Skip to main content

Maternal Long-chain Polyunsaturated Fatty Acids and Pregnancy Outcome

  • Chapter
  • First Online:
Omega-3 Fatty Acids
  • 2582 Accesses

Abstract

The mother provides various vital nutrients to the growing fetus during pregnancy. Maternal nutrient levels and fatty acids are critical for normal fetal growth and development. All fatty acids provide energy, but structural and metabolic functions primarily require the long-chain polyunsaturated fatty acids (LCPUFA). The biologically most active LCPUFA are docosahexaenoic acid (22:6, omega-3), eicosapentaenoic acid (20:5, omega-3), and arachidonic acid (AA, 20:4 omega-6) which are synthesized from their essential fatty acid precursors, alpha-linolenic acid (18:3, omega-3), and linoleic acid (18:2, omega-6). LCPUFA and their eicosanoid metabolites such prostaglandins and prostacyclins play a vital role in determining the length of gestation, initiation of labor, and placental growth and development. Storage of LCPUFA in maternal fat depots during early pregnancy serves as a sole source of LCPUFA for the growing fetus as the fetus has a limited capacity to synthesize LCPUFA due to lack of desaturases. Therefore, the amount of LCPUFA transported from the mother to fetus depends on maternal LCPUFA intake, metabolism, and placental uptake/transport of fatty acids. Accretion of maternal LCPUFA during pregnancy may reduce the risk of pregnancy complications such as preterm birth, intrauterine growth restriction, gestational diabetes mellitus, and preeclampsia. Maternal DHA and AA status positively influence fetal growth and brain development and also reduce the risk of developing non-communicable diseases in the offspring in adult life. This chapter describes the role of maternal LCPUFA in reducing the risk of adverse pregnancy outcomes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AA:

Arachidonic acid

ALA:

Alpha-linolenic acid

DHA:

Docosahexaenoic acid

GDM:

Gestational diabetes mellitus

IUGR:

Intrauterine growth restriction

LA:

Linoleic acid

LCPUFA:

Long-chain polyunsaturated fatty acids

PUFA:

Polyunsaturated fatty acids

References

  1. Morse NL. Benefits of docosahexaenoic acid, folic acid, vitamin D and iodine on foetal and infant brain development and function following maternal supplementation during pregnancy and lactation. Nutrients. 2012;4(7):799–840.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Allen LH. Multiple micronutrients in pregnancy and lactation: an overview. Am J Clin Nutr. 2005;81(5):1206s–12s.

    CAS  PubMed  Google Scholar 

  3. Moore VM, Davies MJ. Diet during pregnancy, neonatal outcomes and later health. ReprodFertil Dev. 2005;17(3):341–8.

    Google Scholar 

  4. Odent M. Nutrition in pregnancy: keeping in mind the priorities. Pract Midwife. 2014;17(9):10–2.

    PubMed  Google Scholar 

  5. Mistry HD, Williams PJ. The importance of antioxidant micronutrients in pregnancy. Oxid Med Cell Longev. 2011;2011:841749.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Cetin I, Alvino G, Cardellicchio M. Long chain fatty acids and dietary fats in fetal nutrition. J Physiol. 2009;587(Pt 14):3441–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Kwong WY, Wild AE, Roberts P, Willis AC, Fleming TP. Maternal undernutrition during the preimplantation period of rat development causes blastocyst abnormalities and programming of postnatal hypertension. Development. 2000;127(19):4195–202.

    CAS  PubMed  Google Scholar 

  8. Kontic-Vucinic O, Sulovic N, Radunovic N. Micronutrients in women’s reproductive health: II. Minerals and trace elements. Int J Fertil Womens Med. 2006;51(3):116–24.

    CAS  PubMed  Google Scholar 

  9. Keen CL, Clegg MS, Hanna LA, Lanoue L, Rogers JM, Daston GP, et al. The plausibility of micronutrient deficiencies being a significant contributing factor to the occurrence of pregnancy complications. J Nutr. 2003;133(5 Suppl 2):1597s–605s.

    CAS  PubMed  Google Scholar 

  10. Wu G, Imhoff-Kunsch B, Girard AW. Biological mechanisms for nutritional regulation of maternal health and fetal development. Paediatr Perinat Epidemiol. 2012;26(Suppl 1):4–26.

    Article  PubMed  Google Scholar 

  11. Rush D. Nutrition and maternal mortality in the developing world. Am J Clin Nutr. 2000;72(1 Suppl):212s–40s.

    CAS  PubMed  Google Scholar 

  12. Muthayya S. Maternal nutrition & low birth weight—what is really important? Indian J Med Res. 2009;130(5):600–8.

    PubMed  Google Scholar 

  13. Chen JH, Martin-Gronert MS, Tarry-Adkins J, Ozanne SE. Maternal protein restriction affects postnatal growth and the expression of key proteins involved in lifespan regulation in mice. PLoS ONE. 2009;4(3):e4950.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Watkins AJ, Lucas ES, Wilkins A, Cagampang FR, Fleming TP. Maternal periconceptional and gestational low protein diet affects mouse offspring growth, cardiovascular and adipose phenotype at 1 year of age. PLoS One. 2011;6(12):e28745.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Rao KR, Padmavathi IJ, Raghunath M. Maternal micronutrient restriction programs the body adiposity, adipocyte function and lipid metabolism in offspring: a review. Rev Endocr Metab Disord. 2012;13(2):103–8.

    Article  CAS  PubMed  Google Scholar 

  16. Herrera E. Implications of dietary fatty acids during pregnancy on placental, fetal and postnatal development—a review. Placenta. 2002;23 Suppl A:S9–19.

    Google Scholar 

  17. Dutta-Roy AK. Transport mechanisms for long-chain polyunsaturated fatty acids in the human placenta. Am J Clin Nutr. 2000;71(1 Suppl):315s–22s.

    CAS  PubMed  Google Scholar 

  18. Muskiet FAJ. Frontiers in neuroscience pathophysiology and evolutionary aspects of dietary fats and long-chain polyunsaturated fatty acids across the life cycle. In: Montmayeur JP, le Coutre J, editors. Fat detection: taste, texture, and post ingestive effects. Boca Raton (FL): CRC Press, Taylor& Francis Group, LLC; 2010.

    Google Scholar 

  19. Zhou H, Liu R. ER stress and hepatic lipid metabolism. Front Genet. 2014;5:112.

    PubMed  PubMed Central  Google Scholar 

  20. Rodriguez A, Sarda P, Nessmann C, Boulot P, Leger CL, Descomps B. Delta6- and delta5-desaturase activities in the human fetal liver: kinetic aspects. J Lipid Res. 1998;39(9):1825–32.

    CAS  PubMed  Google Scholar 

  21. Vrablik TL, Watts JL. Emerging roles for specific fatty acids in developmental processes. Genes Dev. 2012;26(7):631–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Nakamura MT, Nara TY. Structure, function, and dietary regulation of delta6, delta5, and delta9 desaturases. Annu Rev Nutr. 2004;24:345–76.

    Article  CAS  PubMed  Google Scholar 

  23. Slagsvold JE, Thorstensen K, Kvitland M, Erixon D, Knagenhjelm N, Mack M, et al. Fatty acid desaturase expression in human leucocytes correlates with plasma phospholipid fatty acid status. Scand J Clin Lab Invest. 2009;69(4):496–504.

    Article  PubMed  CAS  Google Scholar 

  24. Chilton FH, Murphy RC, Wilson BA, Sergeant S, Ainsworth H, Seeds MC, et al. Diet-gene interactions and PUFA metabolism: a potential contributor to health disparities and human diseases. Nutrients. 2014;6(5):1993–2022.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Butte NF. Carbohydrate and lipid metabolism in pregnancy: normal compared with gestational diabetes mellitus. Am J Clin Nutr. 2000;71(5 Suppl):1256s-61s.

    Google Scholar 

  26. Herrera E, Amusquivar E, Lopez-Soldado I, Ortega H. Maternal lipid metabolism and placental lipid transfer. Horm Res. 2006;65 (Suppl) 3:59–64.

    Google Scholar 

  27. Herrera E, Ortega-Senovilla H. Maternal lipid metabolism during normal pregnancy and its implications to fetal development. Clinical Lipidology. 2000;5(6):899–911.

    Article  Google Scholar 

  28. Haggarty P. Fatty acid supply to the human fetus. Annu Rev Nutr. 2010;30:237–55.

    Article  CAS  PubMed  Google Scholar 

  29. Lauritzen L, Carlson SE. Maternal fatty acid status during pregnancy and lactation and relation to newborn and infant status. Matern Child Nutr. 2011;7 (Suppl) 2:41–58.

    Google Scholar 

  30. Holman RT, Johnson SB, Ogburn PL. Deficiency of essential fatty acids and membrane fluidity during pregnancy and lactation. Proc Natl AcadSci USA. 1991;88(11):4835–9.

    Article  CAS  Google Scholar 

  31. Montgomery C, Speake BK, Cameron A, Sattar N, Weaver LT. Maternal docosahexaenoic acid supplementation and fetal accretion. Br J Nutr. 2003;90(1):135–45.

    Article  CAS  PubMed  Google Scholar 

  32. Larque E, Gil-Sanchez A, Prieto-Sanchez MT, Koletzko B. Omega 3 fatty acids, gestation and pregnancy outcomes. Br J Nutr. 2012;107 Suppl 2:S77–84.

    Google Scholar 

  33. Matorras R, Lopez De Larrucea A, Sanjurjo P, Ignacio Ruiz J, Echevarria Y, Nieto A, et al. Increased tissue concentrations of arachidonic acid in umbilical artery and placenta in fetal growth retardation. Acta Obstet Gynecol Scand. 2001;80(9):807–12.

    Article  CAS  PubMed  Google Scholar 

  34. Al MD, van Houwelingen AC, Kester AD, Hasaart TH, de Jong AE, Hornstra G. Maternal essential fatty acid patterns during normal pregnancy and their relationship to the neonatal essential fatty acid status. Br J Nutr. 1995;74(1):55–68.

    Article  CAS  PubMed  Google Scholar 

  35. Haggarty P. Placental regulation of fatty acid delivery and its effect on fetal growth–a review. Placenta. 2002;23 Suppl A:S28–38.

    Google Scholar 

  36. Haggarty P. Effect of placental function on fatty acid requirements during pregnancy. Eur J Clin Nutr. 2004;58(12):1559–70.

    Article  CAS  PubMed  Google Scholar 

  37. Amusquivar E, Herrera E. Influence of changes in dietary fatty acids during pregnancy on placental and fetal fatty acid profile in the rat. Biol Neonate. 2003;83(2):136–45.

    Article  CAS  PubMed  Google Scholar 

  38. Elias SL, Innis SM. Infant plasma trans, n-6, and n-3 fatty acids and conjugated linoleic acids are related to maternal plasma fatty acids, length of gestation, and birth weight and length. Am J Clin Nutr. 2001;73(4):807–14.

    CAS  PubMed  Google Scholar 

  39. Kilari AS, Mehendale SS, Dangat KD, Yadav HR, Kulakarni AV, Dhobale MV, et al. Long chain polyunsaturated fatty acids in mothers and term babies. J Perinat Med. 2009;37(5):513–8.

    Article  CAS  PubMed  Google Scholar 

  40. Imhoff-Kunsch B, Briggs V, Goldenberg T, Ramakrishnan U. Effect of n-3 long-chain polyunsaturated fatty acid intake during pregnancy on maternal, infant, and child health outcomes: a systematic review. Paediatr Perinat Epidemiol. 2012;26 Suppl 1:91–107.

    Google Scholar 

  41. Jones ML, Mark PJ, Waddell BJ. Maternal dietary omega-3 fatty acids and placental function. Reproduction. 2014;147(5):R143–52.

    Article  CAS  PubMed  Google Scholar 

  42. Olsen SF, Hansen HS, Sorensen TI, Jensen B, Secher NJ, Sommer S, et al. Intake of marine fat, rich in (n-3)-polyunsaturated fatty acids, may increase birthweight by prolonging gestation. Lancet. 1986;2(8503):367–9.

    Article  CAS  PubMed  Google Scholar 

  43. Kota SK, Gayatri K, Jammula S, Kota SK, Krishna SV, Meher LK, et al. Endocrinology of parturition. Indian J Endocrinol Metab. 2013;17(1):50–9.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Olsen SF, Joensen HD. High liveborn birth weights in the Faroes: a comparison between birth weights in the Faroes and in Denmark. J Epidemiol Community Health. 1985;39(1):27–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Allen KG, Harris MA. The role of n-3 fatty acids in gestation and parturition. Exp Biol Med (Maywood). 2001;226(6):498–506.

    CAS  Google Scholar 

  46. Greenberg JA, Bell SJ, Ausdal WV. Omega-3 fatty acid supplementation during pregnancy. Rev Obstet Gynecol. 2008;1(4):162–9.

    PubMed  PubMed Central  Google Scholar 

  47. Facchinetti F, Fazzio M, Venturini P. Polyunsaturated fatty acids and risk of preterm delivery. Eur Rev Med Pharmacol Sci. 2005;9(1):41–8.

    CAS  PubMed  Google Scholar 

  48. Roman AS, Schreher J, Mackenzie AP, Nathanielsz PW. Omega-3 fatty acids and decidual cell prostaglandin production in response to the inflammatory cytokine IL-1beta. Am J Obstet Gynecol. 2006;195(6):1693–9.

    Article  CAS  PubMed  Google Scholar 

  49. Yoshida M, Sagawa N, Itoh H, Yura S, Takemura M, Wada Y, et al. Prostaglandin F(2alpha), cytokines and cyclic mechanical stretch augment matrix metalloproteinase-1 secretion from cultured human uterine cervical fibroblast cells. Mol Hum Reprod. 2002;8(7):681–7

    Google Scholar 

  50. Karim SM. The role of prostaglandins in human parturition. Proc R Soc Med. 1971;64(1):10–2.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Thomas J, Fairclough A, Kavanagh J, Kelly AJ. Vaginal prostaglandin (PGE2 and PGF2a) for induction of labour at term. Cochrane Database Syst Rev. 2014;6:Cd003101.

    PubMed  Google Scholar 

  52. Kelly AJ, Malik S, Smith L, Kavanagh J, Thomas J. Vaginal prostaglandin (PGE2 and PGF2a) for induction of labour at term. Cochrane Database Syst Rev. 2009;4:Cd003101.

    PubMed  Google Scholar 

  53. Olson DM, Mijovic JE, Sadowsky DW. Control of human parturition. Semin Perinatol. 1995;19(1):52–63

    Google Scholar 

  54. Coletta JM, Bell SJ, Roman AS. Omega-3 fatty acids and pregnancy. Rev Obstet Gynecol. 2010;3(4):163–71.

    PubMed  PubMed Central  Google Scholar 

  55. Fereidooni B, Jenabi E. The use of omega 3 on pregnancy outcomes: a single-center study. J Pak Med Assoc. 2014;64(12):1363–5.

    PubMed  Google Scholar 

  56. Carlson SE, Colombo J, Gajewski BJ, Gustafson KM, Mundy D, Yeast J, et al. DHA supplementation and pregnancy outcomes. Am J Clin Nutr. 2013;97(4):808–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Quinlivan JA, Pakmehr S. Fish oils as a population based strategy to reduce early preterm birth. Reprod Syst Sex Disord. 2013;2:116.

    Article  Google Scholar 

  58. Makrides M, Gibson RA, McPhee AJ, Yelland L, Quinlivan J, Ryan P, et al. Effect of DHA supplementation during pregnancy on maternal depression and neurodevelopment of young children: a randomized controlled trial. JAMA. 2010;304(15):1675–83.

    Article  CAS  PubMed  Google Scholar 

  59. Ramakrishnan U, Stein AD, Parra-Cabrera S, Wang M, Imhoff-Kunsch B, Juarez-Marquez S, et al. Effects of docosahexaenoic acid supplementation during pregnancy on gestational age and size at birth: randomized, double-blind, placebo-controlled trial in Mexico. Food Nutr Bull. 2010;31(2 Suppl):S108–16.

    Article  PubMed  Google Scholar 

  60. Gabory A, Roseboom TJ, Moore T, Moore LG, Junien C. Placental contribution to the origins of sexual dimorphism in health and diseases: sex chromosomes and epigenetics. Biol Sex Differ. 2013;4(1):5.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Reynolds LP, Redmer DA. Angiogenesis in the placenta. Biol Reprod. 2001;64(4):1033–40.

    Article  CAS  PubMed  Google Scholar 

  62. Carmeliet P. Angiogenesis in life, disease and medicine. Nature. 2005;438(7070):932–6.

    Article  CAS  PubMed  Google Scholar 

  63. Demir R, Yaba A, Huppertz B. Vasculogenesis and angiogenesis in the endometrium during menstrual cycle and implantation. Acta Histochem. 2010;112(3):203–14.

    Article  CAS  PubMed  Google Scholar 

  64. Carmeliet P. Angiogenesis in health and disease. Nat Med. 2003;9(6):653–60.

    Article  CAS  PubMed  Google Scholar 

  65. Pepper MS. Role of the matrix metalloproteinase and plasminogen activator-plasmin systems in angiogenesis. Arterioscler Thromb Vasc Biol. 2001;21(7):1104–17.

    Article  CAS  PubMed  Google Scholar 

  66. Johnsen GM, Basak S, Weedon-Fekjaer MS, Staff AC, Duttaroy AK. Docosahexaenoic acid stimulates tube formation in first trimester trophoblast cells, HTR8/SVneo. Placenta. 2011;32(9):626–32.

    Article  CAS  PubMed  Google Scholar 

  67. Basak S, Duttaroy AK. Effects of fatty acids on angiogenic activity in the placental extravillious trophoblast cells. Prostaglandins Leukot Essent Fatty Acids. 2013;88(2):155–62.

    Article  CAS  PubMed  Google Scholar 

  68. Sundrani DP, Reddy US, Joshi AA, Mehendale SS, Chavan-Gautam PM, Hardikar AA, et al. Differential placental methylation and expression of VEGF, FLT-1 and KDR genes in human term and preterm preeclampsia. Clin Epigenetics. 2013;5(1):6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Hanebutt FL, Demmelmair H, Schiessl B, Larque E, Koletzko B. Long-chain polyunsaturated fatty acid (LC-PUFA) transfer across the placenta. Clin Nutr. 2008;27(5):685–93.

    Article  CAS  PubMed  Google Scholar 

  70. Duttaroy AK. Fetal growth and development: roles of fatty acid transport proteins and nuclear transcription factors in human placenta. Indian J Exp Biol. 2004;42(8):747–57.

    CAS  PubMed  Google Scholar 

  71. van der Vusse GJ, van Bilsen M, Glatz JF. Cardiac fatty acid uptake and transport in health and disease. Cardiovasc Res. 2000;45(2):279–93.

    Article  PubMed  Google Scholar 

  72. Stahl A, Gimeno RE, Tartaglia LA, Lodish HF. Fatty acid transport proteins: a current view of a growing family. Trends Endocrinol Metab. 2001;12(6):266–73.

    Article  CAS  PubMed  Google Scholar 

  73. Gil-Sanchez A, Koletzko B, Larque E. Current understanding of placental fatty acid transport. Curr Opin Clin Nutr Metab Care. 2012;15(3):265–72.

    Article  CAS  PubMed  Google Scholar 

  74. Larque E, Krauss-Etschmann S, Campoy C, Hartl D, Linde J, Klingler M, et al. Docosahexaenoic acid supply in pregnancy affects placental expression of fatty acid transport proteins. Am J Clin Nutr. 2006;84(4):853–61.

    CAS  PubMed  Google Scholar 

  75. Lager S, Powell TL. Regulation of nutrient transport across the placenta. J Pregnancy. 2012;2012:179827.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. Smits LJ, Elzenga HM, Gemke RJ, Hornstra G, van Eijsden M. The association between interpregnancy interval and birth weight: what is the role of maternal polyunsaturated fatty acid status? BMC Pregnancy Childbirth. 2013;13:23.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Reece MS, McGregor JA, Allen KG, Harris MA. Maternal and perinatal long-chain fatty acids: possible roles in preterm birth. Am J Obstet Gynecol. 1997;176(4):907–14.

    Article  CAS  PubMed  Google Scholar 

  78. Joshi SR, Mehendale SS, Dangat KD, Kilari AS, Yadav HR, Taralekar VS. High maternal plasma antioxidant concentrations associated with preterm delivery. Ann Nutr Metab. 2008;53(3–4):276–82.

    CAS  PubMed  Google Scholar 

  79. Dhobale MV, Wadhwani N, Mehendale SS, Pisal HR, Joshi SR. Reduced levels of placental long chain polyunsaturated fatty acids in preterm deliveries. Prostaglandins Leukot Essent Fatty Acids. 2011;85(3–4):149–53.

    Article  CAS  PubMed  Google Scholar 

  80. Araya J, Rojas M, Fernandez P, Mateluna A. Essential fatty acid content of maternal erythrocyte phospholipids. A study in preterm and full-term human newborns. Rev Med Chil. 1998;126(4):391–6.

    CAS  PubMed  Google Scholar 

  81. Pontes PV, Torres AG, Trugo NM, Fonseca VM, Sichieri R. n-6 and n-3 long-chain polyunsaturated fatty acids in the erythrocyte membrane of Brazilian preterm and term neonates and their mothers at delivery. Prostaglandins Leukot Essent Fatty Acids. 2006;74(2):117–23.

    Article  CAS  PubMed  Google Scholar 

  82. Al-Tamer YY, Mahmood AA. Fatty-acid composition of the colostrum and serum of fullterm and preterm delivering Iraqi mothers. Eur J Clin Nutr. 2004;58(8):1119–24.

    Article  CAS  PubMed  Google Scholar 

  83. Koletzko B, Cetin I, Brenna JT. Dietary fat intakes for pregnant and lactating women. Br J Nutr. 2007;98(5):873–7.

    Article  CAS  PubMed  Google Scholar 

  84. Olsen SF, Secher NJ, Tabor A, Weber T, Walker JJ, Gluud C. Randomised clinical trials of fish oil supplementation in high risk pregnancies. Fish Oil Trials In Pregnancy (FOTIP) Team. BJOG. 2000;107(3):382–95.

    Article  CAS  PubMed  Google Scholar 

  85. Baschat AA. Pathophysiology of fetal growth restriction: implications for diagnosis and surveillance. Obstet Gynecol Surv. 2004;59(8):617–27.

    Article  PubMed  Google Scholar 

  86. Cetin I, Foidart JM, Miozzo M, Raun T, Jansson T, Tsatsaris V, et al. Fetal growth restriction: a workshop report. Placenta. 2004;25(8–9):753–7.

    Article  CAS  PubMed  Google Scholar 

  87. Vilbergsson G, Wennergren M, Samsioe G, Percy P, Percy A, Mansson JE, et al. Essential fatty acid status is altered in pregnancies complicated by intrauterine growth retardation. World Rev Nutr Diet. 1994;76:105–9.

    Article  CAS  PubMed  Google Scholar 

  88. Cetin I, Giovannini N, Alvino G, Agostoni C, Riva E, Giovannini M, et al. Intrauterine growth restriction is associated with changes in polyunsaturated fatty acid fetal-maternal relationships. Pediatr Res. 2002;52(5):750–5.

    Article  CAS  PubMed  Google Scholar 

  89. Uauy R, Mena P, Wegher B, Nieto S, Salem N Jr. Long chain polyunsaturated fatty acid formation in neonates: effect of gestational age and intrauterine growth. Pediatr Res. 2000;47(1):127–35.

    Article  CAS  PubMed  Google Scholar 

  90. Sattar N, Greer IA, Galloway PJ, Packard CJ, Shepherd J, Kelly T, et al. Lipid and lipoprotein concentrations in pregnancies complicated by intrauterine growth restriction. J ClinEndocrinol Metab. 1999;84(1):128–30.

    CAS  Google Scholar 

  91. Sibley CP, Turner MA, Cetin I, Ayuk P, Boyd CA, D’Souza SW, et al. Placental phenotypes of intrauterine growth. Pediatr Res. 2005;58(5):827–32.

    Article  PubMed  Google Scholar 

  92. Magnusson AL, Waterman IJ, Wennergren M, Jansson T, Powell TL. Triglyceride hydrolase activities and expression of fatty acid binding proteins in the human placenta in pregnancies complicated by intrauterine growth restriction and diabetes. J Clin Endocrinol Metab. 2004;89(9):4607–14.

    Article  CAS  PubMed  Google Scholar 

  93. Powell TL, Jansson T, Illsley NP, Wennergren M, Korotkova M, Strandvik B. Composition and permeability of syncytiotrophoblast plasma membranes in pregnancies complicated by intrauterine growth restriction. Biochim Biophys Acta. 1999;1420(1–2):86–94.

    Article  CAS  PubMed  Google Scholar 

  94. Buchanan TA, Xiang A, Kjos SL, Watanabe R. What is gestational diabetes? Diabetes Care. 2007;30 Suppl 2:S105–11.

    Google Scholar 

  95. Kalra P, Kachhwaha CP, Singh HV. Prevalence of gestational diabetes mellitus and its outcome in western Rajasthan. Indian J Endocrinol Metab. 2013;17(4):677–80.

    Article  PubMed  PubMed Central  Google Scholar 

  96. O’Sullivan JB. Diabetes mellitus after GDM. Diabetes. 1991;40 Suppl 2:131–5.

    Google Scholar 

  97. Bo S, Menato G, Lezo A, Signorile A, Bardelli C, De Michieli F, et al. Dietary fat and gestational hyperglycaemia. Diabetologia. 2001;44(8):972–8.

    Article  CAS  PubMed  Google Scholar 

  98. Radesky JS, Oken E, Rifas-Shiman SL, Kleinman KP, Rich-Edwards JW, Gillman MW. Diet during early pregnancy and development of gestational diabetes. Paediatr Perinat Epidemiol. 2008;22(1):47–59.

    Article  PubMed  PubMed Central  Google Scholar 

  99. Wijendran V, Bendel RB, Couch SC, Philipson EH, Thomsen K, Zhang X, et al. Maternal plasma phospholipid polyunsaturated fatty acids in pregnancy with and without gestational diabetes mellitus: relations with maternal factors. Am J Clin Nutr. 1999;70(1):53–61.

    CAS  PubMed  Google Scholar 

  100. Herrera E, Ortega-Senovilla H. Disturbances in lipid metabolism in diabetic pregnancy - Are these the cause of the problem? Best Pract Res Clin Endocrinol Metab. 2010;24(4):515–25.

    Article  CAS  PubMed  Google Scholar 

  101. Osmond DT, Nolan CJ, King RG, Brennecke SP, Gude NM. Effects of gestational diabetes on human placental glucose uptake, transfer, and utilisation. Diabetologia. 2000;43(5):576–82.

    Article  CAS  PubMed  Google Scholar 

  102. Thomas BA, Ghebremeskel K, Lowy C, Offley-Shore B, Crawford MA. Plasma fatty acids of neonates born to mothers with and without gestational diabetes. Prostaglandins Leukot Essent Fatty Acids. 2005;72(5):335–41.

    Article  CAS  PubMed  Google Scholar 

  103. Bitsanis D, Ghebremeskel K, Moodley T, Crawford MA, Djahanbakhch O. Gestational diabetes mellitus enhances arachidonic and docosahexaenoic acids in placental phospholipids. Lipids. 2006;41(4):341–6.

    Article  CAS  PubMed  Google Scholar 

  104. Dube E, Gravel A, Martin C, Desparois G, Moussa I, Ethier-Chiasson M, et al. Modulation of fatty acid transport and metabolism by maternal obesity in the human full-term placenta. Biol Reprod. 2012;87(1):1–14.

    Article  CAS  Google Scholar 

  105. Symonds ME, Pearce S, Bispham J, Gardner DS, Stephenson T. Timing of nutrient restriction and programming of fetal adipose tissue development. Proc Nutr Soc. 2004;63(3):397–403.

    Article  PubMed  Google Scholar 

  106. Garcia Carrapato MR. The offspring of gestational diabetes. J Perinat Med. 2003;31(1):5–11.

    PubMed  Google Scholar 

  107. Jamilian M, Samimi M, Kolahdooz F, Khalaji F, Razavi M, Asemi Z. Omega-3 fatty acid supplementation affects pregnancy outcomes in gestational diabetes: a randomized, double-blind, placebo-controlled trial. J Matern Fetal Neonatal Med. 2015;1–7.

    Google Scholar 

  108. Alvino G, Cozzi V, Radaelli T, Ortega H, Herrera E, Cetin I. Maternal and fetal fatty acid profile in normal and intrauterine growth restriction pregnancies with and without preeclampsia. Pediatr Res. 2008;64(6):615–20.

    Article  CAS  PubMed  Google Scholar 

  109. Mahomed K, Williams MA, King IB, Mudzamiri S, Woelk GB. Erythrocyte omega-3, omega-6 and trans fatty acids in relation to risk of preeclampsia among women delivering at Harare Maternity Hospital, Zimbabwe. Physiol Res. 2007;56(1):37–50.

    CAS  PubMed  Google Scholar 

  110. Qiu C, Sanchez SE, Larrabure G, David R, Bralley JA, Williams MA. Erythrocyte omega-3 and omega-6 polyunsaturated fatty acids and preeclampsia risk in Peruvian women. Arch Gynecol Obstet. 2006;274(2):97–103.

    Article  CAS  PubMed  Google Scholar 

  111. Williams MA, Zingheim RW, King IB, Zebelman AM. Omega-3 fatty acids in maternal erythrocytes and risk of preeclampsia. Epidemiology. 1995;6(3):232–7.

    Article  CAS  PubMed  Google Scholar 

  112. Lim WY, Chong M, Calder PC, Kwek K, Chong YS, Gluckman PD, et al. Relations of plasma polyunsaturated fatty acids with blood pressures during the 26th and 28th week of gestation in women of Chinese, Malay, and Indian ethnicity. Medicine (Baltimore). 2015;94(9):e571.

    Article  CAS  Google Scholar 

  113. Clausen T, Slott M, Solvoll K, Drevon CA, Vollset SE, Henriksen T. High intake of energy, sucrose, and polyunsaturated fatty acids is associated with increased risk of preeclampsia. Am J Obstet Gynecol. 2001;185(2):451–8.

    Article  CAS  PubMed  Google Scholar 

  114. Mackay VA, Huda SS, Stewart FM, Tham K, McKenna LA, Martin I, et al. Preeclampsia is associated with compromised maternal synthesis of long-chain polyunsaturated fatty acids, leading to offspring deficiency. Hypertension. 2012;60(4):1078–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Bakheit KH, Ghebremeskel K, Pol K, Elbashir MI, Adam I. Erythrocyte omega-3 and omega-6 fatty acids profile in Sudanese women with pre-eclampsia. J Obstet Gynaecol. 2010;30(2):151–4.

    Article  CAS  PubMed  Google Scholar 

  116. Kulkarni A, Chavan-Gautam P, Mehendale S, Yadav H, Joshi S. Global DNA methylation patterns in placenta and its association with maternal hypertension in pre-eclampsia. DNA Cell Biol. 2011;30(2):79–84.

    Article  CAS  PubMed  Google Scholar 

  117. Rakheja D, Bennett MJ, Rogers BB. Long-chain L-3-hydroxyacyl-coenzyme a dehydrogenase deficiency: a molecular and biochemical review. Lab Invest. 2002;82(7):815–24.

    Article  CAS  PubMed  Google Scholar 

  118. Wadhwani N, Patil V, Pisal H, Joshi A, Mehendale S, Gupte S, et al. Altered maternal proportions of long chain polyunsaturated fatty acids and their transport leads to disturbed fetal stores in preeclampsia. Prostaglandins Leukot Essent Fatty Acids. 2014;91(1–2):21–30.

    Article  CAS  PubMed  Google Scholar 

  119. Herrera E. Lipid metabolism in pregnancy and its consequences in the fetus and newborn. Endocrine. 2002;19(1):43–55.

    Article  CAS  PubMed  Google Scholar 

  120. Clandinin MT, Chappell JE, Leong S, Heim T, Swyer PR, Chance GW. Intrauterine fatty acid accretion rates in human brain: implications for fatty acid requirements. Early Hum Dev. 1980;4(2):121–9.

    Article  CAS  PubMed  Google Scholar 

  121. Clandinin MT, Chappell JE, Heim T, Swyer PR, Chance GW. Fatty acid utilization in perinatal de novo synthesis of tissues. Early Hum Dev. 1981;5(4):355–66.

    Article  CAS  PubMed  Google Scholar 

  122. De Giuseppe R, Roggi C, Cena H. n-3 LC-PUFA supplementation: effects on infant and maternal outcomes. Eur J Nutr. 2014;53(5):1147–54.

    Article  PubMed  CAS  Google Scholar 

  123. Uhl O, Demmelmair H, Segura MT, Florido J, Rueda R, Campoy C, et al. Effects of obesity and gestational diabetes mellitus on placental phospholipids. Diabetes Res Clin Pract. 2015;109:364–71.

    Google Scholar 

  124. Carlsen K, Pedersen L, Bonnelykke K, Stark KD, Lauritzen L, Bisgaard H. Association between whole-blood polyunsaturated fatty acids in pregnant women and early fetal weight. Eur J Clin Nutr. 2013;67(9):978–83.

    Article  CAS  PubMed  Google Scholar 

  125. Grandjean P, Bjerve KS, Weihe P, Steuerwald U. Birthweight in a fishing community: significance of essential fatty acids and marine food contaminants. Int J Epidemiol. 2001;30(6):1272–8.

    Article  CAS  PubMed  Google Scholar 

  126. Simpson JL, Bailey LB, Pietrzik K, Shane B, Holzgreve W. Micronutrients and women of reproductive potential required dietary intake and consequences of dietary deficiency or excess: Part II–vitamin D, vitamin A, iron, zinc, iodine, essential fatty acids. J Matern Fetal Neonatal Med. 2011;24(1):1–24.

    Article  CAS  PubMed  Google Scholar 

  127. Martinez M. Abnormal profiles of polyunsaturated fatty acids in the brain, liver, kidney and retina of patients with peroxisomal disorders. Brain Res. 1992;583(1–2):171–82.

    Article  CAS  PubMed  Google Scholar 

  128. Hussain G, Schmitt F, Loeffler JP, Gonzalez de Aguilar JL. Fatting the brain: a brief of recent research. Front Cell Neurosci. 2013;7:144.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  129. Chung WL, Chen JJ, Su HM. Fish oil supplementation of control and (n-3) fatty acid-deficient male rats enhances reference and working memory performance and increases brain regional docosahexaenoic acid levels. J Nutr. 2008;138(6):1165–71.

    CAS  PubMed  Google Scholar 

  130. Helland IB, Smith L, Saarem K, Saugstad OD, Drevon CA. Maternal supplementation with very-long-chain n-3 fatty acids during pregnancy and lactation augments children’s IQ at 4 years of age. Pediatrics. 2003;111(1):e39–44.

    Article  PubMed  Google Scholar 

  131. Jensen CL, Voigt RG, Llorente AM, Peters SU, Prager TC, Zou YL, et al. Effects of early maternal docosahexaenoic acid intake on neuropsychological status and visual acuity at five years of age of breast-fed term infants. J Pediatr. 2010;157(6):900–5.

    Article  CAS  PubMed  Google Scholar 

  132. Neuringer M. Cerebral cortex docosahexaenoic acid is lower in formula-fed than in breast-fed infants. Nutr Rev. 1993;51(8):238–41.

    Article  CAS  PubMed  Google Scholar 

  133. Jamieson EC, Farquharson J, Logan RW, Howatson AG, Patrick WJ, Weaver LT, et al. Infant cerebellar gray and white matter fatty acids in relation to age and diet. Lipids. 1999;34(10):1065–71.

    Article  CAS  PubMed  Google Scholar 

  134. Haag M. Essential fatty acids and the brain. Can J Psychiatry. 2003;48(3):195–203.

    PubMed  Google Scholar 

  135. Agostoni C. Docosahexaenoic acid (DHA): from the maternal-foetal dyad to the complementary feeding period. Early Hum Dev. 2010;86 Suppl 1:3–6.

    Google Scholar 

  136. Rombaldi Bernardi J, de Souza Escobar R, Ferreira CF, Silveira PP. Fetal and neonatal levels of omega-3: effects on neurodevelopment, nutrition, and growth. Sci World J. 2012;2012:202473.

    Google Scholar 

  137. Smithers LG, Gibson RA, McPhee A, Makrides M. Higher dose of docosahexaenoic acid in the neonatal period improves visual acuity of preterm infants: results of a randomized controlled trial. Am J Clin Nutr. 2008;88(4):1049–56.

    CAS  PubMed  Google Scholar 

  138. Gale CR, Robinson SM, Godfrey KM, Law CM, Schlotz W, O’Callaghan FJ. Oily fish intake during pregnancy–association with lower hyperactivity but not with higher full-scale IQ in offspring. J Child Psychol Psychiatry. 2008;49(10):1061–8.

    Article  PubMed  Google Scholar 

  139. Hashimoto M, Hossain S. Neuroprotective and ameliorative actions of polyunsaturated fatty acids against neuronal diseases: beneficial effect of docosahexaenoic acid on cognitive decline in Alzheimer’s Disease. J Pharmacol Sci. 2011;116(2):150–62.

    Article  CAS  PubMed  Google Scholar 

  140. Herrera E, Ortega-Senovilla H. Lipid metabolism during pregnancy and its implications for fetal growth. Curr Pharm Biotechnol. 2014;15(1):24–31.

    Article  CAS  PubMed  Google Scholar 

  141. Kubo A, Corley DA, Jensen CD, Kaur R. Dietary factors and the risks of oesophageal adenocarcinoma and Barrett’s oesophagus. Nutr Res Rev. 2010;23(2):230–46.

    Article  PubMed  PubMed Central  Google Scholar 

  142. Innis SM. Perinatal biochemistry and physiology of long-chain polyunsaturated fatty acids. The Journal of Pediatrics. 2003;143(4):1–8.

    Article  Google Scholar 

  143. Innis SM. Fatty acids and early human development. Early Hum Dev. 2007;83(12):761–6.

    Article  CAS  PubMed  Google Scholar 

  144. Helland IB, Saugstad OD, Smith L, Saarem K, Solvoll K, Ganes T, et al. Similar effects on infants of n-3 and n-6 fatty acids supplementation to pregnant and lactating women. Pediatrics. 2001;108(5):e82-e.

    Google Scholar 

  145. Innis SM. Metabolic programming of long-term outcomes due to fatty acid nutrition in early life. Matern Child Nutr. 2011;2(7Suppl):112–23.

    Article  Google Scholar 

  146. Bernardi JR, Ferreira CF, Senter G, Krolow R, de Aguiar BW, Portella AK, et al. Early life stress interacts with the diet deficiency of omega-3 fatty acids during the life course increasing the metabolic vulnerability in adult rats. PLoS ONE. 2013;8(4):e62031.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Moon RJ, Harvey NC, Robinson SM, Ntani G, Davies JH, Inskip HM, et al. Maternal plasma polyunsaturated fatty acid status in late pregnancy is associated with offspring body composition in childhood. J Clin Endocrinol Metab. 2013;98(1):299–307.

    Article  CAS  PubMed  Google Scholar 

  148. Armitage JA, Khan IY, Taylor PD, Nathanielsz PW, Poston L. Developmental programming of the metabolic syndrome by maternal nutritional imbalance: how strong is the evidence from experimental models in mammals? J Physiol. 2004;561(Pt 2):355–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Donahue SM, Rifas-Shiman SL, Gold DR, Jouni ZE, Gillman MW, Oken E. Prenatal fatty acid status and child adiposity at age 3 y: results from a US pregnancy cohort. Am J Clin Nutr. 2011;93(4):780–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Baur LA, O’Connor J, Pan DA, Storlien LH. Relationships between maternal risk of insulin resistance and the child’s muscle membrane fatty acid composition. Diabetes. 1999;48(1):112–6.

    Article  CAS  PubMed  Google Scholar 

  151. Das UN. A perinatal strategy to prevent coronary heart disease nutrition. 2003;19(11-12):1022–7.

    Google Scholar 

  152. Hussain A, Nookaew I, Khoomrung S, Andersson L, Larsson I, Hulthen L, et al. A maternal diet of fatty fish reduces body fat of offspring compared with a maternal diet of beef and a post-weaning diet of fish improves insulin sensitivity and lipid profile in adult C57BL/6 male mice. Acta Physiol (Oxf). 2013;209(3):220–34.

    CAS  Google Scholar 

  153. Bremer AA, Stanhope KL, Graham JL, Cummings BP, Ampah SB, Saville BR, et al. Fish oil supplementation ameliorates fructose-induced hypertriglyceridemia and insulin resistance in adult male rhesus macaques. J Nutr. 2014;144(1):5–11.

    Article  CAS  PubMed  Google Scholar 

  154. Kasbi-Chadli F, Boquien CY, Simard G, Ulmann L, Mimouni V, Leray V, et al. Maternal supplementation with n-3 long chain polyunsaturated fatty acids during perinatal period alleviates the metabolic syndrome disturbances in adult hamster pups fed a high-fat diet after weaning. J Nutr Biochem. 2014;25(7):726–33.

    Article  CAS  PubMed  Google Scholar 

  155. Khaire A, Rathod R, Kemse N, Kale A, Joshi S. Supplementation with omega-3 fatty acids during gestation and lactation to a vitamin B12—deficient or—supplemented diet improves pregnancy outcome and metabolic variables in Wistar rats. Reprod Fertil Dev. 2015a;27(2):341–50.

    Google Scholar 

  156. Khaire A, Rathod R, Kale A, Joshi S. Vitamin B and omega-3 fatty acids together regulate lipid metabolism in Wistar rats. Prostaglandins Leukot Essent Fatty Acids. 2015b.

    Google Scholar 

  157. Gong Q, Zhang X, Xu C. Effect of pregnancy rats supplemented with docosahexaenoic acid on carnitine palmitoyl transferase-I gene expression in offspring. Wei Sheng Yan Jiu. 2009;38(6):685–791.

    CAS  PubMed  Google Scholar 

  158. WHO. Diet, nutrition and the prevention of chronic diseases report of a joint WHO/FAO Expert Consultation, WHO Technical Report Series No. 916, WHO, Geneva.

    Google Scholar 

  159. Koletzko B, Boey CC, Campoy C, Carlson SE, Chang N, Guillermo-Tuazon MA, et al. Current information and Asian perspectives on long-chain polyunsaturated fatty acids in pregnancy, lactation, and infancy: systematic review and practice recommendations from an early nutrition academy workshop. Ann Nutr Metab. 2014;65(1):49–80.

    Article  CAS  PubMed  Google Scholar 

  160. Institute of Medicine. Dietary Reference Intakes for Energy, Carbohydrate, Fiber, Fat, Fatty Acids, Cholesterol, Protein, and Amino Acids. Washington, D. C.: National Academies Press; 2002

    Google Scholar 

  161. Goyal USB, Verma S. Contribution of various foods to fat and fatty acids intake among urban and semi-urban women of Punjab. J Hum Ecol. 2005;18:217–20.

    Google Scholar 

  162. Indian Council of Medical Research (ICMR). Nutrient requirements and recommended dietary allowances for Indians. A report of the expert group of the ICMR, National Institute of Nutrition, Hyderabad, India. 2009.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sadhana Joshi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Khaire, A., Joshi, S. (2016). Maternal Long-chain Polyunsaturated Fatty Acids and Pregnancy Outcome. In: Hegde, M., Zanwar, A., Adekar, S. (eds) Omega-3 Fatty Acids. Springer, Cham. https://doi.org/10.1007/978-3-319-40458-5_35

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-40458-5_35

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-40456-1

  • Online ISBN: 978-3-319-40458-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics