Skip to main content

Growth Hormone-Releasing Hormone Receptor and Growth Hormone Gene Abnormalities

  • Chapter
  • First Online:
Growth Hormone Deficiency

Abstract

In approximately 10 % of children with isolated growth hormone deficiency, a genetic defect can be found. Traditionally, familial isolated growth hormone deficiency (IGHD) has been classified into four types, depending on the inheritance pattern. We propose to use an adapted classification which is first based on the gene defect (GHRHR or GH1). For GHRHR defects (classically part of type IB), no further subclassification is needed, but GH1 defects are subclassified into an autosomal recessive form with complete lack of circulating GH (classical type 1A), an autosomal recessive form with low but detectable GH concentrations (part of classical type IB), an autosomal dominant form (with low GH peaks, part of the classical type II), and bioinactive GH syndrome (usually autosomal dominant). More than 30 pathogenic mutations in GHRHR have been reported, including nonsense, missense, and splice site mutations, in addition to deletions and regulatory mutations affecting the POU1F1-binding sites in the promoter region. The pattern of inheritance is autosomal recessive, and heterozygous carriers are asymptomatic. The mutations are dispersed throughout the GHRHR gene. The main characteristics of the first subclass of GH1 defects are very severe growth faltering and unmeasurable circulating GH concentration, as well as the frequent development of anti-GH antibodies on GH treatment. The second and third subclasses have a more variable severity of GHD. The autosomal dominant type is mostly caused by skipping of exon 3, which leads to a dominant-negative effect of the 17.5 kDa GH isoform. In bioinactive GH syndrome, circulating GH is normal or even elevated, in contrast to a low serum IGF-I.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lacey KA, Parkin JM. Causes of short stature. A community study of children in Newcastle upon Tyne. Lancet. 1974;1:42–5.

    Article  CAS  PubMed  Google Scholar 

  2. Vimpani GV, Vimpani AF, Lidgard GP, Cameron EH, Farquhar JW. Prevalence of severe growth hormone deficiency. Br Med J. 1977;2:427–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Mullis PE. Genetics of GHRH, GHRH-receptor, GH and GH-receptor: its impact on pharmacogenetics. Best Pract Res Clin Endocrinol Metab. 2011;25:25–41.

    Article  CAS  PubMed  Google Scholar 

  4. Alatzoglou KS, Webb EA, Le Tissier P, Dattani MT. Isolated growth hormone deficiency (GHD) in childhood and adolescence: recent advances. Endocr Rev. 2014;35:376–432.

    Article  CAS  PubMed  Google Scholar 

  5. Mullis PE. Genetics of isolated growth hormone deficiency. J Clin Res Pediatr Endocrinol. 2010;2:52–62.

    Article  PubMed  Google Scholar 

  6. Wit JM, Kiess W, Mullis P. Genetic evaluation of short stature. Best Pract Res Clin Endocrinol Metab. 2011;25:1–17.

    Article  CAS  PubMed  Google Scholar 

  7. Kempers MJ, van der Crabben SN, de Vroede M, Alfen-van der Velden J, Netea-Maier RT, Duim RA, et al. Splice site mutations in GH1 detected in previously (Genetically) undiagnosed families with congenital isolated growth hormone deficiency type II. Horm Res Paediatr. 2013;80:390–6.

    Article  CAS  PubMed  Google Scholar 

  8. Argente J, Flores R, Gutierrez-Arumi A, Verma B, Martos-Moreno GA, Cusco I, et al. Defective minor spliceosome mRNA processing results in isolated familial growth hormone deficiency. EMBO Mol Med. 2014;6:299–306.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Fleisher TA, White RM, Broder S, Nissley SP, Blaese RM, Mulvihill JJ, et al. X-linked hypogammaglobulinemia and isolated growth hormone deficiency. N Engl J Med. 1980;302:1429–34.

    Article  CAS  PubMed  Google Scholar 

  10. Sitz KV, Burks AW, Williams LW, Kemp SF, Steele RW. Confirmation of X-linked hypogammaglobulinemia with isolated growth hormone deficiency as a disease entity. J Pediatr. 1990;116:292–4.

    Article  CAS  PubMed  Google Scholar 

  11. Duriez B, Duquesnoy P, Dastot F, Bougneres P, Amselem S, Goossens M. An exon-skipping mutation in the btk gene of a patient with X-linked agammaglobulinemia and isolated growth hormone deficiency. FEBS Lett. 1994;346:165–70.

    Article  CAS  PubMed  Google Scholar 

  12. Stewart DM, Tian L, Notarangelo LD, Nelson DL. X-linked hypogammaglobulinemia and isolated growth hormone deficiency: an update. Immunol Res. 2008;40:262–70.

    Article  CAS  PubMed  Google Scholar 

  13. Conley ME, Burks AW, Herrod HG, Puck JM. Molecular analysis of X-linked agammaglobulinemia with growth hormone deficiency. J Pediatr. 1991;119:392–7.

    Article  CAS  PubMed  Google Scholar 

  14. Mullis PE. Genetic control of growth. Eur J Endocrinol. 2005;152:11–31.

    Article  CAS  PubMed  Google Scholar 

  15. Billestrup N, Swanson LW, Vale W. Growth hormone-releasing factor stimulates proliferation of somatotrophs in vitro. Proc Natl Acad Sci U S A. 1986;83:6854–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Wilson DB, Wyatt DP, Gadler RM, Baker CA. Quantitative aspects of growth hormone cell maturation in the normal and little mutant mouse. Acta Anat (Basel). 1988;131:150–5.

    Article  CAS  Google Scholar 

  17. Barinaga M, Yamonoto G, Rivier C, Vale W, Evans R, Rosenfeld MG. Transcriptional regulation of growth hormone gene expression by growth hormone-releasing factor. Nature. 1983;306:84–5.

    Article  CAS  PubMed  Google Scholar 

  18. Cronin MJ, Hewlett EL, Evans WS, Thorner MO, Rogol AD. Human pancreatic tumor growth hormone (GH) – releasing factor and cyclic adenosine 3′,5′-monophosphate evoke GH release from anterior pituitary cells: the effects of pertussis toxin, cholera toxin, forskolin, and cycloheximide. Endocrinology. 1984;114:904–13.

    Article  CAS  PubMed  Google Scholar 

  19. Godfrey P, Rahal JO, Beamer WG, Copeland NG, Jenkins NA, Mayo KE. GHRH receptor of little mice contains a missense mutation in the extracellular domain that disrupts receptor function. Nat Genet. 1993;4:227–32.

    Article  CAS  PubMed  Google Scholar 

  20. Lin SC, Lin CR, Gukovsky I, Lusis AJ, Sawchenko PE, Rosenfeld MG. Molecular basis of the little mouse phenotype and implications for cell type-specific growth. Nature. 1993;364:208–13.

    Article  CAS  PubMed  Google Scholar 

  21. Wajnrajch MP, Gertner JM, Harbison MD, Chua Jr SC, Leibel RL. Nonsense mutation in the human growth hormone-releasing hormone receptor causes growth failure analogous to the little (lit) mouse. Nat Genet. 1996;12:88–90.

    Article  CAS  PubMed  Google Scholar 

  22. Baumann G, Maheshwari H. The Dwarfs of Sindh: severe growth hormone (GH) deficiency caused by a mutation in the GH-releasing hormone receptor gene. Acta Paediatr Suppl. 1997;423:33–8.

    Article  CAS  PubMed  Google Scholar 

  23. Maheshwari HG, Silverman BL, Dupuis J, Baumann G. Phenotype and genetic analysis of a syndrome caused by an inactivating mutation in the growth hormone-releasing hormone receptor: Dwarfism of Sindh. J Clin Endocrinol Metab. 1998;83:4065–74.

    CAS  PubMed  Google Scholar 

  24. Netchine I, Talon P, Dastot F, Vitaux F, Goossens M, Amselem S. Extensive phenotypic analysis of a family with growth hormone (GH) deficiency caused by a mutation in the GH-releasing hormone receptor gene. J Clin Endocrinol Metab. 1998;83:432–6.

    CAS  PubMed  Google Scholar 

  25. Demirbilek H, Tahir S, Baran RT, Sherif M, Shah P, Ozbek MN, et al. Familial isolated growth hormone deficiency due to a novel homozygous missense mutation in the growth hormone releasing hormone receptor gene: clinical presentation with hypoglycemia. J Clin Endocrinol Metab. 2014;99:E2730–4.

    Article  CAS  PubMed  Google Scholar 

  26. Kale S, Budyal S, Kasaliwal R, Shivane V, Raghavan V, Lila A, et al. A novel gross indel in the growth hormone releasing hormone receptor gene of Indian IGHD patients. Growth Horm IGF Res. 2014;24:227–32.

    Article  CAS  PubMed  Google Scholar 

  27. Arman A, Dundar BN, Cetinkaya E, Erzaim N, Buyukgebiz A. Novel growth hormone-releasing hormone receptor gene mutations in Turkish children with isolated growth hormone deficiency. J Clin Res Pediatr Endocrinol. 2014;6:202–8.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Hayashida CY, Gondo RG, Ferrari C, Toledo SP, Salvatori R, Levine MA, et al. Familial growth hormone deficiency with mutated GHRH receptor gene: clinical and hormonal findings in homozygous and heterozygous individuals from Itabaianinha. Eur J Endocrinol. 2000;142:557–63.

    Article  CAS  PubMed  Google Scholar 

  29. Pereira RM, Aguiar-Oliveira MH, Sagazio A, Oliveira CR, Oliveira FT, Campos VC, et al. Heterozygosity for a mutation in the growth hormone-releasing hormone receptor gene does not influence adult stature, but affects body composition. J Clin Endocrinol Metab. 2007;92:2353–7.

    Article  CAS  PubMed  Google Scholar 

  30. Inoue H, Kangawa N, Kinouchi A, Sakamoto Y, Kimura C, Horikawa R, et al. Identification and functional analysis of novel human growth hormone secretagogue receptor (GHSR) gene mutations in Japanese subjects with short stature. J Clin Endocrinol Metab. 2011;96:E373–8.

    Article  CAS  PubMed  Google Scholar 

  31. Godi M, Mellone S, Petri A, Arrigo T, Bardelli C, Corrado L, et al. A recurrent signal peptide mutation in the growth hormone releasing hormone receptor with defective translocation to the cell surface and isolated growth hormone deficiency. J Clin Endocrinol Metab. 2009;94:3939–47.

    Article  CAS  PubMed  Google Scholar 

  32. Desai MP, Upadhye PS, Kamijo T, Yamamoto M, Ogawa M, Hayashi Y, et al. Growth hormone releasing hormone receptor (GHRH-r) gene mutation in Indian children with familial isolated growth hormone deficiency: a study from western India. J Pediatr Endocrinol Metab. 2005;18:955–73.

    Article  CAS  PubMed  Google Scholar 

  33. Wajnrajch MP, Gertner JM, Sokoloff AS, Ten I, Harbison MD, Netchine I, et al. Haplotype analysis of the growth hormone releasing hormone receptor locus in three apparently unrelated kindreds from the indian subcontinent with the identical mutation in the GHRH receptor. Am J Med Genet A. 2003;120A:77–83.

    Article  PubMed  Google Scholar 

  34. Salvatori R, Hayashida CY, Aguiar-Oliveira MH, Phillips III JA, Souza AH, Gondo RG, et al. Familial dwarfism due to a novel mutation of the growth hormone-releasing hormone receptor gene. J Clin Endocrinol Metab. 1999;84:917–23.

    CAS  PubMed  Google Scholar 

  35. Marui S, Trarbach EB, Boguszewski MC, Franca MM, Jorge AA, Inoue H, et al. GH-releasing hormone receptor gene: a novel splice-disrupting mutation and study of founder effects. Horm Res Paediatr. 2012;78:165–72.

    Article  CAS  PubMed  Google Scholar 

  36. Hilal L, Hajaji Y, Vie-Luton MP, Ajaltouni Z, Benazzouz B, Chana M, et al. Unusual phenotypic features in a patient with a novel splice mutation in the GHRHR gene. Mol Med. 2008;14:286–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Soneda A, Adachi M, Muroya K, Asakura Y, Takagi M, Hasegawa T, et al. Novel compound heterozygous mutations of the growth hormone-releasing hormone receptor gene in a case of isolated growth hormone deficiency. Growth Horm IGF Res. 2013;23:89–97.

    Article  CAS  PubMed  Google Scholar 

  38. Wang Q, Diao Y, Xu Z, Li X, Luo XP, Xu H, et al. Identification of a novel splicing mutation in the growth hormone (GH)-releasing hormone receptor gene in a Chinese family with pituitary dwarfism. Mol Cell Endocrinol. 2009;313:50–6.

    Article  CAS  PubMed  Google Scholar 

  39. Salvatori R, Fan X, Mullis PE, Haile A, Levine MA. Decreased expression of the GHRH receptor gene due to a mutation in a Pit-1 binding site. Mol Endocrinol. 2002;16:450–8.

    Article  CAS  PubMed  Google Scholar 

  40. Alba M, Salvatori R. Naturally-occurring missense mutations in the human growth hormone-releasing hormone receptor alter ligand binding. J Endocrinol. 2005;186:515–21.

    Article  CAS  PubMed  Google Scholar 

  41. Roelfsema F, Biermasz NR, Veldman RG, Veldhuis JD, Frolich M, Stokvis-Brantsma WH, et al. Growth hormone (GH) secretion in patients with an inactivating defect of the GH-releasing hormone (GHRH) receptor is pulsatile: evidence for a role for non-GHRH inputs into the generation of GH pulses. J Clin Endocrinol Metab. 2001;86:2459–64.

    Article  CAS  PubMed  Google Scholar 

  42. Maheshwari HG, Pezzoli SS, Rahim A, Shalet SM, Thorner MO, Baumann G. Pulsatile growth hormone secretion persists in genetic growth hormone-releasing hormone resistance. Am J Physiol Endocrinol Metab. 2002;282:E943–51.

    Article  CAS  PubMed  Google Scholar 

  43. Maheshwari HG, Bouillon R, Nijs J, Oganov VS, Bakulin AV, Baumann G. The Impact of congenital, severe, untreated growth hormone (GH) deficiency on bone size and density in young adults: insights from genetic GH-releasing hormone receptor deficiency. J Clin Endocrinol Metab. 2003;88:2614–8.

    Article  CAS  PubMed  Google Scholar 

  44. Epitacio-Pereira CC, Silva GM, Salvatori R, Santana JA, Pereira FA, Gois-Junior MB, et al. Isolated GH deficiency due to a GHRH receptor mutation causes hip joint problems and genu valgum, and reduces size but not density of trabecular and mixed bone. J Clin Endocrinol Metab. 2013;98:E1710–5.

    Article  CAS  PubMed  Google Scholar 

  45. Murray RA, Maheshwari HG, Russell EJ, Baumann G. Pituitary hypoplasia in patients with a mutation in the growth hormone-releasing hormone receptor gene. AJNR Am J Neuroradiol. 2000;21:685–9.

    CAS  PubMed  Google Scholar 

  46. Alba M, Hall CM, Whatmore AJ, Clayton PE, Price DA, Salvatori R. Variability in anterior pituitary size within members of a family with GH deficiency due to a new splice mutation in the GHRH receptor gene. Clin Endocrinol (Oxf). 2004;60:470–5.

    Article  CAS  Google Scholar 

  47. Morisawa K, Sugisaki T, Kanamatsu T, Aoki T, Noguchi T. Factors contributing to cerebral hypomyelination in the growth hormone-deficient little mouse. Neurochem Res. 1989;14:173–7.

    Article  CAS  PubMed  Google Scholar 

  48. Maheshwari HG, Rahim A, Shalet SM, Baumann G. Selective lack of growth hormone (GH) response to the GH-releasing peptide hexarelin in patients with GH-releasing hormone receptor deficiency. J Clin Endocrinol Metab. 1999;84:956–9.

    CAS  PubMed  Google Scholar 

  49. Gondo RG, Aguiar-Oliveira MH, Hayashida CY, Toledo SP, Abelin N, Levine MA, et al. Growth hormone-releasing peptide-2 stimulates GH secretion in GH-deficient patients with mutated GH-releasing hormone receptor. J Clin Endocrinol Metab. 2001;86:3279–83.

    CAS  PubMed  Google Scholar 

  50. Alba M, Fintini D, Bowers CY, Parlow AF, Salvatori R. Effects of long-term treatment with growth hormone-releasing peptide-2 in the GHRH knockout mouse. Am J Physiol Endocrinol Metab. 2005;289:E762–7.

    Article  CAS  PubMed  Google Scholar 

  51. Salvatori R, Thakker RV, Lopes MB, Fan X, Eswara JR, Ellison D, et al. Absence of mutations in the growth hormone (GH)-releasing hormone receptor gene in GH-secreting pituitary adenomas. Clin Endocrinol (Oxf). 2001;54:301–7.

    Article  CAS  Google Scholar 

  52. Lee EJ, Kotlar TJ, Ciric I, Lee MK, Lim SK, Lee HC, et al. Absence of constitutively activating mutations in the GHRH receptor in GH-producing pituitary tumors. J Clin Endocrinol Metab. 2001;86:3989–95.

    Article  CAS  PubMed  Google Scholar 

  53. Johansson A, Jonasson I, Gyllensten U. Extended haplotypes in the growth hormone releasing hormone receptor gene (GHRHR) are associated with normal variation in height. PLoS One. 2009;4, e4464.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Camats N, Fernandez-Cancio M, Carrascosa A, Andaluz P, Albisu MA, Clemente M, et al. Contribution of human growth hormone-releasing hormone receptor (GHRHR) gene sequence variation to isolated severe growth hormone deficiency (ISGHD) and normal adult height. Clin Endocrinol (Oxf). 2012;77:564–74.

    Article  CAS  Google Scholar 

  55. Lettre G, Butler JL, Ardlie KG, Hirschhorn JN. Common genetic variation in eight genes of the GH/IGF1 axis does not contribute to adult height variation. Hum Genet. 2007;122:129–39.

    Article  CAS  PubMed  Google Scholar 

  56. Wood AR, Esko T, Yang J, Vedantam S, Pers TH, Gustafsson S, et al. Defining the role of common variation in the genomic and biological architecture of adult human height. Nat Genet. 2014;46:1173–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Horan M, Millar DS, Hedderich J, Lewis G, Newsway V, Mo N, et al. Human growth hormone 1 (GH1) gene expression: complex haplotype-dependent influence of polymorphic variation in the proximal promoter and locus control region. Hum Mutat. 2003;21:408–23.

    Article  CAS  PubMed  Google Scholar 

  58. Jin Y, Surabhi RM, Fresnoza A, Lytras A, Cattini PA. A role for A/T-rich sequences and Pit-1/GHF-1 in a distal enhancer located in the human growth hormone locus control region with preferential pituitary activity in culture and transgenic mice. Mol Endocrinol. 1999;13:1249–66.

    Article  CAS  PubMed  Google Scholar 

  59. Shewchuk BM, Liebhaber SA, Cooke NE. Specification of unique Pit-1 activity in the hGH locus control region. Proc Natl Acad Sci U S A. 2002;99:11784–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Cattini PA, Yang X, Jin Y, Detillieux KA. Regulation of the human growth hormone gene family: possible role for Pit-1 in early stages of pituitary-specific expression and repression. Neuroendocrinology. 2006;83:145–53.

    Article  CAS  PubMed  Google Scholar 

  61. Alatzoglou KS, Turton JP, Kelberman D, Clayton PE, Mehta A, Buchanan C, et al. Expanding the spectrum of mutations in GH1 and GHRHR: genetic screening in a large cohort of patients with congenital isolated growth hormone deficiency. J Clin Endocrinol Metab. 2009;94:3191–9.

    Article  CAS  PubMed  Google Scholar 

  62. Yang X, Jin Y, Cattini PA. Appearance of the pituitary factor Pit-1 increases chromatin remodeling at hypersensitive site III in the human GH locus. J Mol Endocrinol. 2010;45:19–32.

    Article  CAS  PubMed  Google Scholar 

  63. Procter AM, Phillips III JA, Cooper DN. The molecular genetics of growth hormone deficiency. Hum Genet. 1998;103:255–72.

    Article  CAS  PubMed  Google Scholar 

  64. Millar DS, Lewis MD, Horan M, Newsway V, Easter TE, Gregory JW, et al. Novel mutations of the growth hormone 1 (GH1) gene disclosed by modulation of the clinical selection criteria for individuals with short stature. Hum Mutat. 2003;21:424–40.

    Article  CAS  PubMed  Google Scholar 

  65. Giordano M, Godi M, Mellone S, Petri A, Vivenza D, Tiradani L, et al. A functional common polymorphism in the vitamin D-responsive element of the GH1 promoter contributes to isolated growth hormone deficiency. J Clin Endocrinol Metab. 2008;93:1005–12.

    Article  CAS  PubMed  Google Scholar 

  66. Fritez N, Sobrier ML, Iraqi H, Vie-Luton MP, Netchine I, El Annas A, et al. Molecular screening of a large cohort of Moroccan patients with congenital hypopituitarism. Clin Endocrinol (Oxf). 2015;82:876–84.

    Article  CAS  Google Scholar 

  67. Phillips III JA, Hjelle BL, Seeburg PH, Zachmann M. Molecular basis for familial isolated growth hormone deficiency. Proc Natl Acad Sci U S A. 1981;78:6372–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Wagner JK, Eble A, Hindmarsh PC, Mullis PE. Prevalence of human GH-1 gene alterations in patients with isolated growth hormone deficiency. Pediatr Res. 1998;43:105–10.

    CAS  PubMed  Google Scholar 

  69. Kamijo T, Phillips III JA. Detection of molecular heterogeneity in GH-1 gene deletions by analysis of polymerase chain reaction amplification products. J Clin Endocrinol Metab. 1992;74:786–9.

    Article  CAS  PubMed  Google Scholar 

  70. He YA, Chen SS, Wang YX, Lin XY, Wang DF. A Chinese familial growth hormone deficiency with a deletion of 7.1 kb of DNA. J Med Genet. 1990;27:151–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Laron Z, Kelijman M, Pertzelan A, Keret R, Shoffner JM, Parks JS. Human growth hormone gene deletion without antibody formation or growth arrest during treatment–a new disease entity? Isr J Med Sci. 1985;21:999–1006.

    CAS  PubMed  Google Scholar 

  72. Braga S, Phillips III JA, Joss E, Schwarz H, Zuppinger K. Familial growth hormone deficiency resulting from a 7.6 kb deletion within the growth hormone gene cluster. Am J Med Genet. 1986;25:443–52.

    Article  CAS  PubMed  Google Scholar 

  73. Akinci A, Kanaka C, Eble A, Akar N, Vidinlisan S, Mullis PE. Isolated growth hormone (GH) deficiency type IA associated with a 45-kilobase gene deletion within the human GH gene cluster. J Clin Endocrinol Metab. 1992;75:437–41.

    CAS  PubMed  Google Scholar 

  74. Baroncini C, Baldazzi L, Pirazzoli P, Marchetti G, Capelli M, Cacciari E, et al. Deletion breakpoints in a 32 bp perfect repeat located 45.1 Kb apart in the human growth hormone gene cluster. Hum Mol Genet. 1993;2:2151–3.

    Article  CAS  PubMed  Google Scholar 

  75. Ghizzoni L, Duquesnoy P, Torresani T, Vottero A, Goossens M, Bernasconi S. Isolated growth hormone deficiency type IA associated with a 45-kilobase gene deletion within the human growth hormone gene cluster in an Italian family. Pediatr Res. 1994;36:654–9.

    Article  CAS  PubMed  Google Scholar 

  76. Goossens M, Brauner R, Czernichow P, Duquesnoy P, Rappaport R. Isolated growth hormone (GH) deficiency type 1A associated with a double deletion in the human GH gene cluster. J Clin Endocrinol Metab. 1986;62:712–6.

    Article  CAS  PubMed  Google Scholar 

  77. Duquesnoy P, Amselem S, Gourmelen M, Le Bouc Y, Goossens M. A frameshift mutation causing isolated growth hormone deficiency type 1A. Am J Hum Genet. 1990;47:A110.

    Google Scholar 

  78. Cogan JD, Phillips III JA, Sakati N, Frisch H, Schober E, Milner RD. Heterogeneous growth hormone (GH) gene mutations in familial GH deficiency. J Clin Endocrinol Metab. 1993;76:1224–8.

    CAS  PubMed  Google Scholar 

  79. Coker A, Cetinkaya E, Dundar B, Siklar Z, Buyukgebiz A, Arman A. Characterization of GH-1 mutations in children with isolated growth hormone deficiency in the Turkish population. J Pediatr Endocrinol Metab. 2009;22:937–46.

    Article  CAS  PubMed  Google Scholar 

  80. Iughetti L, Sobrier ML, Predieri B, Netchine I, Carani C, Bernasconi S, et al. Complex disease phenotype revealed by GH deficiency associated with a novel and unusual defect in the GH-1 gene. Clin Endocrinol (Oxf). 2008;69:170–2.

    Article  Google Scholar 

  81. Igarashi Y, Ogawa M, Kamijo T, Iwatani N, Nishi Y, Kohno H, et al. A new mutation causing inherited growth hormone deficiency: a compound heterozygote of a 6.7 kb deletion and a two base deletion in the third exon of the GH-1 gene. Hum Mol Genet. 1993;2:1073–4.

    Article  CAS  PubMed  Google Scholar 

  82. Tsubahara M, Hayashi Y, Niijima S, Yamamoto M, Kamijo T, Murata Y, et al. Isolated growth hormone deficiency in two siblings because of paternal mosaicism for a mutation in the GH1 gene. Clin Endocrinol (Oxf). 2012;76:420–4.

    Article  CAS  Google Scholar 

  83. Dateki S, Hizukuri K, Tanaka T, Katsumata N, Katavetin P, Ogata T. An immunologically anomalous but considerably bioactive GH produced by a novel GH1 mutation (p.D116E). Eur J Endocrinol. 2009;161:301–6.

    Article  CAS  PubMed  Google Scholar 

  84. Maghnie M, Triulzi F, Larizza D, Preti P, Priora C, Scotti G, et al. Hypothalamic-pituitary dysfunction in growth hormone-deficient patients with pituitary abnormalities. J Clin Endocrinol Metab. 1991;73:79–83.

    Article  CAS  PubMed  Google Scholar 

  85. Pfaffle RW, DiMattia GE, Parks JS, Brown MR, Wit JM, Jansen M, et al. Mutation of the POU-specific domain of Pit-1 and hypopituitarism without pituitary hypoplasia. Science. 1992;257:1118–21.

    Article  CAS  PubMed  Google Scholar 

  86. Hayashi Y, Kamijo T, Yamamoto M, Murata Y, Phillips III JA, Ogawa M, et al. A case with isolated growth hormone deficiency caused by compound heterozygous mutations in GH-1: a novel missense mutation in the initiation codon and a 7.6kb deletion. Growth Horm IGF Res. 2007;17:249–53.

    Article  CAS  PubMed  Google Scholar 

  87. Cogan JD, Phillips III JA, Schenkman SS, Milner RD, Sakati N. Familial growth hormone deficiency: a model of dominant and recessive mutations affecting a monomeric protein. J Clin Endocrinol Metab. 1994;79:1261–5.

    CAS  PubMed  Google Scholar 

  88. Phillips III JA, Cogan JD. Genetic basis of endocrine disease. 6. Molecular basis of familial human growth hormone deficiency. J Clin Endocrinol Metab. 1994;78:11–6.

    CAS  PubMed  Google Scholar 

  89. Leiberman E, Pesler D, Parvari R, Elbedour K, Abdul-Latif H, Brown MR, et al. Short stature in carriers of recessive mutation causing familial isolated growth hormone deficiency. Am J Med Genet. 2000;90:188–92.

    Article  CAS  PubMed  Google Scholar 

  90. Abdul-Latif H, Leiberman E, Brown MR, Carmi R, Parks JS. Growth hormone deficiency type IB caused by cryptic splicing of the GH-1 gene. J Pediatr Endocrinol Metab. 2000;13:21–8.

    Article  CAS  PubMed  Google Scholar 

  91. Guo MH, Shen Y, Walvoord EC, Miller TC, Moon JE, Hirschhorn JN, et al. Whole exome sequencing to identify genetic causes of short stature. Horm Res Paediatr. 2014;82:44–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Shariat N, Holladay CD, Cleary RK, Phillips III JA, Patton JG. Isolated growth hormone deficiency type II caused by a point mutation that alters both splice site strength and splicing enhancer function. Clin Genet. 2008;74:539–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Takahashi I, Takahashi T, Komatsu M, Sato T, Takada G. An exonic mutation of the GH-1 gene causing familial isolated growth hormone deficiency type II. Clin Genet. 2002;61:222–5.

    Article  CAS  PubMed  Google Scholar 

  94. Hamid R, Phillips III JA, Holladay C, Cogan JD, Austin ED, Backeljauw PF, et al. A molecular basis for variation in clinical severity of isolated growth hormone deficiency type II. J Clin Endocrinol Metab. 2009;94:4728–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Petkovic V, Lochmatter D, Turton J, Clayton PE, Trainer PJ, Dattani MT, et al. Exon splice enhancer mutation (GH-E32A) causes autosomal dominant growth hormone deficiency. J Clin Endocrinol Metab. 2007;92:4427–35.

    Article  CAS  PubMed  Google Scholar 

  96. Moseley CT, Mullis PE, Prince MA, Phillips III JA. An exon splice enhancer mutation causes autosomal dominant GH deficiency. J Clin Endocrinol Metab. 2002;87:847–52.

    Article  CAS  PubMed  Google Scholar 

  97. Binder G, Iliev DI, Mullis PE, Ranke MB. Catch-up growth in autosomal dominant isolated growth hormone deficiency (IGHD type II). Growth Horm IGF Res. 2007;17:242–8.

    Article  CAS  PubMed  Google Scholar 

  98. Gucev Z, Tasic V, Saranac L, Stobbe H, Kratzsch J, Klammt J, et al. A novel GH1 mutation in a family with isolated growth hormone deficiency type II. Horm Res Paediatr. 2012;77:200–4.

    Article  CAS  PubMed  Google Scholar 

  99. Babu D, Mellone S, Fusco I, Petri A, Walker GE, Bellone S, et al. Novel mutations in the GH gene (GH1) uncover putative splicing regulatory elements. Endocrinology. 2014;155:1786–92.

    Article  PubMed  CAS  Google Scholar 

  100. Salemi S, Yousefi S, Baltensperger K, Robinson IC, Eble A, Simon D, et al. Variability of isolated autosomal dominant GH deficiency (IGHD II): impact of the P89L GH mutation on clinical follow-up and GH secretion. Eur J Endocrinol. 2005;153:791–802.

    Article  CAS  PubMed  Google Scholar 

  101. Juanes M, Marino R, Ciaccio M, Di Palma I, Ramirez P, Warman DM, et al. Presence of GH1 and absence of GHRHR gene mutations in a large cohort of Argentinian patients with severe short stature and isolated GH deficiency. Clin Endocrinol (Oxf). 2014;80:618–20.

    Article  CAS  Google Scholar 

  102. Binder G, Keller E, Mix M, Massa GG, Stokvis-Brantsma WH, Wit JM, et al. Isolated GH deficiency with dominant inheritance: new mutations, new insights. J Clin Endocrinol Metab. 2001;86:3877–81.

    Article  CAS  PubMed  Google Scholar 

  103. Miyata I, Cogan JD, Prince MA, Kamijo T, Ogawa M, Phillips III JA. Detection of growth hormone gene defects by dideoxy fingerprinting (ddF). Endocr J. 1997;44:149–54.

    Article  CAS  PubMed  Google Scholar 

  104. Deladoey J, Stocker P, Mullis PE. Autosomal dominant GH deficiency due to an Arg183His GH-1 gene mutation: clinical and molecular evidence of impaired regulated GH secretion. J Clin Endocrinol Metab. 2001;86:3941–7.

    Article  CAS  PubMed  Google Scholar 

  105. Lido AC, Franca MM, Correa FA, Otto AP, Carvalho LR, Quedas EP, et al. Autosomal recessive form of isolated growth hormone deficiency is more frequent than the autosomal dominant form in a Brazilian cohort. Growth Horm IGF Res. 2014;24:180–6.

    Article  CAS  PubMed  Google Scholar 

  106. Fofanova OV, Evgrafov OV, Polyakov AV, Poltaraus AB, Peterkova VA, Dedov II. A novel IVS2–2A>T splicing mutation in the GH-1 gene in familial isolated growth hormone deficiency type II in the spectrum of other splicing mutations in the Russian population. J Clin Endocrinol Metab. 2003;88:820–6.

    Article  CAS  PubMed  Google Scholar 

  107. Cogan JD, Ramel B, Lehto M, Phillips III J, Prince M, Blizzard RM, et al. A recurring dominant negative mutation causes autosomal dominant growth hormone deficiency–a clinical research center study. J Clin Endocrinol Metab. 1995;80:3591–5.

    CAS  PubMed  Google Scholar 

  108. Binder G, Ranke MB. Screening for growth hormone (GH) gene splice-site mutations in sporadic cases with severe isolated GH deficiency using ectopic transcript analysis. J Clin Endocrinol Metab. 1995;80:1247–52.

    CAS  PubMed  Google Scholar 

  109. Missarelli C, Herrera L, Mericq V, Carvallo P. Two different 5′ splice site mutations in the growth hormone gene causing autosomal dominant growth hormone deficiency. Hum Genet. 1997;101:113–7.

    Article  CAS  PubMed  Google Scholar 

  110. Hayashi Y, Yamamoto M, Ohmori S, Kamijo T, Ogawa M, Seo H. Inhibition of growth hormone (GH) secretion by a mutant GH-I gene product in neuroendocrine cells containing secretory granules: an implication for isolated GH deficiency inherited in an autosomal dominant manner. J Clin Endocrinol Metab. 1999;84:2134–9.

    CAS  PubMed  Google Scholar 

  111. Hayashi Y, Kamijo T, Yamamoto M, Ohmori S, Phillips III JA, Ogawa M, et al. A novel mutation at the donor splice site of intron 3 of the GH-I gene in a patient with isolated growth hormone deficiency. Growth Horm IGF Res. 1999;9:434–7.

    Article  CAS  PubMed  Google Scholar 

  112. Katsumata N, Matsuo S, Sato N, Tanaka T. A novel and de novo splice-donor site mutation in intron 3 of the GH-1 gene in a patient with isolated growth hormone deficiency. Growth Horm IGF Res. 2001;11:378–83.

    Article  CAS  PubMed  Google Scholar 

  113. Cogan JD, Prince MA, Lekhakula S, Bundey S, Futrakul A, McCarthy EM, et al. A novel mechanism of aberrant pre-mRNA splicing in humans. Hum Mol Genet. 1997;6:909–12.

    Article  CAS  PubMed  Google Scholar 

  114. McCarthy EM, Phillips III JA. Characterization of an intron splice enhancer that regulates alternative splicing of human GH pre-mRNA. Hum Mol Genet. 1998;7:1491–6.

    Article  CAS  PubMed  Google Scholar 

  115. Vivenza D, Guazzarotti L, Godi M, Frasca D, di Natale B, Momigliano-Richiardi P, et al. A novel deletion in the GH1 gene including the IVS3 branch site responsible for autosomal dominant isolated growth hormone deficiency. J Clin Endocrinol Metab. 2006;91:980–6.

    Article  CAS  PubMed  Google Scholar 

  116. Fofanova OV, Evgrafov OV, Polyakov AV, Peterkova VA, Dedov II. A novel splicing mutation in exon 4 (456G>A) of the GH1 gene in a patient with congenital isolated growth hormone deficiency. Hormones (Athens). 2006;5:288–94.

    Article  Google Scholar 

  117. Rojas-Gil AP, Ziros PG, Kanetsis E, Papathanassopoulou V, Nikolakopoulou NM, He K, et al. Combined effect of mutations of the GH1 gene and its proximal promoter region in a child with growth hormone neurosecretory dysfunction (GHND). J Mol Med (Berl). 2007;85:1005–13.

    Article  Google Scholar 

  118. Lee MS, Wajnrajch MP, Kim SS, Plotnick LP, Wang J, Gertner JM, et al. Autosomal dominant growth hormone (GH) deficiency type II: the Del32-71-GH deletion mutant suppresses secretion of wild-type GH. Endocrinology. 2000;141:883–90.

    CAS  PubMed  Google Scholar 

  119. McGuinness L, Magoulas C, Sesay AK, Mathers K, Carmignac D, Manneville JB, et al. Autosomal dominant growth hormone deficiency disrupts secretory vesicles in vitro and in vivo in transgenic mice. Endocrinology. 2003;144:720–31.

    Article  CAS  PubMed  Google Scholar 

  120. Ariyasu D, Yoshida H, Yamada M, Hasegawa Y. Endoplasmic reticulum stress and apoptosis contribute to the pathogenesis of dominantly inherited isolated GH deficiency due to GH1 gene splice site mutations. Endocrinology. 2013;154:3228–39.

    Article  CAS  PubMed  Google Scholar 

  121. Ryther RC, McGuinness LM, Phillips III JA, Moseley CT, Magoulas CB, Robinson IC, et al. Disruption of exon definition produces a dominant-negative growth hormone isoform that causes somatotroph death and IGHD II. Hum Genet. 2003;113:140–8.

    CAS  PubMed  Google Scholar 

  122. Ryther RC, Flynt AS, Harris BD, Phillips III JA, Patton JG. GH1 splicing is regulated by multiple enhancers whose mutation produces a dominant-negative GH isoform that can be degraded by allele-specific small interfering RNA (siRNA). Endocrinology. 2004;145:2988–96.

    Article  CAS  PubMed  Google Scholar 

  123. Zhu YL, Conway-Campbell B, Waters MJ, Dannies PS. Prolonged retention after aggregation into secretory granules of human R183H-growth hormone (GH), a mutant that causes autosomal dominant GH deficiency type II. Endocrinology. 2002;143:4243–8.

    Article  CAS  PubMed  Google Scholar 

  124. Mullis PE, Robinson IC, Salemi S, Eble A, Besson A, Vuissoz JM, et al. Isolated autosomal dominant growth hormone deficiency: an evolving pituitary deficit? A multicenter follow-up study. J Clin Endocrinol Metab. 2005;90:2089–96.

    Article  CAS  PubMed  Google Scholar 

  125. Turton JP, Buchanan CR, Robinson IC, Aylwin SJ, Dattani MT. Evolution of gonadotropin deficiency in a patient with type II autosomal dominant GH deficiency. Eur J Endocrinol. 2006;155:793–9.

    Article  CAS  PubMed  Google Scholar 

  126. Fintini D, Salvatori R, Salemi S, Otten B, Ubertini G, Cambiaso P, et al. Autosomal-dominant isolated growth hormone deficiency (IGHD type II) with normal GH-1 gene. Horm Res. 2006;65:76–82.

    Article  CAS  PubMed  Google Scholar 

  127. Shariat N, Ryther RC, Phillips III JA, Robinson IC, Patton JG. Rescue of pituitary function in a mouse model of isolated growth hormone deficiency type II by RNA interference. Endocrinology. 2008;149:580–6.

    Article  CAS  PubMed  Google Scholar 

  128. Lochmatter D, Strom M, Eble A, Petkovic V, Fluck CE, Bidlingmaier M, et al. Isolated GH deficiency type II: knockdown of the harmful Delta3GH recovers wt-GH secretion in rat tumor pituitary cells. Endocrinology. 2010;151:4400–9.

    Article  CAS  PubMed  Google Scholar 

  129. Poling JS, Phillips III JA, Cogan JD, Hamid R. Pharmacologic correction of dominant-negative GH1 deficiency causing mutations. Clin Transl Sci. 2011;4:175–9.

    Article  CAS  PubMed  Google Scholar 

  130. Besson A, Salemi S, Deladoey J, Vuissoz JM, Eble A, Bidlingmaier M, et al. Short stature caused by a biologically inactive mutant growth hormone (GH-C53S). J Clin Endocrinol Metab. 2005;90:2493–9.

    Article  CAS  PubMed  Google Scholar 

  131. Petkovic V, Miletta MC, Boot AM, Losekoot M, Fluck CE, Pandey AV, et al. Short stature in two siblings heterozygous for a novel bioinactive GH mutant (GH-P59S) suggesting that the mutant also affects secretion of the wild-type GH. Eur J Endocrinol. 2013;168:K35–43.

    Article  PubMed  Google Scholar 

  132. Petkovic V, Eble A, Pandey AV, Betta M, Mella P, Fluck CE, et al. A novel GH-1 gene mutation (GH-P59L) causes partial GH deficiency type II combined with bioinactive GH syndrome. Growth Horm IGF Res. 2011;21:160–6.

    Article  CAS  PubMed  Google Scholar 

  133. Takahashi Y, Kaji H, Okimura Y, Goji K, Abe H, Chihara K. Brief report: short stature caused by a mutant growth hormone [see comments]. N Engl J Med. 1996;334:432–6.

    Article  CAS  PubMed  Google Scholar 

  134. Petkovic V, Thevis M, Lochmatter D, Besson A, Eble A, Fluck CE, et al. GH mutant (R77C) in a pedigree presenting with the delay of growth and pubertal development: structural analysis of the mutant and evaluation of the biological activity. Eur J Endocrinol. 2007;157 Suppl 1:S67–74.

    Article  CAS  PubMed  Google Scholar 

  135. Petkovic V, Besson A, Thevis M, Lochmatter D, Eble A, Fluck CE, et al. Evaluation of the biological activity of a growth hormone (GH) mutant (R77C) and its impact on GH responsiveness and stature. J Clin Endocrinol Metab. 2007;92:2893–901.

    Article  CAS  PubMed  Google Scholar 

  136. Takahashi Y, Shirono H, Arisaka O, Takahashi K, Yagi T, Koga J, et al. Biologically inactive growth hormone caused by an amino acid substitution. J Clin Invest. 1997;100:1159–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Petkovic V, Godi M, Pandey AV, Lochmatter D, Buchanan CR, Dattani MT, et al. Growth hormone (GH) deficiency type II: a novel GH-1 gene mutation (GH-R178H) affecting secretion and action. J Clin Endocrinol Metab. 2010;95:731–9.

    Article  CAS  PubMed  Google Scholar 

  138. Lewis MD, Horan M, Millar DS, Newsway V, Easter TE, Fryklund L, et al. A novel dysfunctional growth hormone variant (Ile179Met) exhibits a decreased ability to activate the extracellular signal-regulated kinase pathway. J Clin Endocrinol Metab. 2004;89:1068–75.

    Article  CAS  PubMed  Google Scholar 

  139. Wit JM, Oostdijk W, Losekoot M. Spectrum of insulin-like growth factor deficiency. Endocr Dev. 2012;23:30–41.

    Article  CAS  PubMed  Google Scholar 

  140. Osorio MG, Marui S, Jorge AA, Latronico AC, Lo LS, Leite CC, et al. Pituitary magnetic resonance imaging and function in patients with growth hormone deficiency with and without mutations in GHRH-R, GH-1, or PROP-1 genes. J Clin Endocrinol Metab. 2002;87:5076–84.

    Article  CAS  PubMed  Google Scholar 

  141. Desai MP, Mithbawkar SM, Upadhye PS, Rao SC, Bhatia V, Vijaykumar M. Molecular genetic studies in isolated growth hormone deficiency (IGHD). Indian J Pediatr. 2013;80:623–30.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan M. Wit .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Wit, J.M., Losekoot, M., Baumann, G. (2016). Growth Hormone-Releasing Hormone Receptor and Growth Hormone Gene Abnormalities. In: Cohen, L. (eds) Growth Hormone Deficiency. Springer, Cham. https://doi.org/10.1007/978-3-319-28038-7_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-28038-7_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-28036-3

  • Online ISBN: 978-3-319-28038-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics