Skip to main content

Skeletal Muscle Structure in Spastic Cerebral Palsy

  • Living reference work entry
  • First Online:
Handbook of Human Motion
  • 257 Accesses

Abstract

The structure of skeletal muscle in cerebral palsy (CP) is altered at the molecular level, at the cellular level, and at the level of the tissue. These abnormalities in structure have implications for active and passive muscle performance and for the functional capacity of the individual, particularly in the long term. Appreciating the deficits of muscle structure may well encourage clinicians to focus on muscle growth when managing this group and lead researchers to novel therapeutics targeted at normalizing muscle structure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Barber L, Hastings-Ison T, Baker R, Barrett R, Lichtwark G (2011) Medial gastrocnemius muscle volume and fascicle length in children aged 2 to 5 years with cerebral palsy. Dev Med Child Neurol 53(6):543–548. doi:10.1111/j.1469-8749.2011.03913.x

    Article  Google Scholar 

  • Braun T, Gautel M (2011) Transcriptional mechanisms regulating skeletal muscle differentiation, growth and homeostasis. Nat Rev Mol Cell Biol 12(6):349–361. doi:10.1038/nrm3118

    Article  Google Scholar 

  • Castle ME, Reyman TA, Schneider M (1979) Pathology of spastic muscle in cerebral palsy. Clin Orthop Relat Res 142:223–232. http://www.ncbi.nlm.nih.gov/pubmed/159152. Accessed 1 Apr 2012

    Google Scholar 

  • Clowry GJ (2007) The dependence of spinal cord development on corticospinal input and its significance in understanding and treating spastic cerebral palsy. Neurosci Biobehav Rev 31(8):1114–1124. doi:10.1016/j.neubiorev.2007.04.007

    Article  Google Scholar 

  • Dayanidhi S, Lieber RL (2014) Skeletal muscle satellite cells: mediators of muscle growth during development and implications for developmental disorders. Muscle Nerve 50(5):723–732. doi:10.1002/mus.24441

    Article  Google Scholar 

  • Downing AL, Ganley KJ, Fay DR, Abbas JJ (2009) Temporal characteristics of lower extremity moment generation in children with cerebral palsy. Muscle Nerve 39(6):800–809. doi:10.1002/mus.21231

    Article  Google Scholar 

  • Eken T, Elder GCB, Lømo T (2008) Development of tonic firing behavior in rat soleus muscle. J Neurophysiol 99(4):1899–1905. doi:10.1152/jn.00834.2007

    Article  Google Scholar 

  • Foran JRH, Steinman S, Barash I, Chambers HG, Lieber RL (2005) Structural and mechanical alterations in spastic skeletal muscle. Dev Med Child Neurol 47(10):713–717. doi:10.1017/S0012162205001465

    Article  Google Scholar 

  • Fry NR, Gough M, McNee AE, Shortland AP (2007) Changes in the volume and length of the medial gastrocnemius after surgical recession in children with spastic diplegic cerebral palsy. J Pediatr Orthop 27(7):769–774. doi:10.1097/BPO.0b013e3181558943

    Article  Google Scholar 

  • Fukunaga T, Roy RR, Shellock FG et al (1992) Physiological cross-sectional area of human leg muscles based on magnetic resonance imaging. J Orthop Res 10(6):928–934. doi:10.1002/jor.1100100623

    Article  Google Scholar 

  • Gantelius S, Hedström Y, Pontén E (2012) Higher expression of myosin heavy chain IIx in wrist flexors in cerebral palsy. Clin Orthop Relat Res. doi:10.1007/s11999-011-2035-3

  • Gough M, Shortland AP (2012) Could muscle deformity in children with spastic cerebral palsy be related to an impairment of muscle growth and altered adaptation? Dev Med Child Neurol 54(6):495–499. doi:10.1111/j.1469-8749.2012.04229.x

    Article  Google Scholar 

  • Handsfield GG, Meyer CH, Abel MF, Blemker SS (2016) Heterogeneity of muscle sizes in the lower limbs of children with cerebral palsy. Muscle Nerve 53(6):933–945. doi:10.1002/mus.24972

    Article  Google Scholar 

  • Herskind A, Ritterband-Rosenbaum A, Willerslev-Olsen M et al (2016) Muscle growth is reduced in 15-month-old children with cerebral palsy. Dev Med Child Neurol 58(5):485–491

    Article  Google Scholar 

  • Ito J, Araki A, Tanaka H, Tasaki T, Cho K, Yamazaki R (1996) Muscle histopathology in spastic cerebral palsy. Brain and Development. doi:10.1016/0387-7604(96)00006-X

  • Johnson DL, Miller F, Subramanian P, Modlesky CM (2009) Adipose tissue infiltration of skeletal muscle in children with cerebral palsy. J Pediatr 154(5):715–720. doi:10.1016/j.jpeds.2008.10.046

    Article  Google Scholar 

  • Mohagheghi AA, Khan T, Meadows TH, Giannikas K, Baltzopoulos V, Maganaris CN (2008) In vivo gastrocnemius muscle fascicle length in children with and without diplegic cerebral palsy. Dev Med Child Neurol 50(1):44–50. doi:10.1111/j.1469-8749.2007.02008.x

    Article  Google Scholar 

  • Lampe R, Grassl S, Mitternacht J, Gerdesmeyer L, Gradinger R (2006) MRT-measurements of muscle volumes of the lower extremities of youths with spastic hemiplegia caused by cerebral palsy. Brain and Development 28(8):500–506. doi:10.1016/j.braindev.2006.02.009

    Article  Google Scholar 

  • Lemon RN (2008) Descending pathways in motor control. Annu Rev Neurosci 31:195–218. doi:10.1146/annurev.neuro.31.060407.125547

    Article  Google Scholar 

  • Lieber RL, Fridén J (2000) Functional and clinical significance of skeletal muscle architecture. Muscle Nerve 23:1647–1666. doi:10.1002/1097-4598(200011)23:11<1647::AID-MUS1>3.0.CO;2-M. [pii]

    Article  Google Scholar 

  • Malaiya R, McNee AE, Fry NR, Eve LC, Gough M, Shortland AP (2007) The morphology of the medial gastrocnemius in typically developing children and children with spastic hemiplegic cerebral palsy. J Electromyogr Kinesiol 17(6):657–663. doi:10.1016/j.jelekin.2007.02.009

    Article  Google Scholar 

  • Mathewson MA, Ward SR, Chambers HG, Lieber RL (2015) High resolution muscle measurements provide insights into equinus contractures in patients with cerebral palsy. J Orthop Res. doi:10.1002/jor.22728

  • McNee AE, Gough M, Morrissey MC, Shortland AP (2009) Increases in muscle volume after plantarflexor strength training in children with spastic cerebral palsy. Dev Med Child Neurol 51(6):429–435. doi:10.1111/j.1469-8749.2008.03230.x

    Article  Google Scholar 

  • Moreau NG, Teefey SA, Damiano DL (2009) In vivo muscle architecture and size of the rectus femoris and vastus lateralis in children and adolescents with cerebral palsy. Dev Med Child Neurol 51(10):800–806

    Article  Google Scholar 

  • Noble JJ, Chruscikowski E, Fry NR, Lewis AP, Gough M, Shortland AP. Reduced lower limb muscle growth in relation to body mass in a cross-sectional study of ambulant individuals with bilateral cerebral palsy aged 10 to 23. Article in review

    Google Scholar 

  • Noble JJ, Fry NR, Lewis AP, Keevil SF, Gough M, Shortland AP (2014a) Lower limb muscle volumes in bilateral spastic cerebral palsy. Brain and Development 36:294–300. doi:10.1016/j.braindev.2013.05.008

    Article  Google Scholar 

  • Noble JJ, Charles-Edwards GD, Keevil SF, Lewis AP, Gough M, Shortland AP (2014b) Intramuscular fat in ambulant young adults with bilateral spastic cerebral palsy. BMC Musculoskelet Disord 15:236. doi:10.1186/1471-2474-15-236

    Article  Google Scholar 

  • Pillen S, Scholten RR, Zwarts MJ (2003) Verrips a. Quantitative skeletal muscle ultrasonography in children with suspected neuromuscular disease. Muscle Nerve 27(6):699–705. doi:10.1002/mus.10385

    Article  Google Scholar 

  • Rose J, Haskell WL, Gamble JG, Hamilton RL, Brown DA, Rinsky L (1994) Muscle pathology and clinical measures of disability in children with cerebral palsy. J Orthop Res 12(6):758–768. doi:10.1002/jor.1100120603

    Article  Google Scholar 

  • Shortland A (2009) Muscle deficits in cerebral palsy and early loss of mobility: can we learn something from our elders? Dev Med Child Neurol 51(Suppl 4):59–63. doi:10.1111/j.1469-8749.2009.03434.x

    Article  Google Scholar 

  • Shortland AP, Fry NR, Eve LC, Gough M (2004) Changes to the muscle architecture of the medial gastrocnemius after surgical intervention in spastic diplegia. Dev Med Child Neurol 46:667–673

    Google Scholar 

  • Smith LR, Lee KS, Ward SR, Chambers HG, Lieber RL (2011) Hamstring contractures in children with spastic cerebral palsy result from a stiffer extracellular matrix and increased in vivo sarcomere length. J Physiol 589(Pt 10):2625–2639. doi:10.1113/jphysiol.2010.203364

    Article  Google Scholar 

  • Smith LR, Chambers HG, Subramaniam S, Lieber RL (2012) Transcriptional abnormalities of hamstring muscle contractures in children with cerebral palsy. PLoS One 7(8):e40686. doi:10.1371/journal.pone.0040686

    Article  Google Scholar 

  • Smith LR, Chambers HG, Lieber RL (2013) Reduced satellite cell population may lead to contractures in children with cerebral palsy. Dev Med Child Neurol 55:264–270. doi:10.1111/dmcn.12027

    Article  Google Scholar 

  • Steele KM, van der Krogt MM, Schwartz MH, Delp SL (2012) How much muscle strength is required to walk in a crouch gait? J Biomech 45(15):2564–2569. doi:10.1016/j.jbiomech.2012.07.028

    Article  Google Scholar 

  • Ward SR, Eng CM, Smallwood LH, Lieber RL (2009) Are current measurements of lower extremity muscle architecture accurate? Clin Orthop Relat Res 467:1074–1082. doi:10.1007/s11999-008-0594-8

    Article  Google Scholar 

  • Zogby AM, Dayanidhi S, Chambers HG, Schenk S, Lieber RL (2016) Skeletal muscle fiber-type specific succinate dehydrogenase activity in cerebral palsy. Muscle Nerve. doi:10.1002/mus.25379

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adam Shortland .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this entry

Cite this entry

Shortland, A. (2017). Skeletal Muscle Structure in Spastic Cerebral Palsy. In: Müller, B., et al. Handbook of Human Motion. Springer, Cham. https://doi.org/10.1007/978-3-319-30808-1_51-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-30808-1_51-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-30808-1

  • Online ISBN: 978-3-319-30808-1

  • eBook Packages: Springer Reference EngineeringReference Module Computer Science and Engineering

Publish with us

Policies and ethics