Skip to main content

Neurotropic Alphaviruses

  • Chapter
  • First Online:
Neurotropic Viral Infections

Abstract

Alphaviruses are geographically restricted enveloped, single-strand, message-sense RNA viruses. Alphaviruses are maintained in natural cycles between vertebrate and invertebrate hosts and are transmitted to vertebrates through the bite of an infected mosquito. Eastern equine encephalitis, western equine encephalitis, and Venezuelan equine encephalitis viruses are the neurotropic alphaviruses of greatest importance as causes of human encephalomyelitis and were initially recognized for their ability to cause disease in horses. Alphaviruses primarily associated with rash and arthritis can also cause neurologic disease. Infection with Chikungunya virus has caused encephalitis in humans and Semliki Forest virus and Sindbis virus provide important mouse models for alphavirus encephalomyelitis. Brain and spinal cord neurons are the primary target cells and infection induces a mononuclear inflammatory response. Clearance of infectious virus is rapid and noncytolytic through the actions of antibody and interferon-γ, but viral RNA and proteins are cleared slowly. Diagnosis is usually made by detection of viral RNA or antiviral IgM. No licensed vaccines or treatments are available.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adams AP, Aronson JF, Tardif SD et al (2008) Common marmosets (Callithrix jacchus) as a nonhuman primate model to assess the virulence of eastern equine encephalitis virus strains. J Virol 82:9035–9042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aguilar MJ (1970) Pathological changes in brain and other target organs of infant and weanling mice after infection with non-neuroadapted Western equine encephalitis virus. Infect Immun 2:533–542

    CAS  PubMed  PubMed Central  Google Scholar 

  • Aguilar PV, Adams AP, Wang E et al (2008) Structural and nonstructural protein genome regions of eastern equine encephalitis virus are determinants of interferon sensitivity and murine virulence. J Virol 82:4920–4930

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Allison AB, Stallknecht DE, Holmes EC (2015) Evolutionary genetics and vector adaptation of recombinant viruses of the western equine encephalitis antigenic complex provides new insights into alphavirus diversity and host switching. Virology 474:154–162

    Article  CAS  PubMed  Google Scholar 

  • Arpino C, Curatolo P, Rezza G (2009) Chikungunya and the nervous system: what we do and do not know. Rev Med Virol 19:121–129

    Article  PubMed  Google Scholar 

  • Arrigo NC, Adams AP, Weaver SC (2010) Evolutionary patterns of eastern equine encephalitis virus in North versus South America suggest ecological differences and taxonomic revision. J Virol 84:1014–1025

    Article  CAS  PubMed  Google Scholar 

  • Bashford CL, Micklem KJ, Pasternak CA (1985) Sequential onset of permeability changes in mouse ascites cells induced by Sendai virus. Biochim Biophys Acta 814:247–255

    Article  CAS  PubMed  Google Scholar 

  • Bastian FO, Wende RD, Singer DB, Zeller RS (1975) Eastern equine encephalomyelitis. Histopathologic and ultrastructural changes with isolation of the virus in a human case. Am J Clin Pathol 64:10–13

    Article  CAS  PubMed  Google Scholar 

  • Bear JS, Byrnes AP, Griffin DE (2006) Heparin-binding and patterns of virulence for two recombinant strains of Sindbis virus. Virology 347:183–190

    Article  CAS  PubMed  Google Scholar 

  • Behr M, Schieferdecker K, Buhr P et al (2001) Interferon-stimulated response element (ISRE)-binding protein complex DRAF1 is activated in Sindbis virus (HR)-infected cells. J Interferon Cytokine Res 21:981–990

    Article  CAS  PubMed  Google Scholar 

  • Bergren NA, Auguste AJ, Forrester NL et al (2014) Western equine encephalitis virus: evolutionary analysis of a declining alphavirus based on complete genome sequences. J Virol 88:9260–9267

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bianchi TI, Aviles G, Monath TP, Sabattini MS (1993) Western equine encephalomyelitis: virulence markers and their epidemiologic significance. Am J Trop Med Hyg 49:322–328

    CAS  PubMed  Google Scholar 

  • Binder GK, Griffin DE (2001) Interferon-gamma-mediated site-specific clearance of alphavirus from CNS neurons. Science 293:303–306

    Article  CAS  PubMed  Google Scholar 

  • Bingham AM, Graham SP, Burkett-Cadena ND et al (2012) Detection of eastern equine encephalomyelitis virus RNA in North American snakes. Am J Trop Med Hyg 87:1140–1144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boggs WM, Hahn CS, Strauss EG, Strauss JH, Griffin DE (1989) Low pH-dependent Sindbis virus-induced fusion of BHK cells: differences between strains correlate with amino acid changes in the E1 glycoprotein. Virology 169:485–488

    Article  CAS  PubMed  Google Scholar 

  • Bordi L, Meschi S, Selleri M et al (2011) Chikungunya virus isolates with/without A226V mutation show different sensitivity to IFN-a, but similar replication kinetics in non human primate cells. New Microbiol 34:87–91

    CAS  PubMed  Google Scholar 

  • Brault AC, Powers AM, Chavez CL et al (1999) Genetic and antigenic diversity among eastern equine encephalitis viruses from North, Central, and South America. Am J Trop Med Hyg 61:579–586

    CAS  PubMed  Google Scholar 

  • Brehin AC, Casademont I, Frenkiel MP, Julier C, Sakuntabhai A, Despres P (2009) The large form of human 2′,5′-Oligoadenylate Synthetase (OAS3) exerts antiviral effect against Chikungunya virus. Virology 384:216–222

    Article  CAS  PubMed  Google Scholar 

  • Brown A, Vosdingh R, Zebovitz E (1975) Attenuation and immunogenicity of ts mutants of Eastern encephalitis virus for mice. J Gen Virol 27:111–116

    Article  CAS  PubMed  Google Scholar 

  • Burdeinick-Kerr R, Griffin DE (2005) Gamma interferon-dependent, noncytolytic clearance of sindbis virus infection from neurons in vitro. J Virol 79:5374–5385

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burdeinick-Kerr R, Wind J, Griffin DE (2007) Synergistic roles of antibody and interferon in noncytolytic clearance of Sindbis virus from different regions of the central nervous system. J Virol 81:5628–5636

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burke CW, Gardner CL, Steffan JJ, Ryman KD, Klimstra WB (2009) Characteristics of alpha/beta interferon induction after infection of murine fibroblasts with wild-type and mutant alphaviruses. Virology 395:121–132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Byrnes AP, Griffin DE (2000) Large-plaque mutants of Sindbis virus show reduced binding to heparan sulfate, heightened viremia, and slower clearance from the circulation. J Virol 74:644–651

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Byrnes AP, Durbin JE, Griffin DE (2000) Control of Sindbis virus infection by antibody in interferon-deficient mice. J Virol 74:3905–3908

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Calisher CH (1994) Medically important arboviruses of the United States and Canada. Clin Microbiol Rev 7:89–116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Calisher CH, Emerson JK, Muth DJ, Lazuick JS, Monath TP (1983) Serodiagnosis of western equine encephalitis virus infections: relationships of antibody titer and test to observed onset of clinical illness. J Am Vet Med Assoc 183:438–440

    CAS  PubMed  Google Scholar 

  • Calisher CH, Meurman O, Brummer-Korvenkontio M, Halonen PE, Muth DJ (1985) Sensitive enzyme immunoassay for detecting immunoglobulin M antibodies to Sindbis virus and further evidence that Pogosta disease is caused by a western equine encephalitis complex virus. J Clin Microbiol 22:566–571

    CAS  PubMed  PubMed Central  Google Scholar 

  • Calisher CH, Berardi VP, Muth DJ, Buff EE (1986) Specificity of immunoglobulin M and G antibody responses in humans infected with eastern and western equine encephalitis viruses: application to rapid serodiagnosis. J Clin Microbiol 23:369–372

    CAS  PubMed  PubMed Central  Google Scholar 

  • Calisher CH, Karabatsos N, Lazuick JS, Monath TP, Wolff KL (1988) Reevaluation of the western equine encephalitis antigenic complex of alphaviruses (family Togaviridae) as determined by neutralization tests. Am J Trop Med Hyg 38:447–452

    CAS  PubMed  Google Scholar 

  • Carey DE, Myers RM, Deranitz CM, Jadhav M, Reuben R (1969) The 1964 chikungunya epidemic at Vellore, South India, including observations on concurrent dengue. Trans R Soc Trop Med Hyg 63:434–445

    Article  CAS  PubMed  Google Scholar 

  • Carossino M, Thiry E, de la Grandiere A, Barrandeguy ME (2014) Novel vaccination approaches against equine alphavirus encephalitides. Vaccine 32:311–319

    Article  PubMed  Google Scholar 

  • Carrera JP, Forrester N, Wang E et al (2013) Eastern equine encephalitis in Latin America. N Engl J Med 369:732–744

    Article  CAS  PubMed  Google Scholar 

  • Castorena KM, Peltier DC, Peng W, Miller DJ (2008) Maturation-dependent responses of human neuronal cells to western equine encephalitis virus infection and type I interferons. Virology 372:208–220

    Article  CAS  PubMed  Google Scholar 

  • Causey OR, Causey CE, Maroja OM, Macedo DG (1961) The isolation of arthropod-borne viruses, including members of two hitherto undescribed serological groups, in the Amazon region of Brazil. Am J Trop Med Hyg 10:227–249

    CAS  PubMed  Google Scholar 

  • Chanas AC, Gould EA, Clegg JC, Varma MG (1982) Monoclonal antibodies to Sindbis virus glycoprotein E1 can neutralize, enhance infectivity, and independently inhibit haemagglutination or haemolysis. J Gen Virol 58(Pt 1):37–46

    Article  CAS  PubMed  Google Scholar 

  • Chandak NH, Kashyap RS, Kabra D et al (2009) Neurological complications of Chikungunya virus infection. Neurol India 57:177–180

    Article  PubMed  Google Scholar 

  • Chatterjee PK, Eng CH, Kielian M (2002) Novel mutations that control the sphingolipid and cholesterol dependence of the Semliki Forest virus fusion protein. J Virol 76:12712–12722

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chenier S, Cote G, Vanderstock J, Macieira S, Laperle A, Helie P (2010) An eastern equine encephalomyelitis (EEE) outbreak in Quebec in the fall of 2008. Can Vet J 51:1011–1015

    PubMed  PubMed Central  Google Scholar 

  • Cilnis MJ, Kang W, Weaver SC (1996) Genetic conservation of Highlands J viruses. Virology 218:343–351

    Article  CAS  PubMed  Google Scholar 

  • Coffey LL, Beeharry Y, Borderia AV, Blanc H, Vignuzzi M (2011) Arbovirus high fidelity variant loses fitness in mosquitoes and mice. Proc Natl Acad Sci U S A 108:16038–16043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cook SH, Griffin DE (2003) Luciferase imaging of a neurotropic viral infection in intact animals. J Virol 77:5333–5338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Couderc T, Chretien F, Schilte C et al (2008) A mouse model for Chikungunya: young age and inefficient type-I interferon signaling are risk factors for severe disease. PLoS Pathog 4:e29

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cruz CC, Suthar MS, Montgomery SA et al (2010) Modulation of type I IFN induction by a virulence determinant within the alphavirus nsP1 protein. Virology 399:1–10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cupp EW, Klingler K, Hassan HK, Viguers LM, Unnasch TR (2003) Transmission of eastern equine encephalomyelitis virus in central Alabama. Am J Trop Med Hyg 68:495–500

    PubMed  PubMed Central  Google Scholar 

  • Dalrymple JM, Young OP, Eldridge BF, Russell PK (1972) Ecology of arboviruses in a Maryland freshwater swamp. 3. Vertebrate hosts. Am J Epidemiol 96:129–140

    CAS  PubMed  Google Scholar 

  • Das T, Hoarau JJ, Jaffar Bandjee MC, Maquart M, Gasque P (2015) Multifaceted innate immune responses engaged by astrocytes, microglia and resident dendritic cells against Chikungunya neuroinfection. J Gen Virol 96:294–310

    Article  CAS  PubMed  Google Scholar 

  • Davis NL, Fuller FJ, Dougherty WG, Olmsted RA, Johnston RE (1986) A single nucleotide change in the E2 glycoprotein gene of Sindbis virus affects penetration rate in cell culture and virulence in neonatal mice. Proc Natl Acad Sci U S A 83:6771–6775

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Deresiewicz RL, Thaler SJ, Hsu L, Zamani AA (1997) Clinical and neuroradiographic manifestations of eastern equine encephalitis. N Engl J Med 336:1867–1874

    Article  CAS  PubMed  Google Scholar 

  • Despres P, Griffin JW, Griffin DE (1995a) Antiviral activity of alpha interferon in Sindbis virus-infected cells is restored by anti-E2 monoclonal antibody treatment. J Virol 69:7345–7348

    CAS  PubMed  PubMed Central  Google Scholar 

  • Despres P, Griffin JW, Griffin DE (1995b) Effects of anti-E2 monoclonal antibody on sindbis virus replication in AT3 cells expressing bcl-2. J Virol 69:7006–7014

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dhanwani R, Khan M, Alam SI, Rao PV, Parida M (2011) Differential proteome analysis of Chikungunya virus-infected new-born mice tissues reveal implication of stress, inflammatory and apoptotic pathways in disease pathogenesis. Proteomics 11:1936–1951

    Article  CAS  PubMed  Google Scholar 

  • Dhanwani R, Khan M, Bhaskar AS et al (2012) Characterization of Chikungunya virus infection in human neuroblastoma SH-SY5Y cells: role of apoptosis in neuronal cell death. Virus Res 163:563–572

    Article  CAS  PubMed  Google Scholar 

  • Dropulic LK, Hardwick JM, Griffin DE (1997) A single amino acid change in the E2 glycoprotein of Sindbis virus confers neurovirulence by altering an early step of virus replication. J Virol 71:6100–6105

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dryga SA, Dryga OA, Schlesinger S (1997) Identification of mutations in a Sindbis virus variant able to establish persistent infection in BHK cells: the importance of a mutation in the nsP2 gene. Virology 228:74–83

    Article  CAS  PubMed  Google Scholar 

  • Dubuisson J, Lustig S, Ruggli N, Akov Y, Rice CM (1997) Genetic determinants of Sindbis virus neuroinvasiveness. J Virol 71:2636–2646

    CAS  PubMed  PubMed Central  Google Scholar 

  • El-Bacha T, Menezes MM, Azevedo e Silva MC, Sola-Penna M, Da Poian AT (2004) Mayaro virus infection alters glucose metabolism in cultured cells through activation of the enzyme 6-phosphofructo 1-kinase. Mol Cell Biochem 266:191–198

    Article  CAS  PubMed  Google Scholar 

  • Espmark A, Niklasson B (1984) Ockelbo disease in Sweden: epidemiological, clinical, and virological data from the 1982 outbreak. Am J Trop Med Hyg 33:1203–1211

    CAS  PubMed  Google Scholar 

  • Estep LK, Mcclure CJ, Vander Kelen P et al (2013) Risk of exposure to eastern equine encephalomyelitis virus increases with the density of northern cardinals. PLoS One 8, e57879

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Feemster RF (1957) Equine encephalitis in Massachusetts. N Engl J Med 257:701–704

    Article  CAS  PubMed  Google Scholar 

  • Ficken MD, Wages DP, Guy JS, Quinn JA, Emory WH (1993) High mortality of domestic turkeys associated with Highlands J virus and eastern equine encephalitis virus infections. Avian Dis 37:585–590

    Article  CAS  PubMed  Google Scholar 

  • Finley KH, Longshore WA Jr, Palmer RJ, Cook RE, Riggs N (1955) Western equine and St. Louis encephalitis; preliminary report of a clinical follow-up study in California. Neurology 5:223–235

    Article  CAS  PubMed  Google Scholar 

  • Firth AE, Chung BY, Fleeton MN, Atkins JF (2008) Discovery of frameshifting in Alphavirus 6K resolves a 20-year enigma. Virol J 5:108

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Forrester NL, Kenney JL, Deardorff E, Wang E, Weaver SC (2008) Western equine encephalitis submergence: lack of evidence for a decline in virus virulence. Virology 380:170–172

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fraisier C, Koraka P, Belghazi M et al (2014) Kinetic analysis of mouse brain proteome alterations following Chikungunya virus infection before and after appearance of clinical symptoms. PLoS One 9, e91397

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Froeschle JE (1964) Propagation of western equine encephalitis virus in mice following intramuscular and intranasal inoculation. Proc Soc Exp Biol Med 115:881–884

    Article  CAS  PubMed  Google Scholar 

  • Frolov I, Hardy R, Rice CM (2001) Cis-acting RNA elements at the 5′ end of Sindbis virus genome RNA regulate minus- and plus-strand RNA synthesis. RNA 7:1638–1651

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Frolova EI, Fayzulin RZ, Cook SH, Griffin DE, Rice CM, Frolov I (2002) Roles of nonstructural protein nsP2 and Alpha/Beta interferons in determining the outcome of Sindbis virus infection. J Virol 76:11254–11264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Frolova EI, Gorchakov R, Pereboeva L, Atasheva S, Frolov I (2010) Functional Sindbis virus replicative complexes are formed at the plasma membrane. J Virol 84:11679–11695

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fros JJ, Liu WJ, Prow NA et al (2010) Chikungunya virus nonstructural protein 2 inhibits type I/II interferon-stimulated JAK-STAT signaling. J Virol 84:10877–10887

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gardner CL, Burke CW, Tesfay MZ, Glass PJ, Klimstra WB, Ryman KD (2008) Eastern and Venezuelan equine encephalitis viruses differ in their ability to infect dendritic cells and macrophages: impact of altered cell tropism on pathogenesis. J Virol 82:10634–10646

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gardner CL, Yin J, Burke CW, Klimstra WB, Ryman KD (2009) Type I interferon induction is correlated with attenuation of a South American eastern equine encephalitis virus strain in mice. Virology 390:338–347

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gardner J, Anraku I, Le TT et al (2010) Chikungunya virus arthritis in adult wild-type mice. J Virol 84:8021–8032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gardner CL, Ebel GD, Ryman KD, Klimstra WB (2011) Heparan sulfate binding by natural eastern equine encephalitis viruses promotes neurovirulence. Proc Natl Acad Sci U S A 108:16026–16031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garen PD, Tsai TF, Powers JM (1999) Human eastern equine encephalitis: immunohistochemistry and ultrastructure. Mod Pathol 12:646–652

    CAS  PubMed  Google Scholar 

  • Gerardin P, Guernier V, Perrau J et al (2008) Estimating Chikungunya prevalence in La Reunion Island outbreak by serosurveys: two methods for two critical times of the epidemic. BMC Infect Dis 8:99

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gibney KB, Robinson S, Mutebi JP et al (2011) Eastern equine encephalitis: an emerging arboviral disease threat, Maine, 2009. Vector Borne Zoonotic Dis 11:637–639

    Article  PubMed  Google Scholar 

  • Goldfield M, Sussman O (1968) The 1959 outbreak of Eastern encephalitis in New Jersey. I. Introduction and description of outbreak. Am J Epidemiol 87:1–10

    CAS  PubMed  Google Scholar 

  • Goldfield M, Welsh JN, Taylor BF (1968) The 1959 outbreak of Eastern encephalitis in New Jersey. 5. The inapparent infection:disease ratio. Am J Epidemiol 87:32–33

    CAS  PubMed  Google Scholar 

  • Gorchakov R, Frolova E, Frolov I (2005) Inhibition of transcription and translation in Sindbis virus-infected cells. J Virol 79:9397–9409

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Greene IP, Lee EY, Prow N, Ngwang B, Griffin DE (2008) Protection from fatal viral encephalomyelitis: AMPA receptor antagonists have a direct effect on the inflammatory response to infection. Proc Natl Acad Sci U S A 105:3575–3580

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Griffin DE (1976) Role of the immune response in age-dependent resistance of mice to encephalitis due to Sindbis virus. J Infect Dis 133:456–464

    Article  CAS  PubMed  Google Scholar 

  • Griffin DE, Johnson RT (1973) Cellular immune response to viral infection: in vitro studies of lymphocytes from mice infected with Sindbis virus. Cell Immunol 9:426–434

    Article  CAS  PubMed  Google Scholar 

  • Griffin DE, Johnson RT (1977) Role of the immune response in recovery from Sindbis virus encephalitis in mice. J Immunol 118:1070–1075

    CAS  PubMed  Google Scholar 

  • Griffin DE, Metcalf T (2011) Clearance of virus infection from the CNS. Curr Opin Virol 1:216–221

    Article  PubMed  PubMed Central  Google Scholar 

  • Guo X, Ma J, Sun J, Gao G (2007) The zinc-finger antiviral protein recruits the RNA processing exosome to degrade the target mRNA. Proc Natl Acad Sci U S A 104:151–156

    Article  CAS  PubMed  Google Scholar 

  • Hackbarth SA, Reinarz AB, Sagik BP (1973) Age-dependent resistance of mice to sindbis virus infection: reticuloendothelial role. J Reticuloendothel Soc 14:405–425

    CAS  PubMed  Google Scholar 

  • Hahn CS, Lustig S, Strauss EG, Strauss JH (1988) Western equine encephalitis virus is a recombinant virus. Proc Natl Acad Sci U S A 85:5997–6001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hahn YS, Strauss EG, Strauss JH (1989) Mapping of RNA- temperature-sensitive mutants of Sindbis virus: assignment of complementation groups A, B, and G to nonstructural proteins. J Virol 63:3142–3150

    CAS  PubMed  PubMed Central  Google Scholar 

  • Halstead SB, Scanlon JE, Umpaivit P, Udomsakdi S (1969) Dengue and chikungunya virus infection in man in Thailand, 1962–1964. IV. Epidemiologic studies in the Bangkok metropolitan area. Am J Trop Med Hyg 18:997–1021

    CAS  PubMed  Google Scholar 

  • Hapuarachchi HC, Bandara KB, Sumanadasa SD et al (2010) Re-emergence of Chikungunya virus in South-east Asia: virological evidence from Sri Lanka and Singapore. J Gen Virol 91:1067–1076

    Article  CAS  PubMed  Google Scholar 

  • Hardy WR, Strauss JH (1989) Processing the nonstructural polyproteins of sindbis virus: nonstructural proteinase is in the C-terminal half of nsP2 and functions both in cis and in trans. J Virol 63:4653–4664

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hardy JL, Presser SB, Chiles RE, Reeves WC (1997) Mouse and baby chicken virulence of enzootic strains of western equine encephalomyelitis virus from California. Am J Trop Med Hyg 57:240–244

    CAS  PubMed  Google Scholar 

  • Havert MB, Schofield B, Griffin DE, Irani DN (2000) Activation of divergent neuronal cell death pathways in different target cell populations during neuroadapted sindbis virus infection of mice. J Virol 74:5352–5356

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hawman DW, Stoermer KA, Montgomery SA et al (2013) Chronic joint disease caused by persistent Chikungunya virus infection is controlled by the adaptive immune response. J Virol 87:13878–13888

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hayes CG, Wallis RC (1977) Ecology of Western equine encephalomyelitis in the eastern United States. Adv Virus Res 21:37–83

    Article  CAS  PubMed  Google Scholar 

  • Helenius A, Kartenbeck J, Simons K, Fries E (1980) On the entry of Semliki forest virus into BHK-21 cells. J Cell Biol 84:404–420

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Herzon H, Shelton JT, Bruyn HB (1957) Sequelae of western equine and other arthropod-borne encephalitides. Neurology 7:535–548

    Article  CAS  PubMed  Google Scholar 

  • Hirsch RL, Griffin DE, Johnson RT (1979) Interactions between immune cells and antibody in protection from fatal Sindbis virus encephalitis. Infect Immun 23:320–324

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ho M, Breinig MK (1962) Conditions for the production of an interferon appearing in chick cell cultures infected with Sindbis virus. J Immunol 89:177–186

    CAS  PubMed  Google Scholar 

  • Ho K, Ang LW, Tan BH et al (2011) Epidemiology and control of chikungunya fever in Singapore. J Infect 62:263–270

    Article  PubMed  Google Scholar 

  • Howitt B (1938) Recovery of the virus of equine encephalomyelitis from the brain of a child. Science 88:455–456

    Article  CAS  PubMed  Google Scholar 

  • Hunt AR, Roehrig JT (1985) Biochemical and biological characteristics of epitopes on the E1 glycoprotein of western equine encephalitis virus. Virology 142:334–346

    Article  CAS  PubMed  Google Scholar 

  • Inglot AD, Albin M, Chudzio T (1973) Persistent infection of mouse cells with Sindbis virus: role of virulence of strains, auto-interfering particles and interferon. J Gen Virol 20:105–110

    Article  CAS  PubMed  Google Scholar 

  • Irani DN, Griffin DE (1991) Isolation of brain parenchymal lymphocytes for flow cytometric analysis. Application to acute viral encephalitis. J Immunol Methods 139:223–231

    Article  CAS  PubMed  Google Scholar 

  • Irani DN, Griffin DE (1996) Regulation of lymphocyte homing into the brain during viral encephalitis at various stages of infection. J Immunol 156:3850–3857

    CAS  PubMed  Google Scholar 

  • Jackson AC, Moench TR, Griffin DE, Johnson RT (1987) The pathogenesis of spinal cord involvement in the encephalomyelitis of mice caused by neuroadapted Sindbis virus infection. Lab Invest 56:418–423

    CAS  PubMed  Google Scholar 

  • Jackson AC, Moench TR, Trapp BD, Griffin DE (1988) Basis of neurovirulence in Sindbis virus encephalomyelitis of mice. Lab Invest 58:503–509

    CAS  PubMed  Google Scholar 

  • Jan JT, Griffin DE (1999) Induction of apoptosis by Sindbis virus occurs at cell entry and does not require virus replication. J Virol 73:10296–10302

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jan JT, Chatterjee S, Griffin DE (2000) Sindbis virus entry into cells triggers apoptosis by activating sphingomyelinase, leading to the release of ceramide. J Virol 74:6425–6432

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Joe AK, Ferrari G, Jiang HH, Liang XH, Levine B (1996) Dominant inhibitory Ras delays Sindbis virus-induced apoptosis in neuronal cells. J Virol 70:7744–7751

    CAS  PubMed  PubMed Central  Google Scholar 

  • Johnson RT (1965) Virus invasion of the central nervous system: a study of Sindbis virus infection in the mouse using fluorescent antibody. Am J Pathol 46:929–943

    CAS  PubMed  PubMed Central  Google Scholar 

  • Johnson RT, Mcfarland HF, Levy SE (1972) Age-dependent resistance to viral encephalitis: studies of infections due to Sindbis virus in mice. J Infect Dis 125:257–262

    Article  CAS  PubMed  Google Scholar 

  • Jose J, Snyder JE, Kuhn RJ (2009) A structural and functional perspective of alphavirus replication and assembly. Future Microbiol 4:837–856

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jupp PG, Blackburn NK, Thompson DL, Meenehan GM (1986) Sindbis and West Nile virus infections in the Witwatersrand-Pretoria region. S Afr Med J 70:218–220

    CAS  PubMed  Google Scholar 

  • Karabatsos N, Lewis AL, Calisher CH, Hunt AR, Roehrig JT (1988) Identification of Highlands J virus from a Florida horse. Am J Trop Med Hyg 39:603–606

    CAS  PubMed  Google Scholar 

  • Kerr DA, Larsen T, Cook SH et al (2002) BCL-2 and BAX protect adult mice from lethal Sindbis virus infection but do not protect spinal cord motor neurons or prevent paralysis. J Virol 76:10393–10400

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kimura T, Griffin DE (2000) The role of CD8(+) T cells and major histocompatibility complex class I expression in the central nervous system of mice infected with neurovirulent Sindbis virus. J Virol 74:6117–6125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kimura T, Griffin DE (2003) Extensive immune-mediated hippocampal damage in mice surviving infection with neuroadapted Sindbis virus. Virology 311:28–39

    Article  CAS  PubMed  Google Scholar 

  • Kissling RE, Chamberlain RW, Sikes RK, Eidson ME (1954) Studies on the North American arthropod-borne encephalitides. III. Eastern equine encephalitis in wild birds. Am J Hyg 60:251–265

    CAS  PubMed  Google Scholar 

  • Klimstra WB, Ryman KD, Johnston RE (1998) Adaptation of Sindbis virus to BHK cells selects for use of heparan sulfate as an attachment receptor. J Virol 72:7357–7366

    CAS  PubMed  PubMed Central  Google Scholar 

  • Klimstra WB, Ryman KD, Bernard KA, Nguyen KB, Biron CA, Johnston RE (1999) Infection of neonatal mice with sindbis virus results in a systemic inflammatory response syndrome. J Virol 73:10387–10398

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kokernot RH, Shinefield HR, Longshore WA Jr (1953) The 1952 outbreak of encephalitis in California; differential diagnosis. Calif Med 79:73–77

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kulcsar KA, Baxter VK, Greene IP, Griffin DE (2014) Interleukin 10 modulation of pathogenic Th17 cells during fatal alphavirus encephalomyelitis. Proc Natl Acad Sci U S A 111:16053–16058

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Labadie K, Larcher T, Joubert C et al (2010) Chikungunya disease in nonhuman primates involves long-term viral persistence in macrophages. J Clin Invest 120:894–906

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Laine M, Luukkainen R, Toivanen A (2004) Sindbis viruses and other alphaviruses as cause of human arthritic disease. J Intern Med 256:457–471

    Article  CAS  PubMed  Google Scholar 

  • Lambert AJ, Martin DA, Lanciotti RS (2003) Detection of North American eastern and western equine encephalitis viruses by nucleic acid amplification assays. J Clin Microbiol 41:379–385

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee P, Knight R, Smit JM, Wilschut J, Griffin DE (2002) A single mutation in the E2 glycoprotein important for neurovirulence influences binding of sindbis virus to neuroblastoma cells. J Virol 76:6302–6310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee EY, Schultz KL, Griffin DE (2013) Mice deficient in interferon-gamma or interferon-gamma receptor 1 have distinct inflammatory responses to acute viral encephalomyelitis. PLoS One 8:e76412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lemm JA, Rumenapf T, Strauss EG, Strauss JH, Rice CM (1994) Polypeptide requirements for assembly of functional Sindbis virus replication complexes: a model for the temporal regulation of minus- and plus-strand RNA synthesis. EMBO J 13:2925–2934

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lenschow DJ, Giannakopoulos NV, Gunn LJ et al (2005) Identification of interferon-stimulated gene 15 as an antiviral molecule during Sindbis virus infection in vivo. J Virol 79:13974–13983

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lenschow DJ, Lai C, Frias-Staheli N et al (2007) IFN-stimulated gene 15 functions as a critical antiviral molecule against influenza, herpes, and Sindbis viruses. Proc Natl Acad Sci U S A 104:1371–1376

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Levine B, Griffin DE (1992) Persistence of viral RNA in mouse brains after recovery from acute alphavirus encephalitis. J Virol 66:6429–6435

    CAS  PubMed  PubMed Central  Google Scholar 

  • Levine B, Hardwick JM, Trapp BD, Crawford TO, Bollinger RC, Griffin DE (1991) Antibody-mediated clearance of alphavirus infection from neurons. Science 254:856–860

    Article  CAS  PubMed  Google Scholar 

  • Levine B, Huang Q, Isaacs JT, Reed JC, Griffin DE, Hardwick JM (1993) Conversion of lytic to persistent alphavirus infection by the bcl-2 cellular oncogene. Nature 361:739–742

    Article  CAS  PubMed  Google Scholar 

  • Levine B, Goldman JE, Jiang HH, Griffin DE, Hardwick JM (1996) Bc1-2 protects mice against fatal alphavirus encephalitis. Proc Natl Acad Sci U S A 93:4810–4815

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Levitt NH, Ramsburg HH, Hasty SE, Repik PM, Cole FE Jr, Lupton HW (1986) Development of an attenuated strain of chikungunya virus for use in vaccine production. Vaccine 4:157–162

    Article  CAS  PubMed  Google Scholar 

  • Lewis J, Wesselingh SL, Griffin DE, Hardwick JM (1996) Alphavirus-induced apoptosis in mouse brains correlates with neurovirulence. J Virol 70:1828–1835

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lewis J, Oyler GA, Ueno K et al (1999) Inhibition of virus-induced neuronal apoptosis by Bax. Nat Med 5:832–835

    Article  CAS  PubMed  Google Scholar 

  • Li L, Jose J, Xiang Y, Kuhn RJ, Rossmann MG (2010) Structural changes of envelope proteins during alphavirus fusion. Nature 468:705–708

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liang XH, Kleeman LK, Jiang HH et al (1998) Protection against fatal Sindbis virus encephalitis by beclin, a novel Bcl-2-interacting protein. J Virol 72:8586–8596

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liang XH, Goldman JE, Jiang HH, Levine B (1999) Resistance of interleukin-1beta-deficient mice to fatal Sindbis virus encephalitis. J Virol 73:2563–2567

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liu C, Voth DW, Rodina P, Shauf LR, Gonzalez G (1970) A comparative study of the pathogenesis of western equine and eastern equine encephalomyelitis viral infections in mice by intracerebral and subcutaneous inoculations. J Infect Dis 122:53–63

    Article  CAS  PubMed  Google Scholar 

  • Logue CH, Bosio CF, Welte T et al (2009) Virulence variation among isolates of western equine encephalitis virus in an outbred mouse model. J Gen Virol 90:1848–1858

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Longshore WA Jr, Stevens IM, Hollister AC Jr, Gittelsohn A, Lennette EH (1956) Epidemiologic observations on acute infectious encephalitis in California, with special reference to the 1952 outbreak. Am J Hyg 63:69–86

    PubMed  Google Scholar 

  • Lubelczyk C, Mutebi JP, Robinson S et al (2013) An epizootic of eastern equine encephalitis virus, Maine, USA in 2009: outbreak description and entomological studies. Am J Trop Med Hyg 88:95–102

    Article  PubMed  PubMed Central  Google Scholar 

  • Lundstrom JO (1999) Mosquito-borne viruses in western Europe: a review. J Vector Ecol 24:1–39

    CAS  PubMed  Google Scholar 

  • Lundstrom JO, Pfeffer M (2010) Phylogeographic structure and evolutionary history of Sindbis virus. Vector Borne Zoonotic Dis 10:889–907

    Article  PubMed  Google Scholar 

  • Lustig S, Jackson AC, Hahn CS, Griffin DE, Strauss EG, Strauss JH (1988) Molecular basis of Sindbis virus neurovirulence in mice. J Virol 62:2329–2336

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lustig S, Halevy M, Ben-Nathan D, Akov Y (1992) A novel variant of Sindbis virus is both neurovirulent and neuroinvasive in adult mice. Arch Virol 122:237–248

    Article  CAS  PubMed  Google Scholar 

  • Lustig S, Halevy M, Ben-Nathan D, Rice CM, Kobiler D (1999) The role of host immunocompetence in neuroinvasion of Sindbis virus. Arch Virol 144:1159–1171

    Article  CAS  PubMed  Google Scholar 

  • Macdonald MR, Machlin ES, Albin OR, Levy DE (2007) The zinc finger antiviral protein acts synergistically with an interferon-induced factor for maximal activity against alphaviruses. J Virol 81:13509–13518

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mackenzie JS, Lindsay MD, Coelen RJ, Broom AK, Hall RA, Smith DW (1994) Arboviruses causing human disease in the Australasian zoogeographic region. Arch Virol 136:447–467

    Article  CAS  PubMed  Google Scholar 

  • Malherbe H, Strickland-Cholmley M, Jackson AL (1963) Sindbis virus infection in man. Report of a case with recovery of virus from skin lesions. S Afr Med J 37:547–552

    CAS  PubMed  Google Scholar 

  • Marcus PI, Fuller FJ (1979) Interferon induction by viruses. II. Sindbis virus: interferon induction requires one-quarter of the genome—genes G and A. J Gen Virol 44:169–177

    Article  CAS  PubMed  Google Scholar 

  • Mcfarland HF, Griffin DE, Johnson RT (1972) Specificity of the inflammatory response in viral encephalitis. I. Adoptive immunization of immunosuppressed mice infected with Sindbis virus. J Exp Med 136:216–226

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mcknight KL, Simpson DA, Lin SC et al (1996) Deduced consensus sequence of Sindbis virus strain AR339: mutations contained in laboratory strains which affect cell culture and in vivo phenotypes. J Virol 70:1981–1989

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mendoza QP, Stanley J, Griffin DE (1988) Monoclonal antibodies to the E1 and E2 glycoproteins of Sindbis virus: definition of epitopes and efficiency of protection from fatal encephalitis. J Gen Virol 69(Pt 12):3015–3022

    Article  CAS  PubMed  Google Scholar 

  • Metcalf TU, Griffin DE (2011) Alphavirus-induced encephalomyelitis: antibody-secreting cells and viral clearance from the nervous system. J Virol 85:11490–11501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Metcalf TU, Baxter VK, Nilaratanakul V, Griffin DE (2013) Recruitment and retention of B cells in the central nervous system in response to alphavirus encephalomyelitis. J Virol 87:2420–2429

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meyer KF, Hring CM, Howitt B (1931) The etiology of epizootic encephalomyelitis of horses in the San Joaquin Valley. Science 74:227–228

    Article  CAS  PubMed  Google Scholar 

  • Mitchell CJ, Niebylski ML, Smith GC et al (1992) Isolation of eastern equine encephalitis virus from Aedes albopictus in Florida. Science 257:526–527

    Article  CAS  PubMed  Google Scholar 

  • Moench TR, Griffin DE (1984) Immunocytochemical identification and quantitation of the mononuclear cells in the cerebrospinal fluid, meninges, and brain during acute viral meningoencephalitis. J Exp Med 159:77–88

    Article  CAS  PubMed  Google Scholar 

  • Mokhtarian F, Griffin DE, Hirsch RL (1982) Production of mononuclear cell chemotactic factors during Sindbis virus infection of mice. Infect Immun 35:965–973

    CAS  PubMed  PubMed Central  Google Scholar 

  • Molaei G, Andreadis TG, Armstrong PM et al (2013) Vector-host interactions and epizootiology of eastern equine encephalitis virus in Massachusetts. Vector Borne Zoonotic Dis 13:312–323

    Article  PubMed  Google Scholar 

  • Monath TP, Kemp GE, Cropp CB, Chandler FW (1978) Necrotizing myocarditis in mice infected with Western equine encephalitis virus: clinical, electrocardiographic, and histopathologic correlations. J Infect Dis 138:59–66

    Article  CAS  PubMed  Google Scholar 

  • Morgan IM (1941) Influence of age on susceptibility and on immune response of mice to eastern equine encephalomyelitis virus. J Exp Med 74:115–132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morgan IM, Schlesinger RW, Olitsky PK (1942) Induced resistance of the central nervous system to experimental infection with equine encephalomyelitis virus: I. Neutralizing antibody in the central nervous system in relation to cerebral resistance. J Exp Med 76:357–369

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morrison TE, Oko L, Montgomery SA et al (2011) A mouse model of chikungunya virus-induced musculoskeletal inflammatory disease: evidence of arthritis, tenosynovitis, myositis, and persistence. Am J Pathol 178:32–40

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Murphy FA, Whitfield SG (1970) Eastern equine encephalitis virus infection: electron microscopic studies of mouse central nervous system. Exp Mol Pathol 13:131–146

    Article  CAS  PubMed  Google Scholar 

  • Nargi-Aizenman JL, Griffin DE (2001) Sindbis virus-induced neuronal death is both necrotic and apoptotic and is ameliorated by N-methyl-D-aspartate receptor antagonists. J Virol 75:7114–7121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nargi-Aizenman JL, Simbulan-Rosenthal CM, Kelly TA, Smulson ME, Griffin DE (2002) Rapid activation of poly(ADP-ribose) polymerase contributes to Sindbis virus and staurosporine-induced apoptotic cell death. Virology 293:164–171

    Article  CAS  PubMed  Google Scholar 

  • Nargi-Aizenman JL, Havert MB, Zhang M, Irani DN, Rothstein JD, Griffin DE (2004) Glutamate receptor antagonists protect from virus-induced neural degeneration. Ann Neurol 55:541–549

    Article  CAS  PubMed  Google Scholar 

  • Ng CG, Griffin DE (2006) Acid sphingomyelinase deficiency increases susceptibility to fatal alphavirus encephalomyelitis. J Virol 80:10989–10999

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nimmannitya S, Halstead SB, Cohen SN, Margiotta MR (1969) Dengue and chikungunya virus infection in man in Thailand, 1962–1964. I. Observations on hospitalized patients with hemorrhagic fever. Am J Trop Med Hyg 18:954–971

    CAS  PubMed  Google Scholar 

  • Noran HH (1944) Chronic equine encephalitis. Am J Pathol 20:259–267

    CAS  PubMed  PubMed Central  Google Scholar 

  • Olitsky PK, Schlesinger RW, Morgan IM (1943) Induced resistance of the central nervous system to experimental infection with equine encephalomyelitis virus: II. Serotherapy in western virus infection. J Exp Med 77:359–374

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oliver KR, Scallan MF, Dyson H, Fazakerley JK (1997) Susceptibility to a neurotropic virus and its changing distribution in the developing brain is a function of CNS maturity. J Neurovirol 3:38–48

    Article  CAS  PubMed  Google Scholar 

  • Paessler S, Aguilar P, Anishchenko M, Wang HQ, Aronson J, Campbell G, Cararra AS, Weaver SC (2004) The hamster as an animal model for eastern equine encephalitis—and its use in studies of virus entrance into the brain. J Infect Dis 189:2072–2076

    Article  PubMed  Google Scholar 

  • Phillips AT, Stauft CB, Aboellail TA, Toth AM, Jarvis DL, Powers AM, Olson KE (2013) Bioluminescent imaging and histopathologic characterization of WEEV neuroinvasion in outbred CD-1 mice. PLoS One 8:e53462

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Postic B, Schleupner CJ, Armstrong JA, Ho M (1969) Two variants of Sindbis virus which differ in interferon induction and serum clearance. I. The phenomenon. J Infect Dis 120:339–347

    Article  CAS  PubMed  Google Scholar 

  • Potter MC, Baxter VK, Mathey RW, Alt J, Rojas C, Griffin DE, Slusher BS (2015) Neurological sequelae induced by alphavirus infection of the CNS are attenuated by treatment with the glutamine antagonist 6-diazo-5-oxo-l-norleucine. J Neurovirol 21:159–173

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Powers AM (2015) Risks to the Americas associated with the continued expansion of chikungunya virus. J Gen Virol 96:1–5

    Article  CAS  PubMed  Google Scholar 

  • Powers AM, Logue CH (2007) Changing patterns of chikungunya virus: re-emergence of a zoonotic arbovirus. J Gen Virol 88:2363–2377

    Article  CAS  PubMed  Google Scholar 

  • Powers AM, Brault AC, Tesh RB, Weaver SC (2000) Re-emergence of Chikungunya and O’nyong-nyong viruses: evidence for distinct geographical lineages and distant evolutionary relationships. J Gen Virol 81:471–479

    Article  CAS  PubMed  Google Scholar 

  • Priya R, Dhanwani R, Patro IK, Rao PV, Parida MM (2013) Differential regulation of TLR mediated innate immune response of mouse neuronal cells following infection with novel ECSA genotype of Chikungunya virus with and without E1:A226V mutation. Infect Genet Evol 20:396–406

    Article  CAS  PubMed  Google Scholar 

  • Priya R, Patro IK, Parida MM (2014) TLR3 mediated innate immune response in mice brain following infection with Chikungunya virus. Virus Res 189:194–205

    Article  CAS  PubMed  Google Scholar 

  • Przelomski MM, O’rourke E, Grady GF, Berardi VP, Markley HG (1988) Eastern equine encephalitis in Massachusetts: a report of 16 cases, 1970–1984. Neurology 38:736–739

    Article  CAS  PubMed  Google Scholar 

  • Randall R, Mills JW, Engel LL (1947) The preparation and properties of a purified equine encephalomyelitis vaccine. J Immunol 55:41–52

    CAS  PubMed  Google Scholar 

  • Reed DS, Larsen T, Sullivan LJ, Lind CM et al (2005) Aerosol exposure to western equine encephalitis virus causes fever and encephalitis in cynomolgus macaques. J Infect Dis 192:1173–1182

    Article  PubMed  Google Scholar 

  • Reisen WK, Chiles RE (1997) Prevalence of antibodies to western equine encephalomyelitis and St. Louis encephalitis viruses in residents of California exposed to sporadic and consistent enzootic transmission. Am J Trop Med Hyg 57:526–529

    CAS  PubMed  Google Scholar 

  • Reisen WK, Fang Y, Brault AC (2008) Limited interdecadal variation in mosquito (Diptera: Culicidae) and avian host competence for Western equine encephalomyelitis virus (Togaviridae: Alphavirus). Am J Trop Med Hyg 78:681–686

    PubMed  Google Scholar 

  • Renault P, Solet JL, Sissoko D et al (2007) A major epidemic of chikungunya virus infection on Reunion Island, France, 2005–2006. Am J Trop Med Hyg 77:727–731

    PubMed  Google Scholar 

  • Robin S, Ramful D, LE Seach F, Jaffar-Bandjee MC, Rigou G, Alessandri JL (2008) Neurologic manifestations of pediatric chikungunya infection. J Child Neurol 23:1028–1035

    Article  PubMed  Google Scholar 

  • Ross RW (1956) The Newala epidemic. III. The virus: isolation, pathogenic properties and relationship to the epidemic. J Hyg (Lond) 54:177–191

    Article  CAS  Google Scholar 

  • Rowell JF, Griffin DE (1999) The inflammatory response to nonfatal Sindbis virus infection of the nervous system is more severe in SJL than in BALB/c mice and is associated with low levels of IL-4 mRNA and high levels of IL-10-producing CD4+ T cells. J Immunol 162:1624–1632

    CAS  PubMed  Google Scholar 

  • Rowell JF, Griffin DE (2002) Contribution of T cells to mortality in neurovirulent Sindbis virus encephalomyelitis. J Neuroimmunol 127:106–114

    Article  CAS  PubMed  Google Scholar 

  • Ryman KD, Klimstra WB, Nguyen KB, Biron CA, Johnston RE (2000) Alpha/beta interferon protects adult mice from fatal Sindbis virus infection and is an important determinant of cell and tissue tropism. J Virol 74:3366–3378

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ryman KD, White LJ, Johnston RE, Klimstra WB (2002) Effects of PKR/RNase L-dependent and alternative antiviral pathways on alphavirus replication and pathogenesis. Viral Immunol 15:53–76

    Article  CAS  PubMed  Google Scholar 

  • Ryman KD, Meier KC, Gardner CL, Adegboyega PA, Klimstra WB (2007) Non-pathogenic Sindbis virus causes hemorrhagic fever in the absence of alpha/beta and gamma interferons. Virology 368:273–285

    Article  CAS  PubMed  Google Scholar 

  • Sabattini MS, Monath TP, Mitchell CJ, Daffner JF, Bowen GS, Pauli R, Contigiani MS (1985) Arbovirus investigations in Argentina, 1977–1980. I. Historical aspects and description of study sites. Am J Trop Med Hyg 34:937–944

    CAS  PubMed  Google Scholar 

  • Sanchez-San Martin C, Liu CY, Kielian M (2009) Dealing with low pH: entry and exit of alphaviruses and flaviviruses. Trends Microbiol 17:514–521

    Article  CAS  PubMed  Google Scholar 

  • Sawicki DL, Silverman RH, Williams BR, Sawicki SG (2003) Alphavirus minus-strand synthesis and persistence in mouse embryo fibroblasts derived from mice lacking RNase L and protein kinase R. J Virol 77:1801–1811

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schilte C, Couderc T, Chretien F et al (2010) Type I IFN controls chikungunya virus via its action on nonhematopoietic cells. J Exp Med 207:429–442

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schleupner CJ, Postic B, Armstrong JA, Atchison RW, Ho M (1969) Two variants of Sindbis virus which differ in interferon induction and serum clearance. II. Virological characterizations. J Infect Dis 120:348–355

    Article  CAS  PubMed  Google Scholar 

  • Schoepp RJ, Johnston RE (1993) Directed mutagenesis of a Sindbis virus pathogenesis site. Virology 193:149–159

    Article  CAS  PubMed  Google Scholar 

  • Schultz KL, Vernon PS, Griffin DE (2015) Differentiation of neurons restricts Arbovirus replication and increases expression of the alpha isoform of IRF-7. J Virol 89:48–60

    Article  PubMed  CAS  Google Scholar 

  • Scott TW, Weaver SC (1989) Eastern equine encephalomyelitis virus: epidemiology and evolution of mosquito transmission. Adv Virus Res 37:277–328

    Article  CAS  PubMed  Google Scholar 

  • Sherman LA, Griffin DE (1990) Pathogenesis of encephalitis induced in newborn mice by virulent and avirulent strains of Sindbis virus. J Virol 64:2041–2046

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shirako Y, Strauss JH (1994) Regulation of Sindbis virus RNA replication: uncleaved P123 and nsP4 function in minus-strand RNA synthesis, whereas cleaved products from P123 are required for efficient plus-strand RNA synthesis. J Virol 68:1874–1885

    CAS  PubMed  PubMed Central  Google Scholar 

  • Silva LA, Khomandiak S, Ashbrook AW et al (2014) A single-amino-acid polymorphism in Chikungunya virus E2 glycoprotein influences glycosaminoglycan utilization. J Virol 88:2385–2397

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Silverman RH (2007) Viral encounters with 2′,5′-oligoadenylate synthetase and RNase L during the interferon antiviral response. J Virol 81:12720–12729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Silverman MA, Misasi J, Smole S, Feldman HA, Cohen AB, Santagata S, Mcmanus M, Ahmed AA (2013) Eastern equine encephalitis in children, Massachusetts and New Hampshire, USA, 1970–2010. Emerg Infect Dis 19:194–201, quiz 352

    Article  PubMed  PubMed Central  Google Scholar 

  • Simmons JD, Wollish AC, Heise MT (2010) A determinant of Sindbis virus neurovirulence enables efficient disruption of Jak/STAT signaling. J Virol 84:11429–11439

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh I, Helenius A (1992) Role of ribosomes in Semliki Forest virus nucleocapsid uncoating. J Virol 66:7049–7058

    CAS  PubMed  PubMed Central  Google Scholar 

  • Snyder JE, Kulcsar KA, Schultz KL et al (2013) Functional characterization of the alphavirus TF protein. J Virol 87:8511–8523

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Spuul P, Balistreri G, Kaariainen L, Ahola T (2010) Phosphatidylinositol 3-kinase-, actin-, and microtubule-dependent transport of Semliki Forest virus replication complexes from the plasma membrane to modified lysosomes. J Virol 84:7543–7557

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stanley J, Cooper SJ, Griffin DE (1986) Monoclonal antibody cure and prophylaxis of lethal Sindbis virus encephalitis in mice. J Virol 58:107–115

    CAS  PubMed  PubMed Central  Google Scholar 

  • Strauss JH, Strauss EG (1994) The alphaviruses: gene expression, replication, and evolution. Microbiol Rev 58:491–562

    CAS  PubMed  PubMed Central  Google Scholar 

  • Strizki JM, Repik PM (1995) Differential reactivity of immune sera from human vaccinees with field strains of eastern equine encephalitis virus. Am J Trop Med Hyg 53:564–570

    CAS  PubMed  Google Scholar 

  • Suthar MS, Shabman R, Madric K, Lambeth C, Heise MT (2005) Identification of adult mouse neurovirulence determinants of the Sindbis virus strain AR86. J Virol 79:4219–4228

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tandale BV, Sathe PS, Arankalle VA et al (2009) Systemic involvements and fatalities during Chikungunya epidemic in India, 2006. J Clin Virol 46:145–149

    Article  PubMed  Google Scholar 

  • Taylor RM, Hurlbut HS, Work TH, Kingston JR, Frothingham TE (1955) Sindbis virus: a newly recognized arthropodtransmitted virus. Am J Trop Med Hyg 4:844–862

    CAS  PubMed  Google Scholar 

  • Taylor A, Herrero LJ, Rudd PA, Mahalingam S (2015) Mouse models of alphavirus-induced inflammatory disease. J Gen Virol 96:221–238

    Article  CAS  PubMed  Google Scholar 

  • Ten Broeck C, Merrill MH (1933) A serological difference between eastern and western equine encephalomyelitis virus. Proc Soc Exp Biol Med 31:217–220

    Article  Google Scholar 

  • Thach DC, Kimura T, Griffin DE (2000) Differences between C57BL/6 and BALB/cBy mice in mortality and virus replication after intranasal infection with neuroadapted Sindbis virus. J Virol 74:6156–6161

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thach DC, Kleeberger SR, Tucker PC, Griffin DE (2001) Genetic control of neuroadapted sindbis virus replication in female mice maps to chromosome 2 and associates with paralysis and mortality. J Virol 75:8674–8680

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thiruvengadam KV, Kalyanasundaram V, Rajgopal J (1965) Clinical and pathological studies on chikungunya fever in Madras city. Indian J Med Res 53:729–744

    CAS  PubMed  Google Scholar 

  • Trgovcich J, Aronson JF, Eldridge JC, Johnston RE (1999) TNFalpha, interferon, and stress response induction as a function of age-related susceptibility to fatal Sindbis virus infection of mice. Virology 263:339–348

    Article  CAS  PubMed  Google Scholar 

  • Tsetsarkin KA, Vanlandingham DL, Mcgee CE, Higgs S (2007) A single mutation in chikungunya virus affects vector specificity and epidemic potential. PLoS Pathog 3:e201

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tucker PC, Griffin DE (1991) Mechanism of altered Sindbis virus neurovirulence associated with a single-amino-acid change in the E2 Glycoprotein. J Virol 65:1551–1557

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tucker PC, Strauss EG, Kuhn RJ, Strauss JH, Griffin DE (1993) Viral determinants of age-dependent virulence of Sindbis virus for mice. J Virol 67:4605–4610

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tucker PC, Griffin DE, Choi S, Bui N, Wesselingh S (1996) Inhibition of nitric oxide synthesis increases mortality in Sindbis virus encephalitis. J Virol 70:3972–3977

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tucker PC, Lee SH, Bui N, Martinie D, Griffin DE (1997) Amino acid changes in the Sindbis virus E2 glycoprotein that increase neurovirulence improve entry into neuroblastoma cells. J Virol 71:6106–6112

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tyor WR, Wesselingh S, Levine B, Griffin DE (1992) Long term intraparenchymal Ig secretion after acute viral encephalitis in mice. J Immunol 149:4016–4020

    CAS  PubMed  Google Scholar 

  • Ubol S, Levine B, Lee SH, Greenspan NS, Griffin DE (1995) Roles of immunoglobulin valency and the heavy-chain constant domain in antibody-mediated downregulation of Sindbis virus replication in persistently infected neurons. J Virol 69:1990–1993

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ubol S, Park S, Budihardjo I et al (1996) Temporal changes in chromatin, intracellular calcium, and poly(ADP-ribose) polymerase during Sindbis virus-induced apoptosis of neuroblastoma cells. J Virol 70:2215–2220

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ulug ET, Garry RF, Bose HR Jr (1989) The role of monovalent cation transport in Sindbis virus maturation and release. Virology 172:42–50

    Article  CAS  PubMed  Google Scholar 

  • Vazeille M, Moutailler S, Coudrier D et al (2007) Two Chikungunya isolates from the outbreak of La Reunion (Indian Ocean) exhibit different patterns of infection in the mosquito, Aedes albopictus. PLoS One 2:e1168

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Vernon PS, Griffin DE (2005) Characterization of an in vitro model of alphavirus infection of immature and mature neurons. J Virol 79:3438–3447

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vilcek J (1964) Production of interferon by newborn and adult mice infected with Sindbis virus. Virology 22:651–652

    Article  CAS  PubMed  Google Scholar 

  • Vogel P, Kell WM, Fritz DL, Parker MD, Schoepp RJ (2005) Early events in the pathogenesis of eastern equine encephalitis virus in mice. Am J Pathol 166:159–171

    Article  PubMed  PubMed Central  Google Scholar 

  • Wahlberg JM, Garoff H (1992) Membrane fusion process of Semliki Forest virus. I: low pH-induced rearrangement in spike protein quaternary structure precedes virus penetration into cells. J Cell Biol 116:339–348

    Article  CAS  PubMed  Google Scholar 

  • Wahlberg JM, Bron R, Wilschut J, Garoff H (1992) Membrane fusion of Semliki Forest virus involves homotrimers of the fusion protein. J Virol 66:7309–7318

    CAS  PubMed  PubMed Central  Google Scholar 

  • Weaver SC, Kang W, Shirako Y, Rumenapf T, Strauss EG, Strauss JH (1997) Recombinational history and molecular evolution of western equine encephalomyelitis complex alphaviruses. J Virol 71:613–623

    CAS  PubMed  PubMed Central  Google Scholar 

  • Weaver SC, Powers AM, Brault AC, Barrett AD (1999) Molecular epidemiological studies of veterinary arboviral encephalitides. Vet J 157:123–138

    Article  CAS  PubMed  Google Scholar 

  • Weaver SC, Winegar R, Manger ID, Forrester NL (2012) Alphaviruses: population genetics and determinants of emergence. Antiviral Res 94:242–257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Webster LT, Wright FH (1938) Recovery of eastern equine encephalomyelitis virus from brain tissue of human cases of encephalitis in Massachusetts. Science 88:305–306

    Article  CAS  PubMed  Google Scholar 

  • Weiss B, Rosenthal R, Schlesinger S (1980) Establishment and maintenance of persistent infection by Sindbis virus in BHK cells. J Virol 33:463–474

    CAS  PubMed  PubMed Central  Google Scholar 

  • Werneke SW, Schilte C, Rohatgi A, Monte KJ, Michault A, Arenzana-Seisdedos F, Vanlandingham DL, Higgs S, Fontanet A, Albert ML, Lenschow DJ (2011) ISG15 is critical in the control of Chikungunya virus infection independent of UbE1L mediated conjugation. PLoS Pathog 7:e1002322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wesselingh SL, Levine B, Fox RJ, Choi S, Griffin DE (1994) Intracerebral cytokine mRNA expression during fatal and nonfatal alphavirus encephalitis suggests a predominant type 2 T cell response. J Immunol 152:1289–1297

    CAS  PubMed  Google Scholar 

  • White J, Helenius A (1980) pH-dependent fusion between the Semliki Forest virus membrane and liposomes. Proc Natl Acad Sci U S A 77:3273–3277

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • White G, Ottendorfer C, Graham S, Unnasch TR (2011) Competency of reptiles and amphibians for eastern equine encephalitis virus. Am J Trop Med Hyg 85:421–425

    Article  PubMed  PubMed Central  Google Scholar 

  • Wust CJ, Nicholas JA, Fredin D et al (1989) Monoclonal antibodies that cross-react with the E1 glycoprotein of different alphavirus serogroups: characterization including passive protection in vivo. Virus Res 13:101–112

    Article  CAS  PubMed  Google Scholar 

  • Zhang W, Mukhopadhyay S, Pletnev SV, Baker TS, Kuhn RJ, Rossmann MG (2002) Placement of the structural proteins in Sindbis virus. J Virol 76:11645–11658

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Y, Burke CW, Ryman KD, Klimstra WB (2007) Identification and characterization of interferon-induced proteins that inhibit alphavirus replication. J Virol 81:11246–11255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang M, Fang Y, Brault AC, Reisen WK (2011) Variation in western equine encephalomyelitis viral strain growth in mammalian, avian, and mosquito cells fails to explain temporal changes in enzootic and epidemic activity in California. Vector Borne Zoonotic Dis 11:269–275

    Article  PubMed  PubMed Central  Google Scholar 

  • Zichis J, Shaughnessy HJ (1945) Successful treatment of experimental western equine encephalomyelitis with hyperimmune rabbit serum. Am J Public Health Nations Health 35:815–823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ziegler SA, Lu L, da Rosa AP, Xiao SY, Tesh RB (2008) An animal model for studying the pathogenesis of chikungunya virus infection. Am J Trop Med Hyg 79:133–139

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diane E. Griffin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Griffin, D.E. (2016). Neurotropic Alphaviruses. In: Reiss, C. (eds) Neurotropic Viral Infections. Springer, Cham. https://doi.org/10.1007/978-3-319-33133-1_7

Download citation

Publish with us

Policies and ethics