli, C., Boni, L., Melfi, F., Ferrari, M., Mosca, F., Pietrabissa, A.: Value of multidetector computed tomography image segmentation for preoperative planning in general surgery. Surg. Endosc. 26, 616–626 (2012)

    Article  Google Scholar 

  26. Condino, S., Carbone, M., Ferrari, V., Faggioni, L., Peri, A., Ferrari, M., Mosca, F.: How to build patient-specific synthetic abdominal anatomies. An innovative approach from physical toward hybrid surgical simulators. Int. J. Med. Robot. 7, 202–213 (2011)

    Article  Google Scholar 

  27. Kersten-Oertel, M., Jannin, P., Collins, D.L.: DVV: a taxonomy for mixed reality visualization in image guided surgery. IEEE Trans. Vis. Comput. Graph. 18, 332–352 (2012)

    Article  Google Scholar 

  28. Badiali, G., Ferrari, V., Cutolo, F., Freschi, C., Caramella, D., Bianchi, A., Marchetti, C.: Augmented reality as an aid in maxillofacial surgery: Validation of a wearable system allowing maxillary repositioning. J. Cranio Maxill Surg. 42, 1970–1976 (2014)

    Article  Google Scholar 

  29. Parrini, S., Cutolo, F., Freschi, C., Ferrari, M., Ferrari, V.: Augmented reality system for freehand guide of magnetic endovascular devices. Conf. Proc. IEEE Eng. Med. Biol. Soc. 2014, 490–493 (2014)

    Google Scholar 

  30. Ferrari, V., Viglialoro, R.M., Nicoli, P., Cutolo, F., Condino, S., Carbone, M., Siesto, M., Ferrari, M.: Augmented reality visualization of deformable tubular structures for surgical simulation. Int. J. Med. Robot. Comput. Assist. Surg. (IMRCAS) (2015)

    Google Scholar 

  31. Bichlmeier, C., Wimme, F., Heining, S.M., Navab, N.: Contextual anatomic mimesis hybrid in-situ visualization method for improving multi-sensory depth perception in medical augmented reality. In: 6th IEEE and ACM International Symposium on Mixed and Augmented Reality, ISMAR 2007, pp. 129–138 (2007)

    Google Scholar 

Download references

Acknowledgments

This work was funded by the Italian Ministry of Health grant SThARS (Surgical training in identification and isolation of deformable tubular structures with hybrid Augmented Reality Simulation, 6/11/2014-5/11/2017). Grant “Ricerca finalizzata e Giovani Ricercatori 2011-2012” Young Researchers – Italian Ministry of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabrizio Cutolo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Cutolo, F., Carbone, M., Parchi, P.D., Ferrari, V., Lisanti, M., Ferrari, M. (2016). Application of a New Wearable Augmented Reality Video See-Through Display to Aid Percutaneous Procedures in Spine Surgery. In: De Paolis, L., Mongelli, A. (eds) Augmented Reality, Virtual Reality, and Computer Graphics. AVR 2016. Lecture Notes in Computer Science(), vol 9769. Springer, Cham. https://doi.org/10.1007/978-3-319-40651-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-40651-0_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-40650-3

  • Online ISBN: 978-3-319-40651-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics