Skip to main content

Skeptical Inference Based on C-Representations and Its Characterization as a Constraint Satisfaction Problem

  • Conference paper
  • First Online:
Foundations of Information and Knowledge Systems (FoIKS 2016)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 9616))

Included in the following conference series:

Abstract

The axiomatic system P is an important standard for plausible, nonmonotonic inferences that is, however, known to be too weak to solve benchmark problems like irrelevance, or subclass inheritance (so-called Drowning Problem). Spohn’s ranking functions which provide a semantic base for system P have often been used to design stronger inference relations, like Pearl’s system Z, or c-representations. While each c-representation shows excellent inference properties and handles particularly irrelevance and subclass inheritance properly, it is still an open problem which c-representation is the best. In this paper, we focus on the generic properties of c-representations and consider the skeptical inference relation (c-inference) that is obtained by taking all c-representations of a given knowledge base into account. In particular, we show that c-inference preserves the properties of solving irrelevance and subclass inheritance which are met by every single c-representation. Moreover, we characterize skeptical c-inference as a constraint satisfaction problem so that constraint solvers can be used for its implementation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Adams, E.W.: The Logic of Conditionals: An Application of Probability to Deductive Logic. Synthese Library. Springer, Dordrecht (1975)

    Book  MATH  Google Scholar 

  2. Beierle, C., Kern-Isberner, G.: A declarative approach for computing ordinal conditional functions using constraint logic programming. In: Tompits, H., Abreu, S., Oetsch, J., Pührer, J., Seipel, D., Umeda, M., Wolf, A. (eds.) INAP/WLP 2011. LNCS (LNAI), vol. 7773, pp. 175–192. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  3. Benferhat, S., Cayrol, C., Dubois, D., Lang, J., Prade, H.: Inconsistency management and prioritized syntax-based entailment. In: Proceedings of the Thirteenth International Joint Conference on Artificial Intelligence (IJCAI 1993), vol. 1, pp. 640–647. Morgan Kaufmann Publishers, San Francisco (1993)

    Google Scholar 

  4. Dubois, D., Prade, H.: Conditional objects as nonmonotonic consequence relations. In: Principles of Knowledge Representation and Reasoning: Proceedings of the Fourth International Conference (KR 1994), pp. 170–177. Morgan Kaufmann Publishers, San Francisco (1996)

    Google Scholar 

  5. Dubois, D., Prade, H.: Possibility theory and its applications: where do we stand? In: Kacprzyk, J., Pedrycz, W. (eds.) Springer Handbook of Computational Intelligence, pp. 31–60. Springer, Heidelberg (2015)

    Chapter  Google Scholar 

  6. Finetti, B.D.: Theory of Probability, vol. 1,2. Wiley, New York (1974)

    MATH  Google Scholar 

  7. Goldszmidt, M., Pearl, J.: On the consistency of defeasible databases. Artif. Intell. 52(2), 121–149 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  8. Goldszmidt, M., Pearl, J.: Qualitative probabilities for default reasoning, belief revision, and causal modeling. Artif. Intell. 84(1–2), 57–112 (1996)

    Article  MathSciNet  Google Scholar 

  9. Kern-Isberner, G., Eichhorn, C.: Structural inference from conditional knowledge bases. In: Unterhuber, M., Schurz, G. (eds.) Logic and Probability: Reasoning in Uncertain Environments, pp. 751–769 (2014). No. 102(4) in Studia Logica. Springer, Dordrecht (2014)

    Google Scholar 

  10. Kern-Isberner, G.: Conditionals in Nonmonotonic Reasoning and Belief Revision. LNCS (LNAI), vol. 2087. Springer, Heidelberg (2001)

    Book  MATH  Google Scholar 

  11. Kern-Isberner, G.: A thorough axiomatization of a principle of conditional preservation in belief revision. Ann. Math. Artif. Intell. 40, 127–164 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  12. Makinson, D.: General patterns in nonmonotonic reasoning. In: Gabbay, D.M., Hogger, C.J., Robinson, J.A. (eds.) Handbook of Logic in Artificial Intelligence and Logic Programming, vol. 3, pp. 35–110. Oxford University Press, New York (1994)

    Google Scholar 

  13. Pearl, J.: System Z: a natural ordering of defaults with tractable applications to nonmonotonic reasoning. In: Proceedings of the 3rd Conference on Theoretical Aspects of Reasoning About Knowledge (TARK1990), pp. 121–135. Morgan Kaufmann Publishers Inc., San Francisco (1990)

    Google Scholar 

  14. Spohn, W.: Ordinal conditional functions: a dynamic theory of epistemic states. In: Harper, W.L., Skyrms, B. (eds.) Causation in Decision, Belief Change and Statistics: Proceedings of the Irvine Conference on Probability and Causation. The Western Ontario Series in Philosophy of Science, vol. 42, pp. 105–134. Springer, Dordrecht (1988)

    Chapter  Google Scholar 

  15. Spohn, W.: The Laws of Belief: Ranking Theory and Its Philosophical Applications. Oxford University Press, Oxford (2012)

    Book  Google Scholar 

  16. Thorn, P.D., Eichhorn, C., Kern-Isberner, G., Schurz, G.: Qualitative probabilistic inference with default inheritance for exceptional subclasses. In: PROGIC 2015: The Seventh Workshop on Combining Probability and Logic (2015)

    Google Scholar 

Download references

Acknowledgment

This work was supported by DFG-Grant KI1413/5-1 of Prof. Dr. Gabriele Kern-Isberner as part of the priority program “New Frameworks of Rationality” (SPP 1516). Christian Eichhorn is supported by this Grant. This work benefitted very much from discussions led during Dagstuhl Seminar 15221 “Multi-disciplinary approaches to reasoning with imperfect information and knowledge - a synthesis and a roadmap of challenges”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christoph Beierle .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Beierle, C., Eichhorn, C., Kern-Isberner, G. (2016). Skeptical Inference Based on C-Representations and Its Characterization as a Constraint Satisfaction Problem. In: Gyssens, M., Simari, G. (eds) Foundations of Information and Knowledge Systems. FoIKS 2016. Lecture Notes in Computer Science(), vol 9616. Springer, Cham. https://doi.org/10.1007/978-3-319-30024-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-30024-5_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-30023-8

  • Online ISBN: 978-3-319-30024-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics