Skip to main content

The Lasso

  • Chapter
  • First Online:
Estimation and Testing Under Sparsity

Part of the book series: Lecture Notes in Mathematics ((LNMECOLE,volume 2159))

Abstract

Sharp oracle inequalities for the prediction error and 1-error of the Lasso are given. We highlight the ingredients for establishing these. The latter is also for later reference where results are extended to other norms and other loss functions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    A suitable notation that expresses the non-uniqueness is β 0 ∈ argmin{ ∥ β ∥ 1:  X β = f 0}. In our analysis, non-uniqueness is not a major concern.

  2. 2.

    If X 1, , X n are n elements of some space \(\mathcal{X}\) and \(f: \mathcal{X} \rightarrow \mathbb{R}\) is some real-valued function on \(\mathcal{X}\), one may view \(\sum _{i=1}^{n}f^{2}(X_{i})/n\) as the squared L 2(P n )-norm of f, with \(P_{n} =\sum _{ i=1}^{n}\delta _{X_{i}}/n\) being the measure that puts equal mass 1∕n at each X i (i = 1, , n). Let us denote the L 2(P n )-norm by \(\|\cdot \|_{2,P_{n}}\). We have abbreviated this to \(\|\cdot \|_{P_{n}}\) and then further abbreviated it to ∥ ⋅ ∥  n . Finally, we identified f with the vector \((\,f(X_{1}),\ldots,f(X_{n}))^{T} \in \mathbb{R}^{n}\).

  3. 3.

    Or non-sparsity actually.

  4. 4.

    The “argmin” argument takes the inequality: \(\|Y - X\hat{\beta }\|_{n}^{2} + 2\lambda \|\hat{\beta }\|_{1} \leq \vert Y - X\beta \|_{n}^{2} + 2\lambda \|\beta \|_{1}\ \forall \ \beta\), as starting point.

References

  • P. Bickel, Y. Ritov, A. Tsybakov, Simultaneous analysis of Lasso and Dantzig selector. Ann. Stat. 37, 1705–1732 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  • P. Bühlmann, S. van de Geer, Statistics for High-Dimensional Data: Methods, Theory and Applications (Springer, Heidelberg, 2011)

    Book  MATH  Google Scholar 

  • G. Chen, M. Teboulle, Convergence analysis of a proximal-like minimization algorithm using Bregman functions. SIAM J. Optim. 3, 538–543 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  • S.S. Chen, D.L. Donoho, M.A. Saunders, Atomic decomposition by basis pursuit. SIAM J. Sci. Comput. 20, 33–61 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  • O. Güler, On the convergence of the proximal point algorithm for convex minimization. SIAM J. Control Optim. 29, 403–419 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  • V. Koltchinskii, Oracle Inequalities in Empirical Risk Minimization and Sparse Recovery Problems: École d’Été de Probabilités de Saint-Flour XXXVIII-2008, vol. 38 (Springer, Heidelberg, 2011)

    Book  MATH  Google Scholar 

  • V. Koltchinskii, K. Lounici, A. Tsybakov, Nuclear-norm penalization and optimal rates for noisy low-rank matrix completion. Ann. Stat. 39, 2302–2329 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  • R. Tibshirani, Regression analysis and selection via the Lasso. J. R. Stat. Soc. Ser. B 58, 267–288 (1996)

    MathSciNet  MATH  Google Scholar 

  • S. van de Geer, Least squares estimation with complexity penalties. Math. Methods Stat. 10, 355–374 (2001)

    MathSciNet  MATH  Google Scholar 

  • S. van de Geer, The deterministic Lasso, in JSM Proceedings, 2007, 140 (American Statistical Association, Alexandria, 2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

van de Geer, S. (2016). The Lasso. In: Estimation and Testing Under Sparsity. Lecture Notes in Mathematics(), vol 2159. Springer, Cham. https://doi.org/10.1007/978-3-319-32774-7_2

Download citation

Publish with us

Policies and ethics