Skip to main content

Lessons Learned from Positive Biomechanics and Poor Clinical Outcomes

  • Living reference work entry
  • First Online:
Handbook of Spine Technology

Abstract

Biomechanical testings are essential to the research process. However, understanding the assumptions, inevitable part of engineering solution as it translates to clinical outcomes is paramount to the iterative process in implant design. Therefore, it is critical to consider that beneficial biomechanical data may not actually yield good clinical outcomes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Agarwal A, Ingels M, Kodigudla M et al (2016) Adjacent-level hypermobility and instrumented-level fatigue loosening with titanium and PEEK rods for a pedicle screw system: an in vitro study. J Biomech Eng 138:51004–51008. https://doi.org/10.1115/1.4032965

  • Agarwal A, Agarwal AK, Jayaswal A, Goel VK (2017) Outcomes of optimal distraction forces and frequencies in growth rod surgery for different types of scoliotic curves: an in silico and in vitro study. Spine Deform 5:18–26

    Article  PubMed  Google Scholar 

  • Akamaru T, Kawahara N, Tim Yoon S et al (2003) Adjacent segment motion after a simulated lumbar fusion in different sagittal alignments: a biomechanical analysis. Spine (Phila Pa 1976) 28:1560–1566

    Google Scholar 

  • Amevo B, Worth D, Bogduk N (1991) Instantaneous axes of rotation of the typical cervical motion segments: a study in normal volunteers. Clin Biomech (Bristol, Avon) 6(2):111–117. https://doi.org/10.1016/0268-0033(91)90008-E

  • Anderson CE (1956) Spondyloschisis following spine fusion. JBJS 38:1142–1146

    Article  Google Scholar 

  • Bogduk N, Mercer S (2000) Biomechanics of the cervical spine. I: normal kinematics. Clin Biomech (Bristol, Avon) 15:633–648

    Article  CAS  Google Scholar 

  • Bowers C, Amini A, Dailey AT, Schmidt MH (2010) Dynamic interspinous process stabilization: review of complications associated with the X-stop device. Neurosurg Focus 28:E8. https://doi.org/10.3171/2010.3.FOCUS1047

    Article  PubMed  Google Scholar 

  • Brodke DS, Dick JC, Kunz DN et al (1997) Posterior lumbar interbody fusion A biomechanical comparison, including a new threaded cage. Spine (Phila Pa 1976) 22:26–31

    Article  CAS  Google Scholar 

  • Brodsky AE (1976) Post-laminectomy and post-fusion stenosis of the lumbar spine. Clin Orthop Relat Res 115:130–139

    Google Scholar 

  • Brunet JA, Wiley JJ (1984) Acquired spondylolysis after spinal fusion. J Bone Joint Surg (Br) 66:720–724

    Article  CAS  Google Scholar 

  • Chen CS, Cheng CK, Liu CL, Lo WH (2001a) Stress analysis of the disc adjacent to interbody fusion in lumbar spine. Med Eng Phys 23:483–491

    Article  CAS  PubMed  Google Scholar 

  • Chen W-J, Lai P-L, Niu C-C et al (2001b) Surgical treatment of adjacent instability after lumbar spine fusion. Spine (Phila Pa 1976) 26:E519–E524

    Article  CAS  Google Scholar 

  • Chin KR, Newcomb AGU, Reis MT et al (2016) Biomechanics of posterior instrumentation in L1-L3 lateral interbody fusion: pedicle screw rod construct vs. transfacet pedicle screws. Clin Biomech 31:59–64

    Article  Google Scholar 

  • DiAngelo DJ, Roberston JT, Metcalf NH et al (2003) Biomechanical testing of an artificial cervical joint and an anterior cervical plate. J Spinal Disord Tech 16:314–323

    Article  PubMed  Google Scholar 

  • Dmitriev AE, Cunningham BW, Hu N et al (2005) Adjacent level intradiscal pressure and segmental kinematics following a cervical total disc arthroplasty: an in vitro human cadaveric model. Spine (Phila Pa 1976) 30:1165–1172

    Article  Google Scholar 

  • Eck JC, Humphreys SC, Lim T-H et al (2002) Biomechanical study on the effect of cervical spine fusion on adjacent-level intradiscal pressure and segmental motion. Spine (Phila Pa 1976) 27:2431–2434

    Article  Google Scholar 

  • Erbulut DU, Kiapour A, Oktenoglu T et al (2014) A computational biomechanical investigation of posterior dynamic instrumentation: combination of dynamic rod and hinged (dynamic) screw. J Biomech Eng 136:51007

    Article  Google Scholar 

  • Erbulut DU, Zafarparandeh I, Hassan CR et al (2015) Determination of the biomechanical effect of an interspinous process device on implanted and adjacent lumbar spinal segments using a hybrid testing protocol: a finite-element study. J Neurosurg Spine 23:200–208

    Article  PubMed  Google Scholar 

  • Etebar S, Cahill DW (1999) Risk factors for adjacent-segment failure following lumbar fixation with rigid instrumentation for degenerative instability. J Neurosurg Spine 90:163–169

    Article  CAS  Google Scholar 

  • Evans JH (1985) Biomechanics of lumbar fusion. Clin Orthop Relat Res 193:38–46

    Google Scholar 

  • Faizan A, Goel VK, Biyani A et al (2012) Adjacent level effects of bi level disc replacement, bi level fusion and disc replacement plus fusion in cervical spine – a finite element based study. Clin Biomech (Bristol, Avon) 27:226–233. https://doi.org/10.1016/j.clinbiomech.2011.09.014

    Article  Google Scholar 

  • Freudiger S, Dubois G, Lorrain M (1999) Dynamic neutralisation of the lumbar spine confirmed on a new lumbar spine simulator in vitro. Arch Orthop Trauma Surg 119:127–132

    Article  CAS  PubMed  Google Scholar 

  • Goel VK, Panjabi MM, Patwardhan AG et al (2006) Test protocols for evaluation of spinal implants. J Bone Joint Surg Am 88(Suppl 2):103–109

    PubMed  Google Scholar 

  • Grevitt MP, Gardner ADH, Spilsbury J et al (1995) The Graf stabilisation system: early results in 50 patients. Eur Spine J 4:169–175

    Article  CAS  PubMed  Google Scholar 

  • Grob D, Benini A, Junge A, Mannion AF (2005) Clinical experience with the Dynesys semirigid fixation system for the lumbar spine: surgical and patient-oriented outcome in 50 cases after an average of 2 years. Spine (Phila Pa 1976) 30:324–331

    Article  Google Scholar 

  • Hadlow SV, Fagan AB, Hillier TM, RDF (1998) The graft ligamentoplasty procedure: comparison with posterolat- eral fusion in the management of low back pain. Spine (Phila Pa 1976) 23:1172–1179

    Article  CAS  Google Scholar 

  • Hanten WP, Olson SL, Russell JL et al (2000) Total head excursion and resting head posture: normal and patient comparisons. Arch Phys Med Rehabil 81:62–66

    Article  CAS  PubMed  Google Scholar 

  • Ivanov AA, Kiapour A, Ebraheim NA, Goel V (2009) Lumbar fusion leads to increases in angular motion and stress across sacroiliac joint: a finite element study. Spine (Phila Pa 1976) 34:E162–E169

    Article  Google Scholar 

  • Katz V, Schofferman J, Reynolds J (2003) The sacroiliac joint: a potential cause of pain after lumbar fusion to the sacrum. Clin Spine Surg 16:96–99

    Google Scholar 

  • Kerr D, Zhao W, Lurie JD (2015) What are long-term predictors of outcomes for lumbar disc herniation? A randomized and observational study. Clin Orthop Relat Res 473:1920–1930

    Article  PubMed  Google Scholar 

  • Kim DH, Shanti N, Tantorski ME et al (2012) Association between degenerative spondylolisthesis and spinous process fracture after interspinous process spacer surgery. Spine J 12:466–472

    Article  PubMed  Google Scholar 

  • Ko C-C, Tsai H-W, Huang W-C et al (2010) Screw loosening in the Dynesys stabilization system: radiographic evidence and effect on outcomes. Neurosurg Focus 28:E10

    Article  PubMed  Google Scholar 

  • Kumar MN, Jacquot F, Hall H (2001) Long-term follow-up of functional outcomes and radiographic changes at adjacent levels following lumbar spine fusion for degenerative disc disease. Eur Spine J 10:309–313

    Article  CAS  PubMed  Google Scholar 

  • Kumar A, Beastall J, Hughes J et al (2008) Disc changes in the bridged and adjacent segments after Dynesys dynamic stabilization system after two years. Spine (Phila Pa 1976) 33:2909–2914

    Article  Google Scholar 

  • Lafage R, Schwab F, Glassman S et al (2017) Age-adjusted alignment goals have the potential to reduce PJK. Spine (Phila Pa 1976) 42:1275–1282

    Article  Google Scholar 

  • Laxer EB, Brigham CD, Darden BV et al (2017) Adjacent segment degeneration following ProDisc-C total disc replacement (TDR) and anterior cervical discectomy and fusion (ACDF): does surgeon bias effect radiographic interpretation?. Eur Spine J 26(4):1199–1204. https://doi.org/10.1007/s00586-016-4780-1

  • Lee CK (1988) Accelerated degeneration of the segment adjacent to a lumbar fusion. Spine (Phila Pa 1976) 13:375–377

    Article  CAS  Google Scholar 

  • Lee CK, Langrana NA (1984) Lumbosacral spine fusion, A biomechanical study. Spine (Phila Pa 1976) 9:574–581

    Article  CAS  Google Scholar 

  • Maigne JY, Planchon CA (2005) Sacroiliac joint pain after lumbar fusion. A study with anesthetic blocks. Eur Spine J 14:654–658

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Markwalder TM, Wenger M (2003) Dynamic stabilization of lumbar motion segments by use of Graf’s ligaments: results with an average follow-up of 7.4 years in 39 highly selected, consecutive patients. Acta Neurochir 145:209–214

    Article  PubMed  Google Scholar 

  • Matsumoto T, Okuda S, Maeno T et al (2017) Spinopelvic sagittal imbalance as a risk factor for adjacent-segment disease after single-segment posterior lumbar interbody fusion. J Neurosurg Spine 26:435–440

    Article  PubMed  Google Scholar 

  • Matsumoto K, Shah A, Agarwal A, Goel V (2018) Biomechanics of the relationship between adjacent segment disease (ASD) after lumbar arthrodesis and sagittal imbalance: a finite element study. Glob Spine J 8(1S):174S–374S

    Google Scholar 

  • Matsumoto K, Shah A, Agarwal A, Goel V (2019) Biomechanics of vertebral stress and sagittal imbalance in an adult spine deformity: a finite element study. Orthop Res Soc 44(PS1-025):0809

    Google Scholar 

  • Miller JD, Miller MC, Lucas MG (2010) Erosion of the spinous process: a potential cause of interspinous process spacer failure. J Neurosurg Spine 12:210–213

    Article  PubMed  Google Scholar 

  • Mo Z, Zhao Y, Du C et al (2015) Does location of rotation center in artificial disc affect cervical biomechanics? Spine (Phila Pa 1976) 40:E469–E475

    Article  Google Scholar 

  • Moreau PE, Ferrero E, Riouallon G et al (2016) Radiologic adjacent segment degeneration 2 years after lumbar fusion for degenerative spondylolisthesis. Orthop Traumatol Surg Res 102:759–763

    Article  PubMed  Google Scholar 

  • Mulholland RC, Sengupta DK (2002) Rationale, principles and experimental evaluation of the concept of soft stabilization. Eur Spine J 11(Suppl 2):S198–S205

    Article  PubMed  PubMed Central  Google Scholar 

  • Nakashima H, Kawakami N, Tsuji T et al (2015) Adjacent segment disease after posterior lumbar interbody fusion: based on cases with a minimum of 10 years of follow-up. Spine (Phila Pa 1976) 40:E831–E841

    Article  Google Scholar 

  • Natarajan RN, Andersson GBJ (2017) Lumbar disc degeneration is an equally important risk factor as lumbar fusion for causing adjacent segment disc disease. J Orthop Res 35:123–130

    Article  CAS  PubMed  Google Scholar 

  • Nowitzke A, Westaway M, Bogduk N (1994) Cervical zygapophyseal joints: geometrical parameters and relationship to cervical kinematics. Clin Biomech 9:342–348

    Article  CAS  Google Scholar 

  • Ordway N, Seymour R, Donelson R (1999) Cervical flexion, extension, protrusion, and retraction: a radiographic segmental analysis. Spine (Phila Pa 1976) 24:240–247

    Article  CAS  Google Scholar 

  • Park P, Garton HJ, Gala VC et al (2004) Adjacent segment disease after lumbar or lumbosacral fusion: review of the literature. Spine (Phila Pa 1976) 29:1938–1944

    Article  Google Scholar 

  • Pearcy MJ, Bogduk N (1988) Instantaneous axes of rotation of the lumbar intervertebral joints. Spine (Phila Pa 1976) 13:1033–1041

    Article  CAS  Google Scholar 

  • Penning L (1988) Differences in anatomy, motion, development and aging of the upper and lower cervical disk segments. Clin Biomech 3:37–47

    Article  CAS  Google Scholar 

  • Pham MH, Mehta VA, Patel NN et al (2016) Complications associated with the Dynesys dynamic stabilization system: a comprehensive review of the literature. Neurosurg Focus 40:1–8

    Article  Google Scholar 

  • Phillips FM, Carlson GD, Bohlman HH, Hughes SS (2000) Results of surgery for spinal stenosis adjacent to previous lumbar fusion. Clin Spine Surg 13:432–437

    CAS  Google Scholar 

  • Rohlmann A, Burra NK, Zander T, Bergmann G (2007) Comparison of the effects of bilateral posterior dynamic and rigid fixation devices on the loads in the lumbar spine: a finite element analysis. Eur Spine J 16(8):1223–1231. https://doi.org/10.1007/s00586-006-0292-8

  • Rothenfluh DA, Mueller DA, Rothenfluh E, Min K (2015) Pelvic incidence-lumbar lordosis mismatch predisposes to adjacent segment disease after lumbar spinal fusion. Eur Spine J 24:1251–1258

    Article  PubMed  Google Scholar 

  • Schlegel JD, Smith JA, Schleusener RL (1996) Lumbar motion segment pathology adjacent to thoracolumbar, lumbar, and lumbosacral fusions. Spine (Phila Pa 1976) 21:970–981

    Article  CAS  Google Scholar 

  • Schmidt H, Heuer F, Wilke H-J (2009) Which axial and bending stiffnesses of posterior implants are required to design a flexible lumbar stabilization system? J Biomech 42:48–54

    Article  PubMed  Google Scholar 

  • Schmoelz W, Huber JF, Nydegger T et al (2003) Dynamic stabilization of the lumbar spine and its effects on adjacent segments: an in vitro experiment. J Spinal Disord Tech 16:418–423

    Article  CAS  PubMed  Google Scholar 

  • Schnake KJ, Schaeren S, Jeanneret B (2006) Dynamic stabilization in addition to decompression for lumbar spinal stenosis with degenerative spondylolisthesis. Spine (Phila Pa 1976) 31:442–449

    Article  Google Scholar 

  • Sengupta DK (2015) Cervical and lumbar disc replacement. In: Kim DH, Sangupta DK, FPC J et al (eds) Dynamic reconstruction of the spine, 2nd edn. Thieme Medical Publisher, New York, pp 7–19

    Google Scholar 

  • Sengupta DK, Herkowitz HN (2012) Pedicle screw-based posterior dynamic stabilization: literature review. Adv Orthop 2012:1–7

    Article  Google Scholar 

  • Shah A, Lemans JVC, Zavatsky J, Agarwal A, Kruyt MC, Matsumoto K et al (2019) Spinal balance/alignment-clinical relevance and biomechanics. J Biomech Eng 141(7):1–14

    Article  Google Scholar 

  • Stoll TM, Dubois G, Schwarzenbach O (2002) The dynamic neutralization system for the spine: a multi-center study of a novel non-fusion system. Eur Spine J 11(Suppl 2):S170–S178

    Article  PubMed  PubMed Central  Google Scholar 

  • Sudershan S (2017) Biomechanical evaluation of lumbar interbody fusion surgeries with varying interbody device shapes, material properties, and supplemental fixation. Electronic thesis or dissertation. Retrieved from https://etd.ohiolink.edu

  • Umehara S, Zindrick MR, Patwardhan a G et al (2000) The biomechanical effect of postoperative hypolordosis in instrumented lumbar fusion on instrumented and adjacent spinal segments. Spine (Phila Pa 1976) 25:1617–1624

    Article  CAS  Google Scholar 

  • Unander-Scharin L (1950) A case of spondylolisthesis lumbalis acquisita. Acta Orthop Scand 19:536–544

    Article  CAS  PubMed  Google Scholar 

  • Voronov LI, Mica MRC, Carandang G et al (2016) Biomechanics of transforaminally deployed expandable lumbar interbody fusion cage. Spine J 16:S255

    Article  Google Scholar 

  • Welch WC, Cheng BC, Awad TE et al (2007) Clinical outcomes of the Dynesys dynamic neutralization system: 1-year preliminary results. Neurosurg Focus 22:E8

    Article  PubMed  Google Scholar 

  • Whitecloud TSIII, Davis JM, Olive PM (1994) Operative treatment of the degenerated segment adjacent to a lumbar fusion. Spine (Phila Pa 1976) 19:531–536

    Article  Google Scholar 

  • Wimmer C, Gluch H, Krismer M et al (1997) AP-translation in the proximal disc adjacent to lumbar spine fusion: a retrospective comparison of mono- and polysegmental fusion in 120 patients. Acta Orthop Scand 68:269–272

    Article  CAS  PubMed  Google Scholar 

  • Wu J-C, Huang W-C, Tsai H-W et al (2011) Pedicle screw loosening in dynamic stabilization: incidence, risk, and outcome in 126 patients. Neurosurg Focus 31:E9

    Article  PubMed  Google Scholar 

  • Würgler-Hauri CC, Kalbarczyk A, Wiesli M et al (2008) Dynamic neutralization of the lumbar spine after microsurgical decompression in acquired lumbar spinal stenosis and segmental instability. Spine (Phila Pa 1976) 33:E66–E72

    Article  Google Scholar 

  • Yamasaki K, Hoshino M, Omori K et al (2017) Risk factors of adjacent segment disease after transforaminal inter-body fusion for degenerative lumbar disease. Spine (Phila Pa 1976) 42:E86–E92

    Article  Google Scholar 

Download references

Acknowledgments

The work was supported in part by NSF Industry/University Cooperative Research Center at The University of California at San Francisco, CA, and The University of Toledo, Toledo, OH. A sincere thank you to Ronit Shah for his diligent proofreading of this book chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deniz U. Erbulut .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Erbulut, D.U. et al. (2020). Lessons Learned from Positive Biomechanics and Poor Clinical Outcomes. In: Cheng, B. (eds) Handbook of Spine Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-33037-2_27-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-33037-2_27-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-33037-2

  • Online ISBN: 978-3-319-33037-2

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics